Prepared for/Applicant:

Transformations, Inc. 8 Coppersmith Way Townsend, MA 01469

STORMWATER REPORT

FOR THE PROPOSED LOW IMPACT DEVELOPMENT (LID) STORMWATER CONTROLS AT PINE HILL VILLAGE IN HARVARD, MA

Prepared by:

Geosyntec Consultants

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, Massachusetts 01720

Project Number: BW0118

October 18, 2010 (Revised December 20, 2010 January 25, 2011, February 22, 2011, March 9, 2011, March 16, 2011, May 11, 2011, June 3, 2011,June 16, 2011, August 29, 2017, February 15, 2018, July 30, 2018 and September 10, 2018)

STORMWATER REPORT

TABLE OF CONTENTS

PURPOSE	6
PROJECT INFORMATION	7
LOW IMPACT DEVELOPMENT MEASURES	8
STORMWATER STANDARDS	
RESULTS	
DESIGN CALCULATIONS	
REFERENCES	27

STORMWATER REPORT

TABLES

Table 1: Proposed LID Practices for Village

Table 2: Stormwater Management System Discharge Point Velocity

 Table 3: Design Storm Rainfall Depth

 Table 4A: Peak Summary Results Table

 Table 4B: Volume Summary Results Table

 Table 5: Site Soil Evaluation Table

Table 6: Recharge Volume Using Static Method

Table 7: Parabolic Channel Schedule

Table 8A: Catch Basin Grate Analysis

Table 8B: Raingarden Atrium Grate Analysis

FIGURES

Figure 11: Existing Conditions Drainage Map
Figure 12: Proposed Conditions Drainage Map
Figure 13: Soil Map
Figure 14: Stormwater Management Plan
Figure 15A, B, C and D: Stormwater Management Plan Details
Figure 6: Interim Wellhead Protection Area Map

ATTACHMENTS

- Attachment A NRCS Soils Information and Infiltration
- Attachment B Design Calculations
- Attachment C Long Term Pollution Prevention Plan
- Attachment D Operation and Maintenance Plan
- Attachment E Checklist
- Attachment F FEMA Flood Map
- Attachment G HydroCAD Output

STORMWATER REPORT

Client: <u>Transformations, Inc.</u>	Project: Pine H	Iiii Project/Proposal #:	<u>BW0118</u> Task #: <u>01</u>
TITLE OF COMPUTATIONS		eport for the Low Impact Development S l Village Development, Harvard, Massach	-
COMPUTATIONS BY:	Signature	Renee Lite	6/16/2011
			DATE
	Printed Name	Reflect I Itsik	
	and The	Engineer	
ASSUMPTIONS AND PROCEDURES CHECKED BY:	Signature	Renee Lite	6/16/2011
(Peer Reviewer)			DATE
	Printed Name	e Renee Fitsik	
	and Title	Engineer	
COMPUTATIONS CHECKED BY:	Signature	David H. Bouchean	6/16/2011
			DATE
	Printed Name	e Daniel Bourdeau, PE	
	and Title	Professional Engineer	
COMPUTATIONS BACKCHECKED BY:	Signature	Renee L fits	6/16/2011
(Originator)			DATE
	Printed Name	Kence Pitsik	
	and Title	Engineer	6/16/2011
APPROVED BY:	Signature		6/16/2011
(PM or Designate)			DATE
- ·	Printed Name	e Steve Roy	
	and Title	Principal	
REVISIONS: 2/15/2	2018 – Revised p	per new grading plan dated 10/19/201	7. Approved by DHB.

STORMWATER REPORT

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist (Attachment E) is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block

della

Signature and Date

GEOSYNTEC CONS	SULTANTS		PAGE	6	OF_	27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, Pl</u>	E Da	te: 06/0	3/2011	
Client: <u>Transformations</u> Project: <u>P</u>	ine Hill Village	Project/Proposal No.: <u>BW011</u>	8 Task	No.:	<u>01</u>	

STORMWATER REPORT LOW IMPACT DEVELOPMENT STORMWATER MANAGEMENT PLAN PINE HILL VILLAGE DEVELOPMENT HARVARD, MASSACHUSETTS

PURPOSE

The purpose of this calculation package and report is to present supporting information and calculations to accompany the design of the proposed low impact development (LID) stormwater management plan for the proposed Pine Hill Village in Harvard, Massachusetts (the Village). The proposed plan was designed by Geosyntec Consultants, Inc. (Geosyntec) in accordance with the Stormwater Management Standards as described in the Massachusetts Stormwater Handbook, dated February 2008 (Handbook) and in compliance with the Wetlands Protection Act Regulations (310 CMR 10.00 and 314 CMR 9.00 revised January 2, 2008). The project is defined as New Development and is required to meet the Stormwater Management Standards.

The Village is a five-lot subdivision proposed under a Comprehensive Permit (Chapter 40b). Geosyntec's proposed stormwater management plan utilizes a system of distributed LID bioretention and raingarden controls in combination with a more centralized constructed treatment wetland. The proposed stormwater management plan as described herein and designed by Geosyntec is identified on Figure 14, Proposed Conditions Stormwater Management Plan attached to this report.

PAGE___7 **OF**___27

Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations	Project: Pine Hill Village	Project/Proposal No.:BW0118	_ Task No.: 01

PROJECT INFORMATION

The following is information related to the proposed development project and watershed:

Project Location:

Street Address:	Stow Road	City/Town:	<u>Harvard</u>	Zip Code:	<u>01451</u>
Latitude:	<u>42.462513</u>	Longitude:	-71.558429	Source:	Google
Assessors Map:	<u>36</u>	Parcel/Lot No.	<u>96.1</u>		

Project Type:

New Development (Residential Subdivision) Redevelopment Mix of New Development and Redevelopment

Project Description:

The Village is a five-lot residential subdivision proposed under a Comprehensive Permit. The Village consists of one cul-de-sac that services twenty-four residential units. The development plan incorporates LID techniques for stormwater management including bioretention cells, raingardens, vegetated swales and a centralized constructed treatment wetland.

Watershed Information:

Receiving Water:	Unnamed Perennial Tributary of Elizabeth Brook that drains to Delaney Pond
Water Quality Impairments:	None Identified
Source:	EPA EnviroMapper for Water (<u>http://map24.epa.gov/emr/;</u> December 2010)
FEMA Flood Hazard	A portion of the site is located within a FEMA Zone B boundary as
Area:	identified on Panel Number 250308 0006B dated June 15, 1983.
	The FEMA Flood Hazard Boundary is shown on Figure 11. FEMA
	defines Zone B as "area of moderate flood hazard, usually the area
	between the limits of the 100-year and 500-year floods. B Zones are
	also used to designate base floodplains of lesser hazards, such as
	areas protected by levees from 100-year flood, or shallow flooding
	areas with average depths of less than one foot or drainage areas less
	than 1 square mile" (<u>www.msd.fema.gov</u> , December 2010).

GEOSYNTEC CONSULTANTS PAGE_8_OF_27 Written by: R. Fitsik Date: 06/02/2011 Reviewed by: __Daniel Bourdeau, PE_____ Date: 06/03/2011 Client: Transformations Project: Pine Hill Village Project/Proposal No.: __BW0118 Task No.: __01_____

LOW IMPACT DEVELOPMENT MEASURES

LID is a sustainable stormwater runoff management approach that uses distributed micro-scale stormwater runoff management principles and practices in order to mimic how natural hydrologic cycles treat runoff through the processes of storage, infiltration, or evapotranspiration.

Measures

The following LID measures are proposed for implementation at the Village. Site specific design criteria are provided on Figure 14.

LID Measure	Description
Site Design Practice (e.g., clustered development, reduced frontage setbacks)	The housing and infrastructure are clustered on approximately 38% of the total site leaving 62% of the site as open space. The LID design of the road for the Pine Hill Village Development is in compliance with the Comprehensive Permit issued by the Harvard Zoning Board of Appeals, issued October 29, 2008, which allows a reduced 20-foot road pavement width and 40-foot total
Minimizing disturbance to existing trees and shrubs	street right-of-way width." The proposed design incorporates the existing site slopes and grades and does not include large cuts and fills. This results in reduced disturbance to existing trees and vegetation to the extent practicable.
Country Drainage	Portions of the proposed road have a crowned roadway center and country drainage that drains to vegetated swales.
Bioretention Cells and Raingardens	Bioretention cells and raingardens, both exfiltrating and non-exfiltrating, have been distributed throughout the proposed village to treat the storm water quality volume and infiltrating the required recharge volume.
Constructed Wetland	A constructed wetland is included in the proposed stormwater management plan to provide water quality treatment as well as control peak discharge rates for the 2 year, 10 year and 100 year design storm events.
Grass Channels	Vegetated channels have been incorporated in the stormwater management plan where swales could be used in place of culverts.

Table 1. Proposed LID Practices for the Village

GEOSYNTEC CONSU	LTANTS			PAGE_	9	OF_	27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: _	Daniel Bourdeau, PH	<u> </u>	nte: 06/0)3/2011	
Client: <u>Transformations</u> Project: <u>Pine</u>	Hill Village	Project/Pr	oposal No.: BW011	8 Task	x No.:	<u>01</u>	

Site Design Credit

The proposed development incorporates elements of LID site design including environmentally sensitive development and disconnection of rooftop, roadway, driveway, and parking areas. The stormwater management plan does *not* use the LID Site Design Credits because the requirements listed in Volume 3 of the Handbook were not fully met for any of the three credit systems. The proposed development uses "cluster development" design to reduce the total site imperviousness and to leave a significant area of the site undisturbed in its predevelopment condition. Additionally, all building roofs are disconnected and flow onto pervious site areas and portions of the paved roadway area are disconnected through open road drainage that drain to vegetated channels. In addition to the site design practices, LID controls were used to control runoff and are described in the following section.

GEOSYNTEC CONS	ULTANTS	F	PAGE 10 OF 27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pi	ne Hill Village	Project/Proposal No.: BW0118	Task No.: 01

STORMWATER STANDARDS

The following is a summary of how each Standard was addressed for the project. Each standard has a summary of the standard requirements, supporting calculations and results.

Standard 1: (Untreated discharges)

No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Storm water runoff currently drains via overland flow from the forested area to one of two outfall locations referred to as Compliance Points. Figure 11 includes an existing conditions plan of the site with the Compliance Points identified. Compliance Point 1 is located in a topographic low-point on the north property boundary which receives runoff from approximately 3.2 acres of forest. Compliance Point 2 is located in the unnamed tributary of Elizabeth Brook at the culvert at Stow Road. This Compliance Point receives the majority of runoff from the forested site (i.e., 13.7 acres) including the wetland complex in the east portion of the site.

The Village incorporates a LID based stormwater management system that was evaluated at the same two Compliance Points. The Compliance Points have been used to compare pre and post-development discharge rates. Figure 12 includes the development plan for the Village with the stormwater management system drainages for Compliance Points 1 and 2. The boundaries of the pre-development drainage areas were used as the drainage boundaries in the post-development evaluation. There are no new untreated stormwater conveyances to wetland resource areas as part of this project.

The site has six discharge points as identified in Table 2. In general, one raingarden (Raingarden #3) to the north of Tucks Way overflows onto the grassed area and ultimately drain to Compliance Point #1. The constructed wetland which receives runoff from the remaining portions of the development in the west discharges to Compliance Point #2. In addition, the Bus Stop Bioretention Cell and two raingardens at the entrance (Raingarden #22 and #23) also drain to Compliance Point 2. Table 2 includes estimated discharge velocities and ground surface at each outfall. Permissible velocities for each ground surface were taken from Table 2.3.1 of the Handbook.

Energy dissipation is required at the outfall of the constructed wetland to reduce concentrated pipe flow to an allowable velocity of 2.5 feet per second. Energy dissipation is also required at the outfall of each culvert throughout the site.

Project/Proposal No.: BW0118 Task No.: 01

Written by: R. Fitsik Date: 06/02/2011 Reviewed by: Daniel Bourdeau, PE Date: 06/03/2011

Client: Transformations Project: Pine Hill Village

Table 2. Stormwater Management System Discharge 1 omt Velocity						
Compliance Point	Stormwater Management Feature	2-Year Peak Velocity (fps)	10-Year Peak Velocity (fps)	Ground Surface	Permissible Velocity (fps)	
1	Raingarden #3	0.4	0.8	Landscape Lawn	2.5	
	Constructed Wetland	5.1 ¹	7.1^{1}	Shrub/Bushes	2.5	
2	Bus Station Bioretention Cell	0.6	1.5	Landscape Lawn	2.5	
2	Raingarden #22	0	0.6	Landscape Lawn	2.5	
	Raingarden #23	0	0.4	Landscape Lawn	2.5	

 Table 2. Stormwater Management System Discharge Point Velocity

Note 1: Energy dissipation is required at the constructed wetland outfall to reduce the velocity to 2.5 fps or less, refer to Attachment B9 for energy dissipation sizing.

Standard 2: (Peak rate control and flood prevention)

Stormwater management systems must be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for land subject to coastal storm flowage.

Hydrologic calculations were performed to evaluate the pre-development and post-development Modeling was performed to estimate peak discharge and runoff volume site conditions. associated with 2-year, 10-year, and 100-year, 24-hour design storm event, the output can be found in Attachment G. These parameters were estimated using HydroCADTM Stormwater Modeling System," Version 5 (Applied Microcomputer Systems, 2001). HydroCAD[™] is a computer aided design package for modeling hydrology and hydraulics of stormwater runoff. HydroCAD[™] incorporates TR-20 [Soil Conservation Service (SCS), 1982] methods for runoff analysis, standard hydraulic calculations for analysis of open channel flow, and reservoir routing The following describes the selection of the various hydrologic techniques for ponds. parameters used for the model development for pre- and post-development conditions:

Rainfall Distribution and Depth: A 24-hour duration, SCS Type III rainfall • distribution was used in the hydrologic model with the following characteristics:

GEOSYNTEC CONSU	JLTANTS			PAGE 12	OF 7
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by:	Daniel Bourdeau, PE	Date: 06/	03/2011
Client: <u>Transformations</u> Project: <u>Pine</u>	Hill Village	Project/P	roposal No.: <u>BW0118</u>	Task No.:	<u>01</u>

Table 3. Design Storm Rainfall Depth			
Return Period Rainfall Dept			
(years)	(inches)		
2	3.1		
10	4.6		
25	5.3		
100	6.8		

Hydrologic Soil Groups: According to the NRCS Web Soil Survey, soils in the project vicinity include a combination of: Chatfield-Hollis-Rock outcrop complex, 3-15% slopes; Chatfield-Hollis-Rock outcrop complex, 15-25% slopes; Woodbridge fine sand loam, 0-8% slopes, extremely stony; Ridgebury fine sand loam, 0-3% slopes; Canton fine sand loam, 3-8% slopes; and Swansea muck. These soils are a mixture of hydrologic soil groups (HSG) B and C soils. The full NRCS soils report is included in Attachment A.

Developed HSGs in the vicinity of development (e.g., roads, buildings, etc.) were selected as the next lower soil type to compensate for compaction, clearing and excavation that occurs during development. For example, the majority of the site is a HSG B and C soil and was modeled as C and D soils for the developed condition.

• **Curve Number:** Hydrologic Curve Number (CN) values for each cover type were modeled as follows:

Impervious: Road and sidewalks were modeled as impervious cover and were assigned a CN of 98, which is the recommended value for "impervious areas (SCS, 1985)".

Woods: The pre-development condition for the project site is woods in fair condition. For pre-development conditions CNs of 60, 73, and 79 were chosen based on HSG B, C, and D, respectively.

Grass Cover: The developed condition for the majority of project site is grass cover, >75%, in good condition. Developed CNs of 61, 74, and 80 were chosen based on HSG B, C, and D, respectively.

GEOSYNTEC CONSU	JLTANTS	PA	GE13OF27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine Hill Village		Project/Proposal No.: BW0118	_ Task No.: 01

• **The Antecedent Moisture Condition:** The Antecedent Moisture Condition (AMC) for the design event was assumed to be 3, reflecting near saturated conditions.

RESULTS

Estimated pre and post-development peak discharge rates at the Compliance Points for the 2year, 10-year and 100-year, 24-hour design storms are summarized in Table 4A. The results suggest that the LID design proposal achieves significant flow attenuation down to below estimated pre-development conditions.

Return Period	Pre-Development Peak Discharge (cfs)		Post-Dev Peak Disch		Percent Change	
(years)	Compliance Point 1	Compliance Point 2	Compliance Point 1	Compliance Point 2	Compliance Point 1	Compliance Point 2
2	0.6	6.7	0.30	3.74	-50%	-44%
10	3.3	19.5	0.93	13.0	-72%	-33%
100	8.4	40.8	2.51	30.8	-70%	-25%

Table 4A. Peak Summary Results Table

	Table 4B. Volume Summary Results Table								
	Return Period	-	pment Volume c-ft) Post-Development Volume (ac-ft)		Percent Change				
(years)	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance		
		Point 1	Point 2	Point 1	Point 2	Point 1	Point 2		
	2	0.1	0.77	0.04	1.0	-65%	30%		
	10	0.3	1.92	0.1	2.3	-70%	20%		
	100	0.7	3.86	0.2	4.6	-73%	19%		

 Table 4B. Volume Summary Results Table

Standard 2 requires that the post-development peak discharge rate is equal to or less than the predevelopment rate from the 2-year and the 10-year, 24-hour storms. As summarized in Table 4A, the peak discharge associated with the post-development condition is expected to be less than the pre-development condition for the 2-year, 10-year and 100-year, 24-hour events for Compliance Point #1 and #2.

In accordance with Standard 2 of the Handbook, the impact of the peak discharges from the 100year, 24-hour storm was evaluated. The post-development flows associated with the 100-year, 24-hour storm event from Compliance Point #1 and #2 are expected to be less than the predevelopment flows, therefore, downstream impacts are not anticipated as a result of the stormwater management system described in this plan.

Table 4B summaries the changes in volume due to the proposed development.

GEOSYNTEC CONSU	PAGE 14 OF 27		
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine	Hill Village	Project/Proposal No.: BW0118	Task No.: 01

Standard 3:(Recharge to Ground water)

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the predevelopment conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

On-site soil evaluation was conducted in accordance with the Handbook. The following steps were taken:

- 1) NRCS Soil Survey's were reviewed using NRCS Web Soil Survey.
- 2) A site visit was conducted to verify surface soils.
- 3) Soil test pits were excavated at several locations on-site to verify NRCS soil information and determine depth to seasonal high water table.
- 4) Soil samples were evaluated in the office for Hydrologic Soils Group classification by a Competent Soils Professional
- 5) Hydrologic Soils Groups (HSG) were identified at locations where recharge is proposed.
- 6) A plan was prepared identifying the Hydrologic Soils Group on-site.

Figure 13, Soils Map, shows the verified hydrologic soils group for surface soils and soils at the location where recharge is proposed. Depth to seasonal high groundwater table is also shown in the figure. During the site visit, test pits were conducted in several locations on-site to verify the NRCS soils information and verify the depth to seasonal high groundwater. Table 5 shows the site soils evaluation test pit locations on-site. Based on a texture analysis conducted on-site it was confirmed that the areas of the Site that were characterized as being in HSG B or C, were all consistent with the soils found at these locations. Based on the test pit locations, it was verified that the depth to seasonal high groundwater was approximately 30-inches below existing ground surface. For the purposes of designing to the "worst-case scenario" condition, a value of 30-inches was used across for all raingarden designs as the depth to season high groundwater.

In-situ soil infiltration tests were conducted using a double-ring infiltrometer at three of the test pit locations and are recorded in Table 5. The infiltration rates observed at these test pit locations exceeded the Rawls Rates for the NRCS hydrologic soil group. To be conservative, the Rawls infiltration rates were used for determining BMP sizing and drawdown time. The slowest infiltration rates for each soil ground were chosen for the proposed BMPs. The values of

GEOSYNTEC CONSULTANTS PAGE __15 __OF __27 Written by: R. Fitsik Date: 06/02/2011 Reviewed by: __Daniel Bourdeau, PE __Date: 06/03/2011 Client: Transformations Project: Pine Hill Village Project/Proposal No.: __BW0118 __Task No.: __01

0.52 in/hour were chosen for the proposed BMPs in the HSG B soil group and 0.17 in/hour for the proposed BMPs in the HSG C soil group.

GEOSYNTEC CONS	SULTANTS	P	AGE 16 OF 27
Written by: <u>R. Fitsik</u>	Date:06/02/2011	Reviewed by: Daniel Bourdeau, PE	Date: 06/03/2011
Client: Transformations Project: P	ine Hill Village	Project/Proposal No.: <u>BW0118</u>	Task No.: 01

Table 5. Site Soil Evaluation Table

Site Information		Soil Evaluation			Saturated Hydraulic Conductivity						
Test Pit ID	Depth BGS (ft)	% Gravel	% Silt	% Clay	USDA Texture Class From Field Observations	NRCS WSS USDA Texture Class	Rawls Infiltration Rate (in/hr)	In-Situ Infiltratio n Rate (in/hr)	50% In- Situ Infiltration Rate (in/hr)	NRCS WSS Infiltration Rate - Low (micro m/sec)	NRCS WSS Infiltration Rate - High (micro m/sec)
TP#1	6.5	15	59	6	Silt Loam	-	0.27	0.67	0.34		
TP#2	3.0	5	37	5	Sandy Loam		1.02	-	-	0.00	1.41
TP#2*	0.25- 0.5	-	-	-	-	Fine Sandy Loam	1.02	5.01	2.51	4.23	14.11
TP#3	3.0	5	37	5	Sandy Loam		1.02	-	-		
TP#4	2.5	10	33	11	Sandy Loam		1.02	1.06	0.53		
TP#5	3.0	0	70	5	Silt Loam		0.27	-	-		
TP#6	3.0	10	50	6	Silt Loam		0.27	-	-		
TP#7	3.0	10	50	6	Silt Loam		0.27	-	-		
TP#8	3.0	15	18	0	Loamy Sand		2.41	-	-		
TP#9	3.0	5	58	11	Loam		0.52	-	-		
TP#10	3.0	5	42	11	Loam		0.52	-	-		

* Soil not classified due to high organic content. Since this is a surface sample, NRCS soils classification is sufficient.

GEOSYNTEC CONSU	PA	AGE 17 OF 27	
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine	e Hill Village	Project/Proposal No.: BW0118	Task No.: 01

Recharge volume was estimated for the entire site based on impervious area described in the Handbook and using the Static Method. Of the total 2.17 acres of impervious area on-site, 1.65 acres is in HSG B and the remaining 0.52 acres is in HSB C (Table 6).

Soil Type	Soil Texture	F (in)	Imp. Area (ac)	Rv (cf)			
(Table 2.3.2)	(Table 2.3.2)	(Table 2.3.2)	(from plans)	-			
HSG A	sand	0.60	0.00	0			
HSG B	loam	0.35	1.65	2096			
HSG C	silty loam	0.25	0.52	472			
HSG D	clay	0.10	0.00	0			
		Total	2.17	2568			

Table 6. Recharge Volume Using Static Method

The statically calculated recharge volume is approximately 2,600 cubic feet. The required recharge volume (3,875 cubic feet) was calculated by multiplying the statically calculated recharge volume by the ratio of impervious area draining to recharge to total drainage area. This calculation is included in Attachment B.4 The required recharge volume is met through the use of distributed exfiltrating raingardens and bioretention cells. The proposed design provides approximately 16,174 cubic feet of storage in these exfiltrating raingardens which exceeds the required recharge volume (see Attachment B.4 – Raingarden Schedule).

All raingardens were designed to dewater in less than 72 hours, in accordance with the Handbook. Drawdown calculations, which can be found in Attachment B were performed using the Static Method and based on the slowest Rawls Rates at the proposed location where recharge is proposed. The calculations indicate all infiltrating raingardens are expected to drain within 72 hours.

A mounding analysis was not performed for the proposed raingardens since none were designed to attenuate the peak discharge from a 10-year or higher 24-hour storm.

GEOSYNTEC CONSU	PAGE 18	OF 7		
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	E Date: 06/0	03/2011
Client: <u>Transformations</u> Project: <u>Pine</u>	Hill Village	Project/Proposal No.:BW0118	8 Task No.:	01

Standard 4: Water Quality and 80% TSS Removal

Stormwater management systems must be designed to remove 80% of the average annual postconstruction load of Total Suspended Solids (TSS). This standard is met when:

a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan and thereafter are implemented and maintained;
b. Stormwater BMPs are sized to capture the required water quality volume determined in

b. Stormwater BMPs are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and

c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The stormwater management system captures and treats runoff from the village to achieve the required TSS removal. When feasible, a treatment train approach to pollutant removal was incorporated into the designs. The required water quality volume equals 1-inch of runoff times the total impervious area of the post-development project site for a discharge within a Zone II or Interim Wellhead Protection Area (IWPA) (Figure 6). Approximately 7.36 acres of the Site resides within the IWPA. Within this area, 1.13 acres of impervious area is proposed. Therefore, based on 1-inch of runoff times the total impervious area, the required water quality volume from the IWPA is 2124 cubic feet. The remaining 1.17 acres of impervious area is located outside the IWPA and the required water quality volume is calculated as 0.5-inches, requiring an additional 4,102 cubic feet of storage. The total water quality volume required for this project is 6,225 cubic feet.

Since the required water quality volume is greater than the recharge volume (calculated under Standard 3), all BMPs were designed to capture and treat the water quality volume.

The proposed stormwater management raingardens provide 17,714 cubic feet of storage which exceeds the required water quality volume. All proposed stormwater management features have pretreatment in the form of a pea gravel filter and vegetated filter strip, a vegetated filter strip or a vegetated swale. A channel and sediment forebay provide pre-treatment for the constructed wetland. Details can be found in Attachment B and in 15A, B, C and D.

A Long Term Pollution Prevention Plan for the proposed stormwater management system is provided in Attachment C.

Standard 5 (Higher Potential Pollutant Loads (HPPL)

For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific stormwater BMPs determined by the Department to be suitable for such use as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with

GEOSYNTEC	CONSULTANTS		PAGE 19 OF 27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations	Project: Pine Hill Village	Project/Proposal No.: BW0118	Task No.: 01

higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53, and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The project is not considered a land use with higher potential pollutant loads.

Standard 6 (Critical Areas)

Stormwater discharges to a Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or any other critical area require the use of the specific source control and pollution prevention measures and the specific stormwater best management practices determined by the Department to be suitable for managing discharges to such area, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters or Special Resource Waters shall be set back from the receiving water and receive the highest and best practical method of treatment. A "stormwater discharge," as defined in 314 CMR 3.04(2)(a)1. or (b), to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of the public water supply.

The Village includes four public supply wells proposed on the western site perimeter (Figure 6). Wells 1, 2, and 4 are approved for an average daily pumping volume of 1,440 gallons per day (GPD). The assigned Zone I radius for each well is 124 feet and the Interim Wellhead Protection Areas (IWPA) is 432 feet. Well 3 is approved for an average daily pumping volume of 2,060 GPD with a corresponding Zone I radius of 147 feet and an IWPA of 446 feet.

In accordance with the Massachusetts Stormwater Handbook, a stormwater discharge to a Zone II or IWPA requires that use of a treatment train that provides 80% TSS removal. All proposed infiltrating raingardens in the IWPA have the required pretreatment (i.e., pea gravel and vegetated filter strip) to provide the 44% TSS removal prior to the infiltration practice. The proposed BMPs in the IWPA have the required water quality and recharge volume to provide at least 80% TSS removal for each practice. The TSS calculations can be found in Attachment B.

Standard 7: Redevelopment

This is not a redevelopment project.

Standard 8: (Erosion, Sediment Control)

A plan to control construction-related impacts, including erosion sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan), must be developed and implemented.

An erosion and sediment control plan (ESCP) is being prepared under a separate submittal to satisfy the requirements of Standard #8. The ESCP has not been reviewed as part of this Stormwater Report. The project construction will disturb more than five acres and will require a

GEOSYNTEC CON	SULTANTS		PAGE 20 OF 27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: I	Pine Hill Village	Project/Proposal No.: <u>BW0118</u>	Task No.: 01

National Pollutant Discharge Elimination System (NPDES) Construction General Permit. No Storm Water Pollution Prevention Plan (SWPPP) has been submitted with this Stormwater Report; however, the SWPPP will be developed and submitted prior to any land disturbing activities on-site.

Standard 9: (Operation and Maintenance)

A long-term operation and maintenance plan must be developed and implemented to ensure that stormwater management systems function as designed.

A Post Construction Operation and Maintenance Plan for the proposed stormwater management system are provided in Attachment D. Operation and Maintenance during construction activities will be included in the SWPPP.

Standard 10: Prohibition of Illicit Discharges

All illicit discharges to the stormwater management system are prohibited.

Measures to prevent illicit discharges are included in the Long Term Pollution Prevention Plan (Attachment C). It is the responsibility of the developer and owner to ensure that no illicit discharges will occur at the Village. An illicit discharge statement can be found in Attachment C.

GEOSYNTEC CONSU	ULTANTS		PAGE 21 OF 27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine	e Hill Village	Project/Proposal No.: BW0118	3 Task No.: 01

DESIGN CALCULATIONS

The following is a summary of hydraulic design computations that were used in the design of the stormwater controls described on the Plan Set.

Roof Runoff

Most of the roof runoff is assumed to stay on-site (won't infiltrate) and will be conveyed to a stormwater management feature for capture, treatment and attenuation. The roof areas in drainage areas 14S, S15 and 4S (See Figure 12) will be guttered and runoff will routed to a pervious area and allowed to infiltrate.

Open Channel Flow Calculations

The hydraulic parameters described were used to size conveyance structures and portions of the stormwater management system. The following summarizes the selection of hydraulic parameters used for this evaluation:

• **Discharge:** Open-channel stormwater conveyances (i.e., culverts and swales) were evaluated based on a circular cross section for culverts and parabolic cross section for swales. Calculations of discharge rates, flow velocities and flow depths for each type of conveyance feature are based on Manning's Equation (Chow, 1959) expressed as:

$$Q = \frac{1.49}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$$

where: $Q = \text{discharge (ft^3/sec)};$

n = Manning's roughness coefficient (dimensionless);

A =area of cross-section of flow (ft²);

R = hydraulic radius = A/P;

P = wetted perimeter (ft); and

S =longitudinal slope of the channel (ft/ft).

The velocity (V, in ft/sec) of the flow in a channel may be calculated from the continuity equation, as follows:

$$V = \frac{Q}{A}$$

The hydraulic calculations for each type of conveyance are summarized in Attachment B.

Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine	Hill Village	Project/Proposal No.: <u>BW0118</u>	Task No.: 01

Vegetated Parabolic Drainage Swales

Sheet flow along the road and overland flow on steep slopes is conveyed to vegetated drainage swales (in specified locations). Channels were designed for the following conditions:

- Convey 10-year design storm peak discharge without erosion of channel lining (not to exceed 5.0 feet/second for vegetated lining);
- Convey 10-year design storm event with minimum of 0.3' of freeboard; and
- Convey the 100-year design storm event without overtopping.

The following parameters are assumed to apply to vegetated drainage channel evaluation:

- Parabolic cross-section,
- > Longitudinal slope of 0.01 (minimum), and
- > Lined with vegetation (n = 0.20).

The general characteristics for each type of parabolic channel are summarized below in Table 7 and additional hydraulic calculations in Attachment G (HydroCAD Output).

PAGE 23 OF 27

Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations	Project: Pine Hill Village	Project/Proposal No.: BW0118	Task No.: 01

Table 7. Parabolic Channel Schedule

Channel ID	Drawing Grid Location	Channel Type	Protective Lining	Mannings N-value	Channel Top Width, T (ft)	Channel Depth, d (ft)	S (Bed Slope, ft/ft)	10-year Maximum Velocity (fps)
PS1	C2	Parabolic	Coconut Fiber - Double Net	0.035	4.0	1.0	0.07	4.1
151	C2	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.07	4.1
PS2	C3	Parabolic	Coconut Fiber - Double Net	0.035	4.0	1.0	0.06	2.0
132	C5	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.00	2.0
PS3	E2	Parabolic	Coconut Fiber - Double Net	0.035	4.0	1.0	0.07	2.5
P35	E2	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.07	2.3
PS4	D3	Parabolic	Coconut Fiber - Double Net	0.035	4.0	1.0	0.03	1.7
F54	D3	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.05	1.7
PS6	D4	Parabolic	Coconut Fiber - Double Net	0.035	4.0	1.0	0.02	1.9
130	D4	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.02	1.9
PS7	C5	Parabolic	Coconut Fiber - Double Net	0.035	6.0	2.0	0.04	3.5
F57	C5	Parabolic	Vegetation, Class C	0.041	0.0	2.0	0.04	5.5
PS8	C6	Parabolic	TRM	0.023	8.0	2.0	0.01	3.7
DCO	D7	Parabolic	Coconut Fiber - Double Net	0.035	1.0	1.0	0.02	2.0
PS9	B7	Parabolic	Vegetation, Class C	0.041	4.0	1.0	0.02	2.0
DC104	62	Parabolic	Coconut Fiber - Double Net	0.035	10	2.5	0.00	1.7
PS10A	C2	Parabolic	Vegetation, Class C	0.041	10	2.5	0.08	1.7
DC10D	G a	Parabolic	Coconut Fiber - Double Net	0.035	10	2.5	07	1.6
PS10B	C2	Parabolic	Vegetation, Class C	0.041	10	2.5	.07	1.6

Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: Transformations Project: Pine	e Hill Village	Project/Proposal No.: BW0118	Task No.: 01

Bioretention Cells and Raingardens

Road, roof and vegetated area runoff is managed by bioretention cells and raingardens distributed throughout Pine Hill Village. Bioretention cell and raingardens were designed for the following conditions:

- Provide storage for and attenuate the water quality volume;
- Overflow riser is designed to convey the 25-year storm event;
- Atrium grate capacity was analyzed for the 25-year storm event;
- Exfiltrating bioretention cells and raingardens are designed to provide recharge volume; and
- Non-exfiltrating bioretention cells and raingardens are designed with a perforated underdrain to ensure BMP drains during and after storm events, reducing ponding.

In accordance with the Stormwater Handbook the raingardens were sized with the following design considerations and assumptions (from bottom of raingarden to rim):

- Soil surface of raingarden is at least 2' above season high groundwater table;
- 4" of sand on the bottom of the raingarden (assumed 30% void space) or non-woven geotextile for lined raingardens;
- 3" to 1' of pea gravel above the sand layer (assumed 30% void space);
- Bioretention soil (varying depth) (assumed 30% void space);
- 3" mulch (assumed 30% void space);
- 6" ponding depth (except RG #21, which has 1.2" of ponding depth); and
- 3" of freeboard above riser structure (if present).

For raingardens that were designed to exfiltrate, an overflow riser structure or overflow berm will be installed to ensure safe conveyance of flows exceeding the water quality volume. For raingardens designed as filtering BMPs, they will be lined with an impermeable liner and have a perforated underdrain that will be connected to the storm sewer system.

Grate Capacity

Proposed catch basin grates were evaluated under the peak discharge associated with the 25year, 24-hour design storm event for required head over the grate to pass the peak discharge rate. The catch basin grate with the greatest peak discharge was evaluated for the maximum head using procedures described in the ASCE Manual and Reports of Engineering Practice No. 77 [The Urban Water Resources Research Council, 1992].

In accordance with manufacturer and local regulations:

GEOSYNTEC CON	SULTANTS	PA	GE 25 OF 27
Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: <u>Transformations</u> Project:	Pine Hill Village	Project/Proposal No.: BW0118	Task No.: 01

• Single grate catch basin shall be considered to have a maximum inlet capacity of 2.5 cfs.

Raingarden atrium grates were evaluated under the peak discharge associated with the 25-year, 24-hour design storm event for the required head over the grate to pass the peak discharge rate.

A summary of the peak discharge (Q) and associated required maximum head over the grate (d) is summarized in Tables 8A and 8B below.

Perimeter of grating:

• Catch Basins – Grates are 2'x 2' with 12" effective area on each side of the grate

P = 12" * 4 = 48" or 4'

• Raingarden – 12" and 18" diameter atrium grates

Weir coefficient: $C_w = 3.0$

Weir equation (solve for depth):

$$d = \left[\frac{Q}{C_{w} \cdot P}\right]^{\frac{2}{3}}$$

СВ #	Grate Perimeter Dimensions (P,ft)	Weir Coefficient (Cw)	Q25 (cfs)	d (ft)	d (in)
CB1	4	3	1.6	0.26	3
CB2	4	3	0.4	0.10	1
CB3	4	3	0.2	0.07	1
CB4	4	3	0.7	0.15	2
CB5	4	3	1.0	0.19	2

 Table 8A. Catch Basin Grate Analysis

PAGE <u>26</u> OF <u>27</u>

 Written by: <u>R. Fitsik</u>
 Date: 06/02/2011
 Reviewed by: <u>Daniel Bourdeau, PE</u>
 Date: 06/03/2011

 Client: Transformations
 Project: <u>Pine Hill Village</u>
 Project/Proposal No.: <u>BW0118</u>
 Task No.: 01

Table 8B. Raingarden Atrium Grate Analysis

Raingarden #	Atrium Drain Dia. (in)	Grate Perimeter (P, ft)	Weir Coefficient (Cw)	Q ₂₅ (cfs)	d (ft)	d (in)
Bus Station	18	2.4	3	2.1	0.44	5
RG4	12	1.6	3	0	0.00	0
RG5	12	1.6	3	0.01	0.02	0
Cul-de-sac	12	1.6	3	0	0.00	0
RG10	12	1.6	3	0.02	0.03	0
RG11	12	1.6	3	0.1	0.08	1
RG12	12	1.6	3	0.6	0.25	3
RG13	12	1.6	3	0.1	0.08	1
RG14	12	1.6	3	0.2	0.12	1
RG15	18	2.4	3	2.5	0.49	6
RG20	18	2.4	3	0.03	0.03	0
RG21	12	1.6	3	0.9	0.33	4
RG22	12	1.6	3	0.2	0.12	1
RG23	12	1.6	3	0.07	0.06	1

Written by: <u>R. Fitsik</u>	Date: 06/02/2011	Reviewed by: <u>Daniel Bourdeau, PE</u>	Date: 06/03/2011
Client: <u>Transformations</u> Project: <u>Pine</u>	Hill Village	Project/Proposal No.: BW0118	Task No.: 01

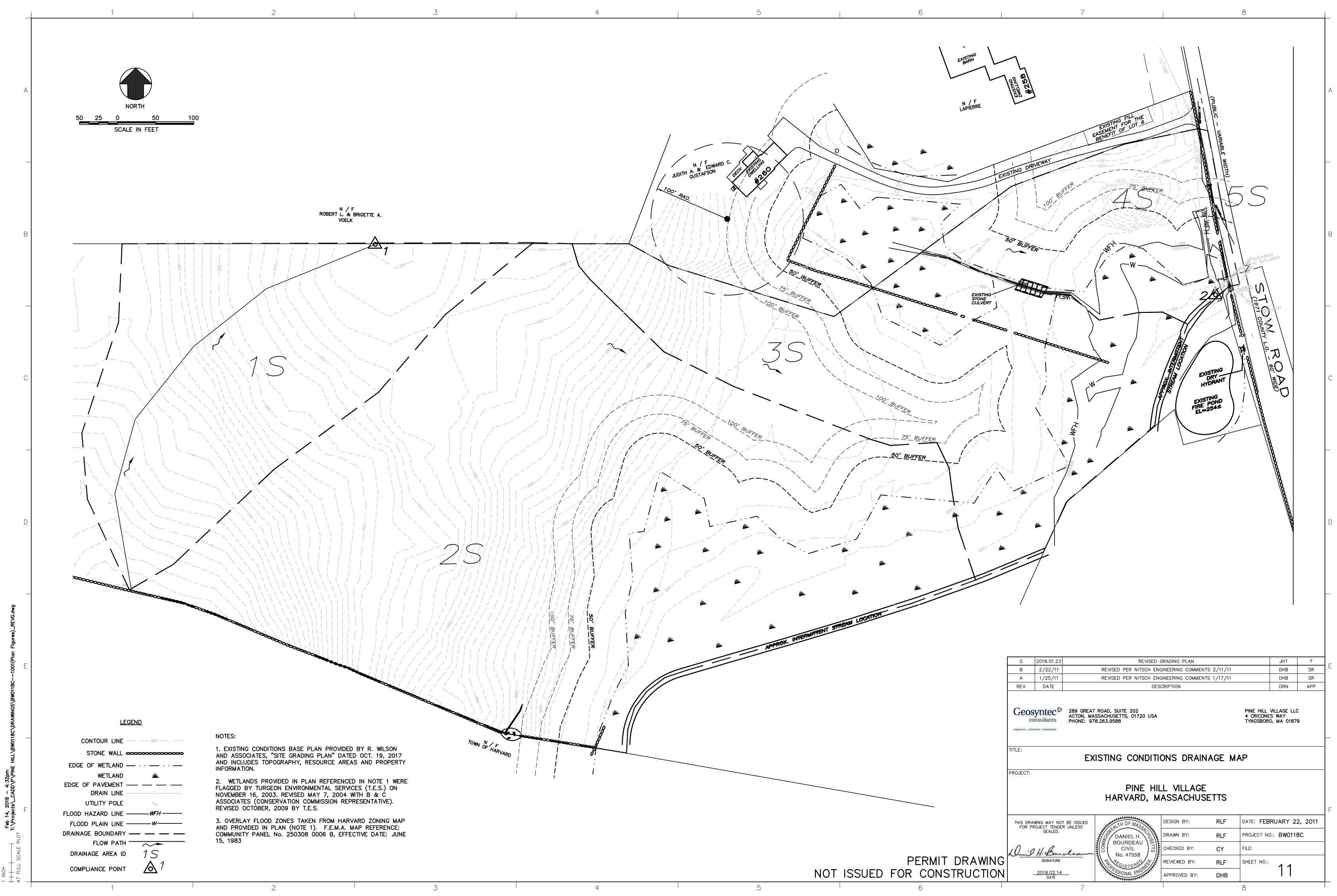
REFERENCES

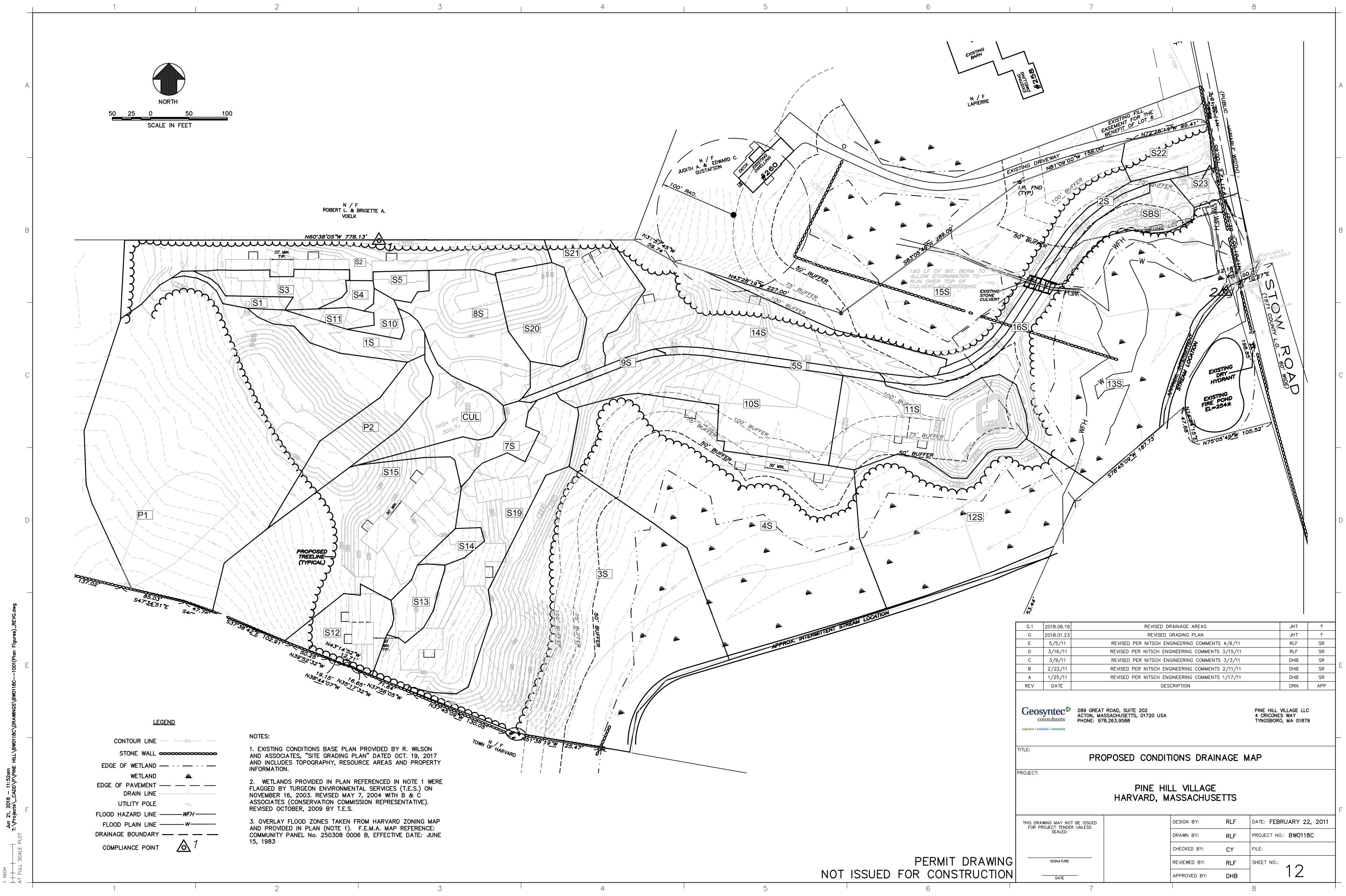
Applied Microcomputer Systems, "*HydroCAD*[®] *Stormwater Modeling System*", Version 6, Chocorua, New Hampshire 2002.

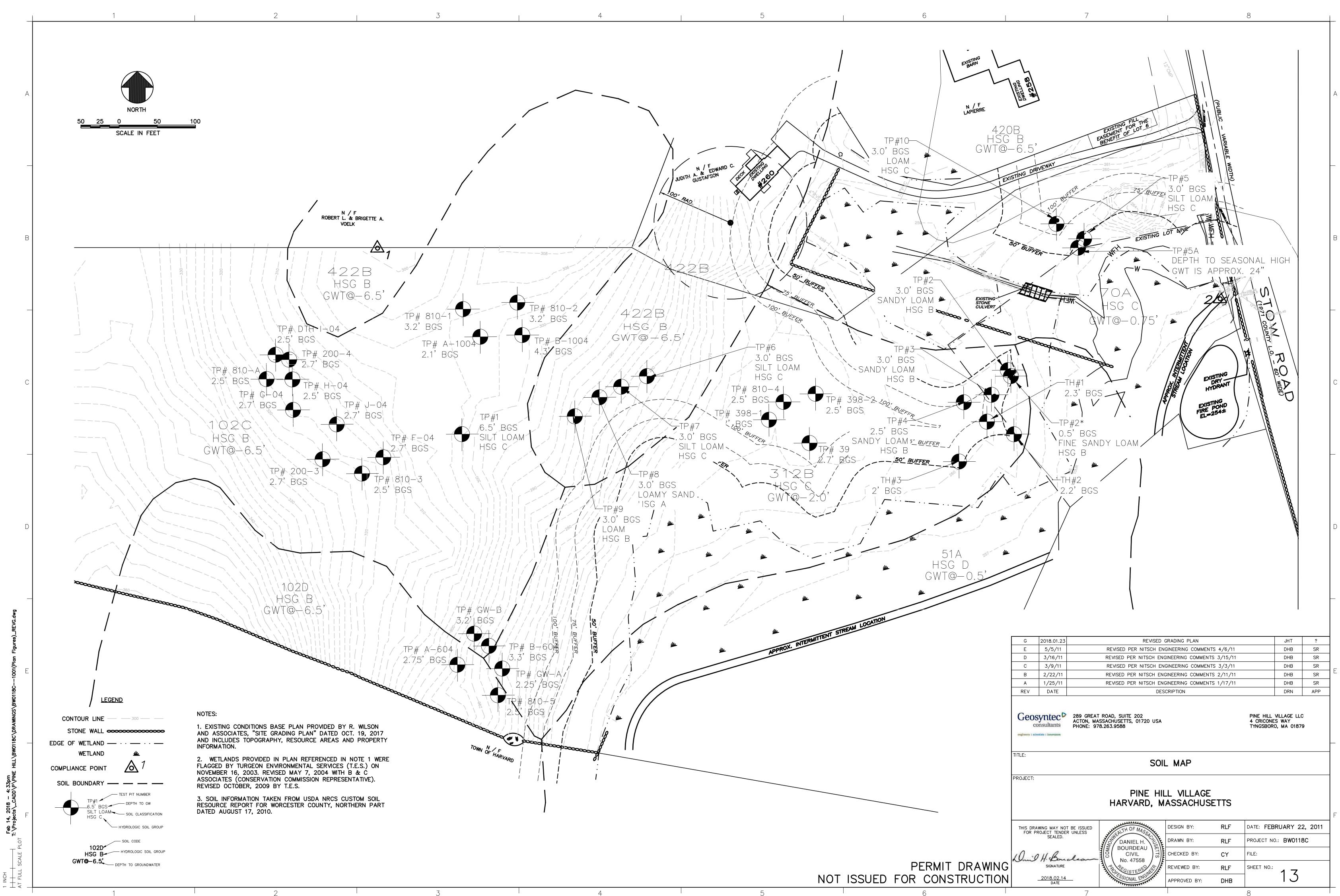
Northeast Regional Climate Center, "Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada," Cornell University, Ithaca, New York, 1993.

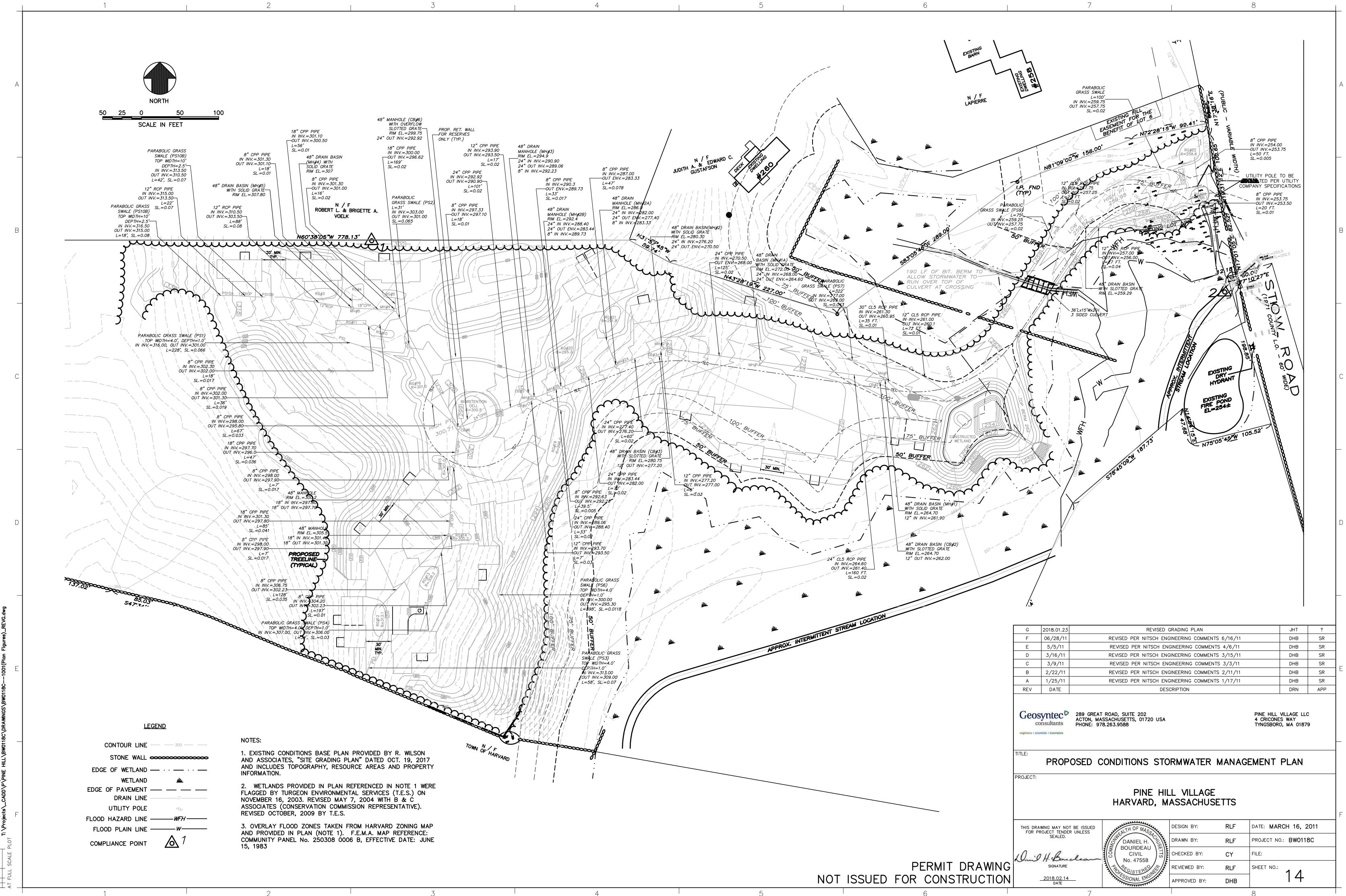
United States Department of Agriculture, Soil Conservation Service, "Computer Program for Project Formulation Hydrology, Technical Release 20," Washington D.C., 1982.

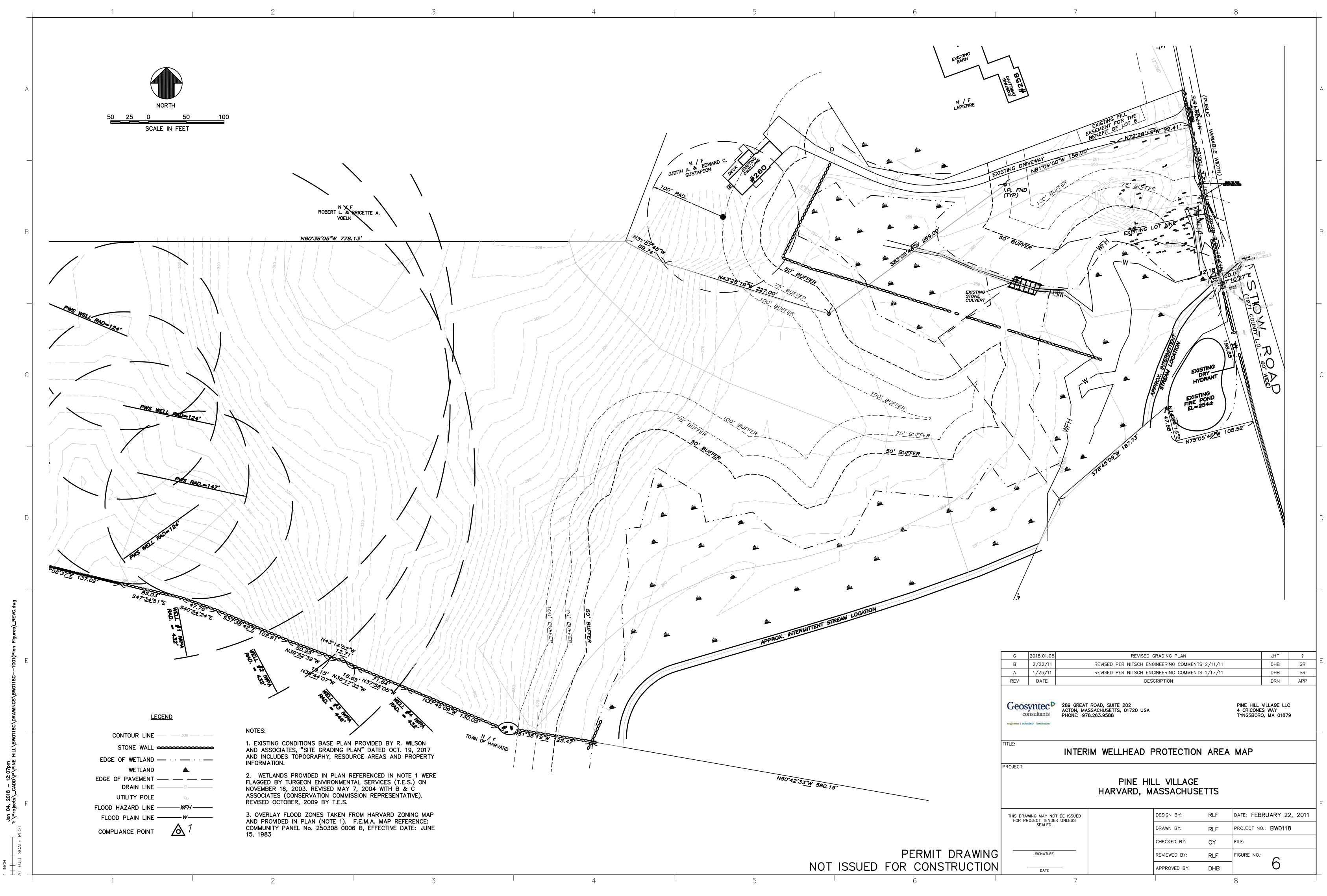
United States Department of Agriculture, Soil Conservation Service, "*National Engineering Handbook, Section 4 Hydrology (NEH-4)*," National Technical Information Service, 1985.

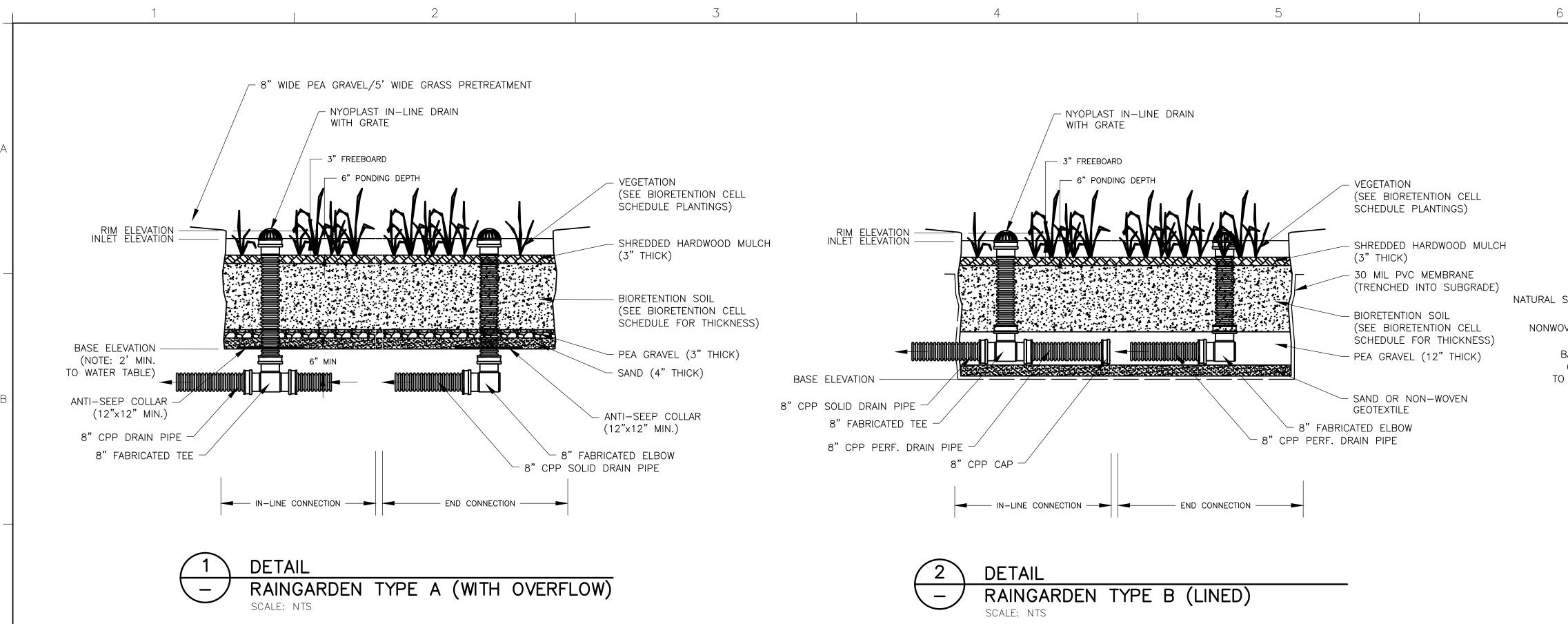

United States Department of Agriculture, Soil Conservation Service, "Urban Hydrology for Small Watersheds, Technical Release 55," 2nd ed., Washington, D.C., 1986.


Chow, V.T., Open Channel-Hydraulics. New York: McGraw-Hill, 1959.


The Urban Water Resources Research Council, *Manuals and Reports of Engineering Practice No. 77, Design and construction of Urban Stormwater Management Systems*, American Society of Civil Engineers, New York, New York, 1992.



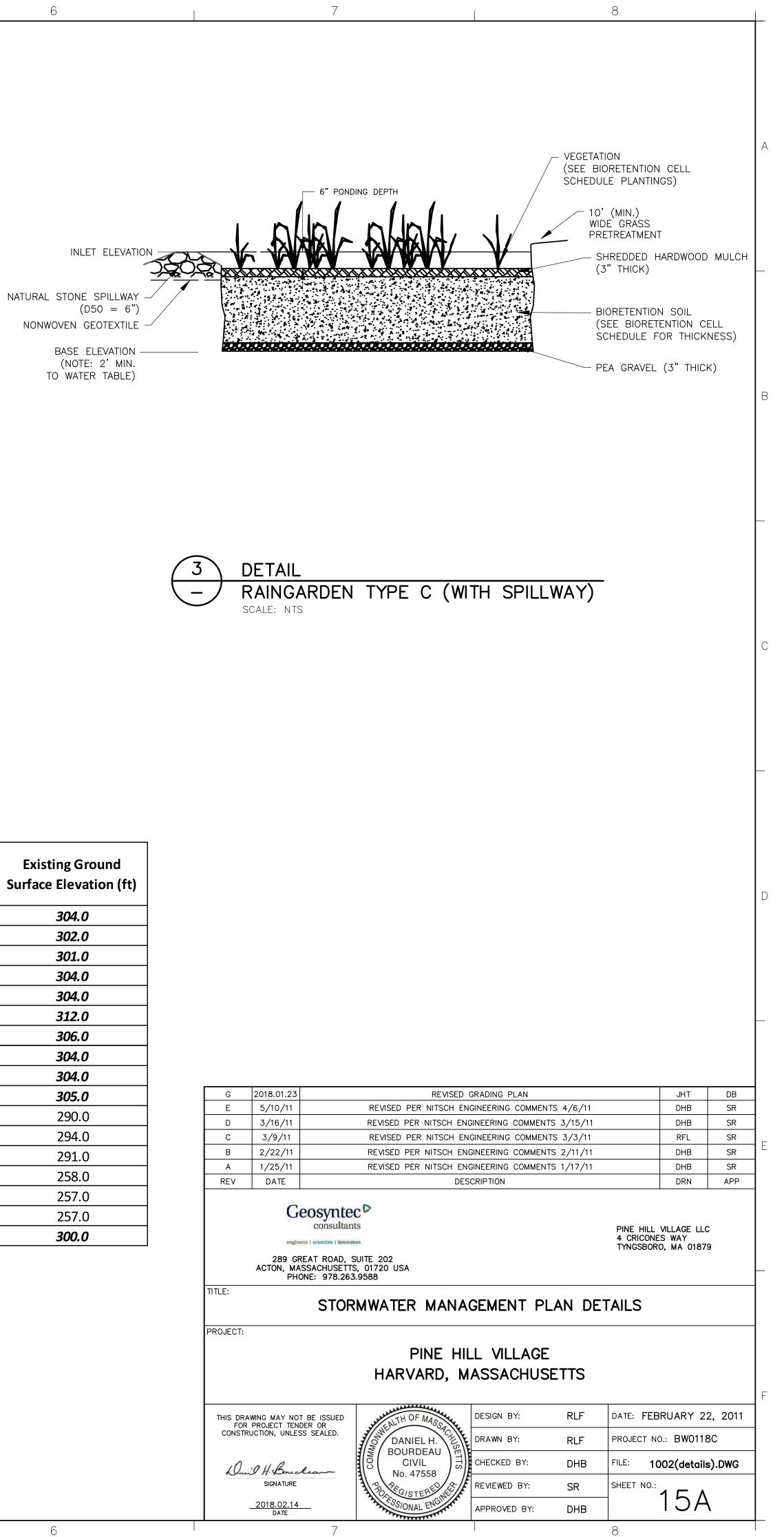

FIGURES

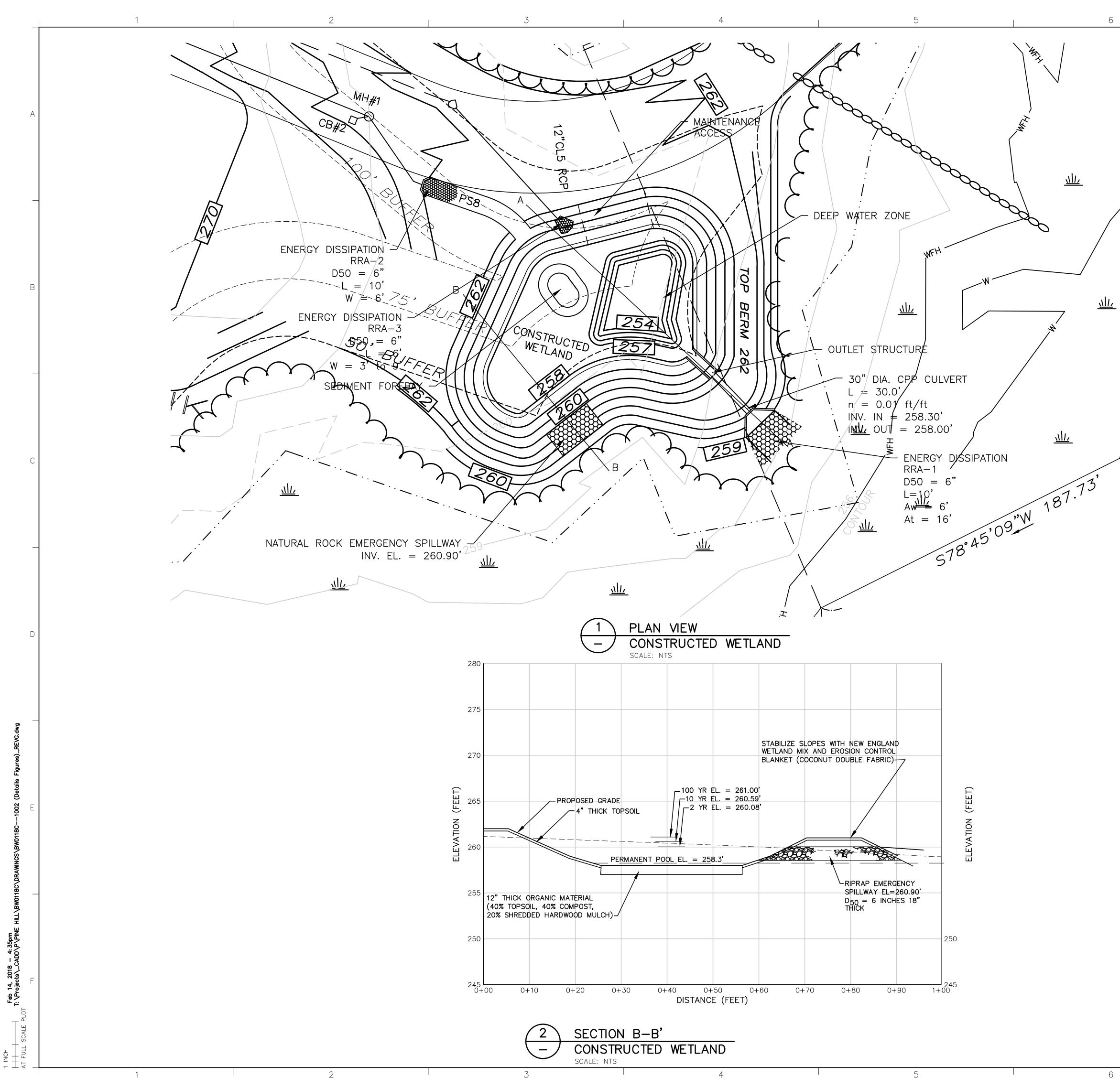


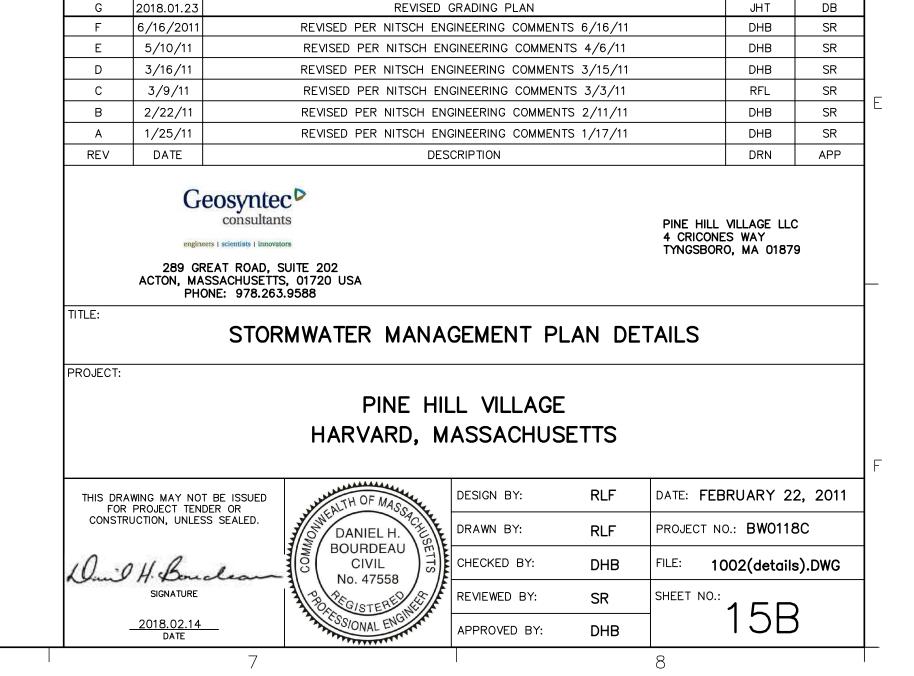
Raingarden	Designed to Exfiltrate (No =	Standard Detail	Drainage Area	Drainage	Impervious	BMP Water Quality	Storage	Surface	Depth of Bioretention	Pre- treatment	Rim Fley (ft)	Base Elev. (ft)	High Groundwater	Existing
ID*	Lined) ¹	No. (Figure 5)	(Ft^2)	Area (ac)	Area (ac)	Volume (cf) ²	Volume (cf) ³	Area (sf)	Soil (ft)	Device ⁴			Elevation (ft)	Surface Ele
RG #3	YES	С	6534	0.150	0.070	254	635	423	0.50	V	311.0	309.5	301.5	304
RG #4	YES	A	1568	0.036	0.012	44	792	391	3.00	GV	307.0	302.4	299.5	302
RG #5	YES	A	2265	0.052	0.021	76	485	266	3.00	GV	307.0	302.4	298.5	302
RG #10	NO	В	2091	0.048	0.015	54	509	334	2.00	GV	306.0	301.7	301.5	304
RG #11	YES	A	1873	0.043	0.027	98	281	184	2.00	GV	307.1	303.5	301.5	304
RG #12	NO	B	9278	0.213	0.050	182	567	585	1.25	VS and GV	310.0	306.4	309.5	312
RG #13	NO	B	4312	0.099	0.053	192	527	415	2.33	VS and GV	307.0	302.3	303.5	300
RG #14	NO	B	2352	0.054	0.035	127	315	207	1.33	GV	305.0	301.3	301.5	304
RG #15	NO	В	44213	1.015	0.199	722	772	542	1.00	GV	301.0	297.7	301.5	304
RG #16	NO	В	10716	0.246	0.000	0	541	523	1.00	VS and GV	301.0	297.7	302.5	305
RG #19	YES	A	31233	0.717	0.168	305	1484	973	1.25	VS and V	294.0	290.0	287.5	290
RG #20	NO	В	11543	0.265	0.000	0	1226	672	1.50	-	292.0	288.2	291.5	294
RG #21	NO	В	9932	0.228	0.155	281	485	529	1.00	GV	290.0	286.7	288.5	29
RG #22	NO	В	6665	0.153	0.023	42	935	656	1.00	GV	257.0	253.7	255.5	258
RG #23	NO	В	1307	0.030	0.007	13	589	413	1.25	GV	257.0	253.4	254.5	25
Bus Station	NO	В	6882	0.158	0.024	44	1026	943	1.00	VS	257.0	253.7	254.5	257
Cul-de-sac	NO	В	10585	0.243	0.072	131	2754	2834	1.00	GV	300.0	297.0	297.5	300
• • •														

<u>Notes</u>

*Bold and Italics Raingarden ID, indicates raingarden located in IWPA (required water quality volume = 1.0 inch). 1. Raingardens not designed to exfiltrate will be lined ensuring no infiltration

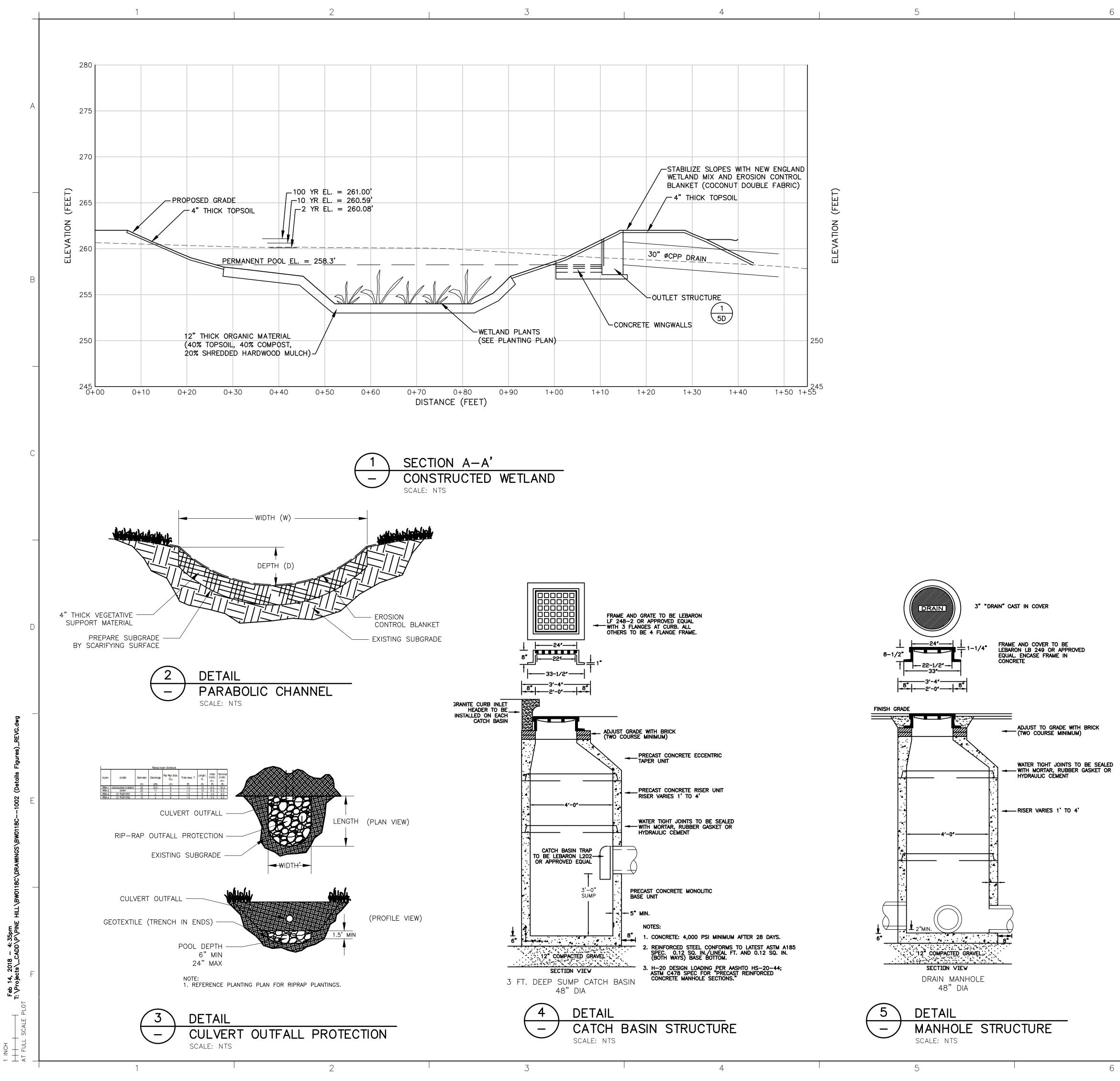

2. All BMPs are designed to provide storage for the Water Quality Volume, which is greater than the Recharge Volume for the Site 3. Storage Volume is calculated assuming 30% void space in mulch, bioretention soil, pea gravel and sand layers. 4. GV = 8-inches of pea gavel and 3 to 5-foot vegetated filter strip; V = 10' vegetated filter strip; VS = vegetated swale


2018 15, Feb Pr Ц


RAINGARDEN S	SCHEDULE
--------------	----------

DETAIL

RAINGARDEN SCHEDULE SCALE: NTS



APR

C

D

D	3/16/11		REVISED PER NITS	SCH ENGINEERING COMMEN	NIS 3/15/11		DHB	SR
С	3/9/11		REVISED PER NIT	ISCH ENGINEERING COMME	NTS 3/3/11		RFL	SR
В	2/22/11		REVISED PER NIT	SCH ENGINEERING COMMEN	NTS 2/11/11		DHB	SR
А	1/25/11		REVISED PER NIT	SCH ENGINEERING COMMEN	NTS 1/17/11		DHB	SR
REV	DATE			DESCRIPTION			DRN	APP
	engine 289 GR	eosyntee consultant ets I scientists innovate REAT ROAD, S SSACHUSETTS	ts ors			PINE HILL V 4 CRICONES TYNGSBORO	S WAY	-
TITLE:	PHC	DNE: 978.263	.9588	ANAGEMENT P	LAN DE	TAILS		
PROJECT:								
PROJECT:			PINF		F			
PROJECT:				E HILL VILLAGI				
PROJECT:				E HILL VILLAGI D, MASSACHUS				
PROJECT:			HARVAR	D, MASSACHUS				
THIS DRA		. BE ISSUED	HARVAR	D, MASSACHUS		DATE: FEB F	RUARY 2	2, 2011
THIS DRA FOR	AWING MAY NOT	⁻ BE ISSUED DER OR IS SEALED.	HARVAR	D, MASSACHUS	SETTS	DATE: FEBF PROJECT NO		-
THIS DRA FOR	PROJECT TENE	- BE ISSUED SER OR S SEALED.	HARVARI HARVARI MUNICALITH OF MASS	D, MASSACHUS	SETTS RLF	PROJECT NO		BC
THIS DRA FOR	PROJECT TENE	• BE ISSUED DER OR S SEALED.	HARVAR	D, MASSACHUS	SETTS RLF RLF	PROJECT NO FILE: 10 SHEET NO.:	.: BW0118	3C s).DWG

REVISED GRADING PLAN

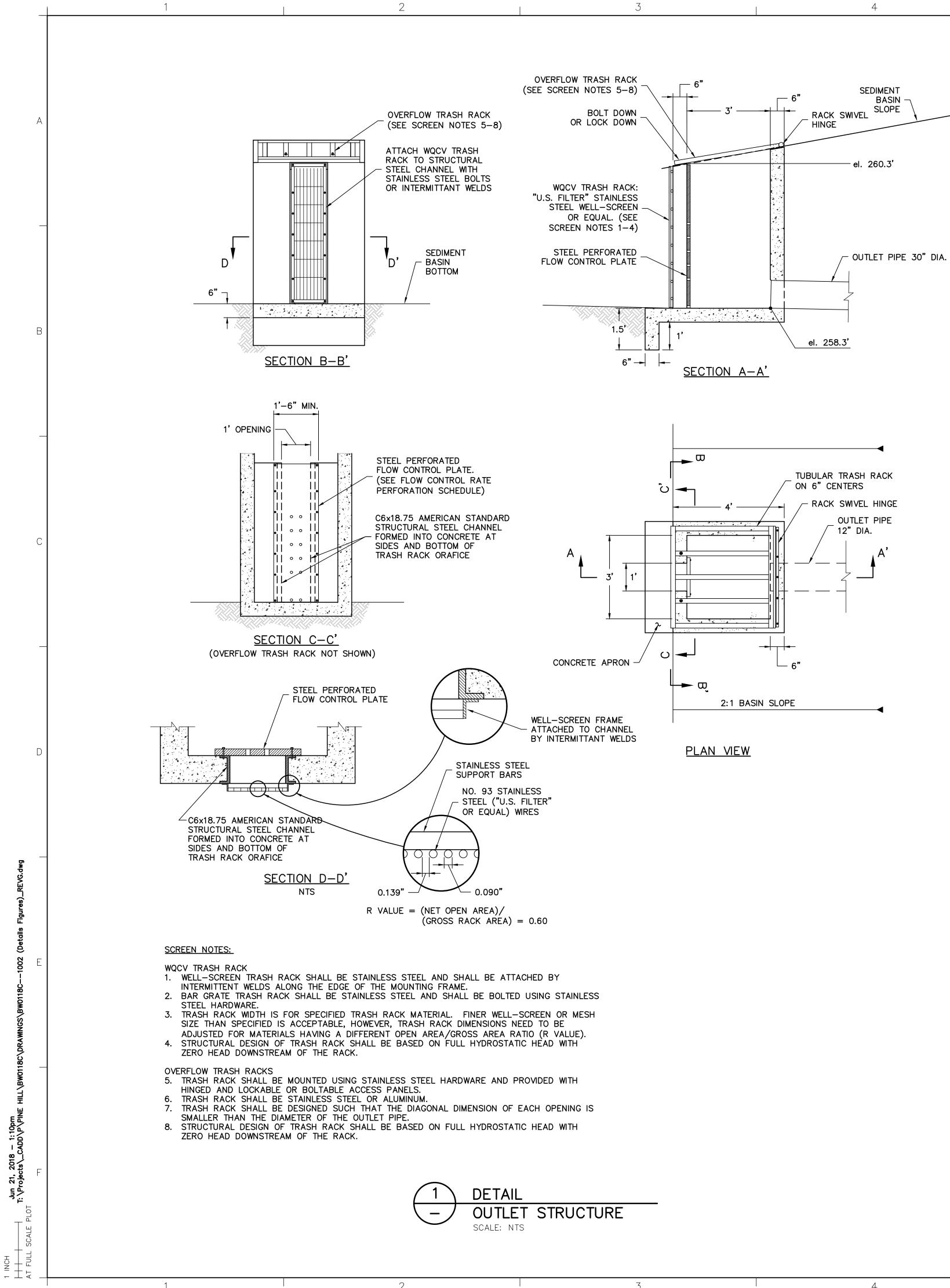
REVISED PER NITSCH ENGINEERING COMMENTS 6/16/11

REVISED PER NITSCH ENGINEERING COMMENTS 4/6/11

G 2018.01.23

F 6/16/201

E 5/10/11


JHT DB

SR

SR

DHB

DHB

				RAING	ARDEN PLAN	TING SCHEDUL	.E					
		_	-	COM	MON AND SCI	ENTIFIC NAME	FOR PLANTS A	AND SHRUB	5		_	
Raingarden	Bayberry	Red Osier Dogwood	Sweet Pepperbrush	Highbush Blueberry	Gray Dogwood	Serviceberry	Nannyberry	Inkberry	Meadowsweet	Common Juniper	Black Chokeberry	Total Plants per
ID	Myrica	Cornus Sericea	Clethra Alnifolia	Vaccinium corymbosum	Cornus racemosa	Amelanchier	Viburnum lentago	llex glabra	Filipendula ulmaria	Juniperus communis	Aronia melanocarpa	Raingarden ¹
		•		•	NUMBER OF P	ANTS PER RAING	GARDEN		•		·	
RG #3	2	3	-	1	-	2	1	-	2	1	2	14
RG #4	2	2	2	-	1	-	-	2	-	2	2	13
RG #5	2	-	-	-	-	-	2	-	2	-	2	8
RG #10	-	-	2	-	2	1	-	3	-	2	-	10
RG #11	2	-	1	-	-	-	-	-	1	-	2	6
RG #12	2	2	-	1	2	1	3	2	3	2	1	19
RG #13	2	1	3	-	2	-	1	-	2	1	2	14
RG #14	-	2	-	-	-	3	-	1	-	-	-	6
RG #15	3	-	2	3	-	1	-	2	2	1	3	17
RG #16	1	-	2	-	2	1	1	3	-	2	4	16
RG #19	3	3	2	4	2	3	2	4	2	3	2	30
RG #20	1	2	3	-	1	2	4	-	3	1	3	20
RG #21	2	-	3	3	1	1	1	3	1	2	1	18
RG #22	2	3	5	-	3	2	1	-	2	-	1	19
RG #23	-	-	-	1	5	-	1	3	1	2	-	13
Bus Station	2	4	1	5	-	1	6	2	6	-	3	30
Cul-de-sac	8	10	6	8	10	8	8	6	10	5	10	89
Individual Plant Count	34	32	32	26	31	26	31	31	37	24	38	342

1. Recommended number of plantings is based on 1 plant per 30 square feet of raingarden surface area.

		COMMO	N AND SCIENTI	FIC NAME FO	R WETLAND P	LUGS			
Constructed Treatment	Fox Sedge	Wooldgrass	Bluestem	Highbush Blueberry	Bulrush 1	Bulrush 2	Arrowhead	Threesquare	Total Plants per Marsh
Wetland	Carex vulpinoids	Scirpus cyperinus	Clethra Alnifolia	Andorpogon glomeratus	Scirpus validus	Scirpus fluviatilis	Sagittaria latifolia	Scirpus americanus	Area ¹
Wetland Marsh Depth			WETLAND PLAI	NTS SHALL BE II	NSTALLED 3 FT C	N CENTER			
High Marsh (0 to 0.5 FT)	75	75	75	75	-	-	-	-	300
Low Marsh (0 to 1.5 FT)	-	-	-	-	30	30	30	30	120
Individual Plant Count	75	75	75	75	30	30	30	30	420

1. Recommended number of plantings is based on 1 plant per 30 square feet of wetland surface area.

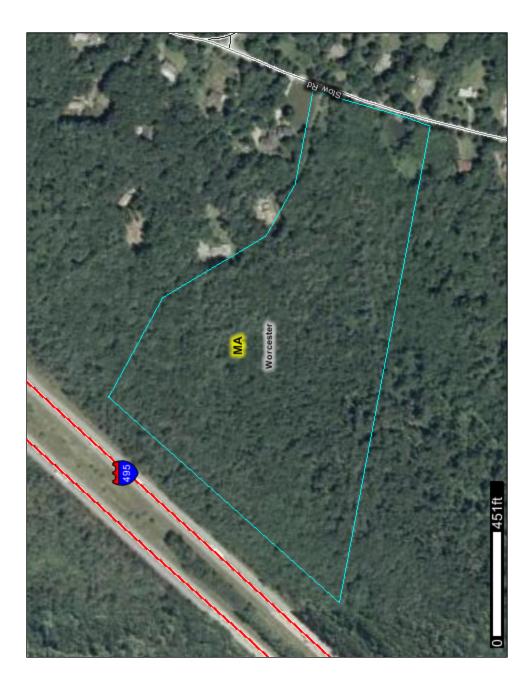
CONSTRUCTED TREATMENT WETLAND PLANTING SCHEDULE

CONMAGNI AND SCIENTIFIC NAME FOR WETLAND DULICS

G.1	2018.06.19		PLANTING SCHEDULES			JHT	?
G	2018.01.23		REVISED GRADING PLAN			JHT	DB
F	6/16/2011	REVISED PE	R NITSCH ENGINEERING COMMENT	S 6/16/11		DHB	SR
Е	5/10/11	REVISED PE	ER NITSCH ENGINEERING COMMEN	FS 4/6/11		DHB	SR
D	3/16/11	REVISED PE	R NITSCH ENGINEERING COMMENT	S 3/15/11		DHB	SR
С	3/9/11	REVISED PE	ER NITSCH ENGINEERING COMMEN	TS 3/3/11		RFL	SR
В	2/22/11	REVISED PE	R NITSCH ENGINEERING COMMENT	S 2/11/11		DHB	SR
А	1/25/11	REVISED PE	R NITSCH ENGINEERING COMMENT	S 1/17/11		DHB	SR
REV	DATE		DESCRIPTION			DRN	APP
TITLE: PROJECT:	PHONE:	F	R MANAGEMENT PL PINE HILL VILLAGE ARD, MASSACHUS		TAILS		
	AWING MAY NOT BE		DESIGN BY:	RLF	DATE: FF	BRUARY 22	2 2011
FOF	R PROJECT TENDER RUCTION, UNLESS SE	OR					2, 2011
CONST	RUCTION, UNLESS SE	ALED.	DRAWN BY:	RLF	PROJECT N	NO.: BW0118	BC
			CHECKED BY:	DHB	FILE: 1	002(details	s).DWG
	SIGNATURE		REVIEWED BY:	SR	SHEET NO.		
	DATE		APPROVED BY:	DHB	7	15D	
		7			8		

ATTACHMENT A

NRCS Soils Information and Infiltration



Natural Resources Conservation Service

0

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Worcester County, Massachusetts, Northeastern Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	
How Soil Surveys Are Made	5
Soil Map	
Soil Map	8
Legend	9
Map Unit Legend	.10
Map Unit Descriptions	.10
Worcester County, Massachusetts, Northeastern Part	.12
51A—Swansea muck, 0 to 1 percent slopes	
70A—Ridgebury fine sandy loam, 0 to 3 percent slopes	.13
102C—Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	
102D—Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes	.16
312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely	
stony	.18
420B—Canton fine sandy loam, 3 to 8 percent slopes	.19
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	
Soil Information for All Uses	.22
Soil Properties and Qualities	.22
Soil Qualities and Features	.22
Drainage Class	.22
Hydrologic Soil Group	.25
Water Features	.29
Depth to Water Table	.29
Soil Reports	.34
Soil Physical Properties	.34
Engineering Properties	.34
Particle Size and Coarse Fragments	.41
Physical Soil Properties	.45
Soil Qualities and Features	.52
Soil Features	.52
Water Features	.56
Water Features	.56
References	.61

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) ▲ Area of Interest (AOI) Soils ▲ Soil Map Units Special Point Features ● Blowout ▲ Borrow Pit ▲ Clay Spot ● Closed Depression ▲ Gravell Pit ▲ Gravelly Spot	 Very Stony Spot Wet Spot Other Special Line Features Gully Short Steep Slope Other Political Features Cities Water Features Oceans 	 Map Scale: 1:3,670 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:20,000. Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Worcester County, Massachusetts,
 ☑ Landfill ∧ Lava Flow ✓ Marsh or swamp ✓ Mine or Quarry ⑥ Miscellaneous Water ⑧ Perennial Water ✓ Rock Outcrop + Saline Spot ✓ Sandy Spot Ξ Severely Eroded Spot ◊ Sinkhole ◊ Slide or Slip ✓ Sodic Spot ≅ Spoil Area ◊ Stony Spot 	Streams and Canals Image: Streams and	Northeastern Part Survey Area Data: Version 7, May 5, 2008 Date(s) aerial images were photographed: 8/15/2003; 7/15/2003 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

	Worcester County, Massachusetts, Northe	eastern Part (MA613)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	2.3	6.7%
70A	Ridgebury fine sandy loam, 0 to 3 percent slopes	3.1	9.1%
102C	Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	14.3	42.6%
102D	Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes	6.4	19.0%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	4.1	12.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	0.7	2.0%
422B	Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	2.9	8.6%
Totals for Area of Intere	st	33.7	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially

where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Worcester County, Massachusetts, Northeastern Part

51A—Swansea muck, 0 to 1 percent slopes

Map Unit Setting

Mean annual precipitation: 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Swansea and similar soils: 80 percent Minor components: 20 percent

Description of Swansea

Setting

Landform: Bogs, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Highly-decomposed herbaceous organic material over loose sandy glaciofluvial deposits

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.9 inches)

Interpretive groups

Land capability (nonirrigated): 5w

Typical profile

0 to 13 inches: Muck 13 to 36 inches: Muck 36 to 60 inches: Sand

Minor Components

Freetown

Percent of map unit: 5 percent Landform: Bogs

Saco

Percent of map unit: 5 percent *Landform:* Alluvial flats

Scarboro

Percent of map unit: 5 percent Landform: Terraces

Whitman

Percent of map unit: 5 percent Landform: Depressions

70A—Ridgebury fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Elevation: 50 to 1,000 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Ridgebury and similar soils: 85 percent *Minor components:* 15 percent

Description of Ridgebury

Setting

Landform: Depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Friable coarse-loamy eolian deposits over dense coarse-loamy lodgment till

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Typical profile

0 to 9 inches: Fine sandy loam 9 to 23 inches: Gravelly fine sandy loam 23 to 60 inches: Fine sandy loam

Minor Components

Whitman

Percent of map unit: 10 percent Landform: Depressions

Woodbridge

Percent of map unit: 5 percent

102C—Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes

Map Unit Setting

Elevation: 100 to 1,000 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Chatfield and similar soils: 45 percent Hollis and similar soils: 25 percent Rock outcrop: 15 percent Minor components: 15 percent

Description of Chatfield

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable, moderately-deep coarse-loamy basal till derived from granite and gneiss over granite and gneiss

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.7 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Muck 2 to 5 inches: Fine sandy loam 5 to 32 inches: Fine sandy loam 32 to 34 inches: Unweathered bedrock

Description of Hollis

Setting

Landform: Hills

Landform position (two-dimensional): Shoulder, summit Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable, shallow loamy basal till derived from metamorphic rock over metamorphic rock

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Muck 2 to 6 inches: Fine sandy loam 6 to 14 inches: Fine sandy loam 14 to 19 inches: Gravelly fine sandy loam 19 to 21 inches: Unweathered bedrock

Description of Rock Outcrop

Setting

Parent material: Metamorphic rock

Properties and qualities

Slope: 8 to 15 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability (nonirrigated): 8s

Minor Components

Canton

Percent of map unit: 5 percent

Paxton

Percent of map unit: 5 percent

Woodbridge

Percent of map unit: 5 percent

102D—Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes

Map Unit Setting

Elevation: 100 to 1,000 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Chatfield and similar soils: 40 percent Hollis and similar soils: 25 percent Rock outcrop: 20 percent Minor components: 15 percent

Description of Chatfield

Setting

Landform: Hills Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable, moderately-deep coarse-loamy basal till derived from granite and gneiss over granite and gneiss

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.7 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Muck 2 to 5 inches: Fine sandy loam 5 to 32 inches: Fine sandy loam 32 to 34 inches: Unweathered bedrock

Description of Hollis

Setting

Landform: Hills Landform position (two-dimensional): Summit, shoulder Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable, shallow loamy basal till derived from metamorphic rock over metamorphic rock

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 1.7 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 2 inches: Muck 2 to 6 inches: Fine sandy loam 6 to 14 inches: Fine sandy loam 14 to 19 inches: Gravelly fine sandy loam 19 to 21 inches: Unweathered bedrock

Description of Rock Outcrop

Setting

Parent material: Metamorphic rock

Properties and qualities

Slope: 15 to 25 percent *Depth to restrictive feature:* 0 inches to lithic bedrock

Interpretive groups

Land capability (nonirrigated): 8s

Minor Components

Canton

Percent of map unit: 10 percent

Paxton

Percent of map unit: 3 percent

Woodbridge

Percent of map unit: 2 percent

312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony

Map Unit Setting

Mean annual precipitation: 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Woodbridge and similar soils: 85 percent *Minor components:* 15 percent

Description of Woodbridge

Setting

Landform: Drumlins Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Concave Parent material: Friable coarse-loamy eolian deposits over dense coarse-loamy lodgment till

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 18 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.9 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 9 inches: Fine sandy loam 9 to 22 inches: Sandy loam 22 to 60 inches: Sandy loam

Minor Components

Paxton

Percent of map unit: 10 percent

Ridgebury

Percent of map unit: 5 percent Landform: Depressions

420B—Canton fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

Elevation: 0 to 1,000 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Canton and similar soils: 75 percent *Minor components:* 25 percent

Description of Canton

Setting

Landform: Hills, hills Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Crest, nose slope, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable coarse-loamy eolian deposits over friable sandy basal till derived from granite and gneiss

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 2e

Typical profile

0 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam 13 to 26 inches: Gravelly fine sandy loam 26 to 60 inches: Gravelly loamy sand

Minor Components

Paxton

Percent of map unit: 15 percent

Woodbridge

Percent of map unit: 10 percent

422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony

Map Unit Setting

Elevation: 0 to 1,000 feet *Mean annual precipitation:* 32 to 50 inches *Mean annual air temperature:* 45 to 50 degrees F *Frost-free period:* 145 to 240 days

Map Unit Composition

Canton and similar soils: 80 percent *Minor components:* 20 percent

Description of Canton

Setting

Landform: Hills, hills Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Nose slope, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Friable coarse-loamy eolian deposits over friable sandy basal till derived from granite and gneiss

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 7s

Typical profile

0 to 4 inches: Fine sandy loam 4 to 13 inches: Fine sandy loam 13 to 26 inches: Gravelly fine sandy loam 26 to 60 inches: Gravelly loamy sand

Minor Components

Paxton

Percent of map unit: 15 percent

Woodbridge Percent of map unit: 5 percent

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Drainage Class

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."

Custom Soil Resource Report Map—Drainage Class

MA	AP LEGEND	MAP INFORMATION
Area of In	terest (AOI) Area of Interest (AOI)	Map Scale: 1:3,670 if printed on A size (8.5" × 11") sheet.
Soils		The soil surveys that comprise your AOI were mapped at 1:20,000.
	Soil Map Units	Please rely on the bar scale on each map sheet for accurate map
Soil Ra	-	measurements.
	Excessively drained Somewhat excessively drained	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
	Well drained	Coordinate System: UTM Zone 19N NAD83
	Moderately well drained	This product is generated from the USDA-NRCS certified data as of
	Somewhat poorly drained	the version date(s) listed below.
	Poorly drained	Soil Survey Area: Worcester County, Massachusetts,
	Very poorly drained	Northeastern Part Survey Area Data: Version 7, May 5, 2008
	Not rated or not available	Survey Area Data. Version 7, May 5, 2006
Political F	Features	Date(s) aerial images were photographed: 8/15/2003; 7/15/2003
٠	Cities	The orthophoto or other base map on which the soil lines were
Water Fea	atures	compiled and digitized probably differs from the background
	Oceans	imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
\sim	Streams and Canals	or map unit boundaries may be evident.
Transport		
+++	Rails	
~	Interstate Highways	
~	US Routes	
~~	Major Roads	
~	Local Roads	

Table—Drainage Class

Drai	nage Class— Summary by Map Ur	nit — Worcester County, Mass	sachusetts, Northeaste	ern Part
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	Very poorly drained	2.3	6.7%
70A	Ridgebury fine sandy loam, 0 to 3 percent slopes	Poorly drained	3.1	9.1%
102C	Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	Well drained	14.3	42.6%
102D	Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes	Well drained	6.4	19.0%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	Moderately well drained	4.1	12.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	Well drained	0.7	2.0%
422B	Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	Well drained	2.9	8.6%
Totals for Area of I	nterest		33.7	100.0%

Rating Options—Drainage Class

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

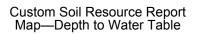
MAP LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Map Scale: 1:3,670 if printed on A size (8.5" × 11") sheet.
Soils	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soil Map Units Soil Ratings	Please rely on the bar scale on each map sheet for accurate map measurements.
A A/D	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
B/D	Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
C C/D	the version date(s) listed below.
D Not rated or not available	Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Survey Area Data: Version 7, May 5, 2008
Political Features Cities	Date(s) aerial images were photographed: 8/15/2003; 7/15/2003
Water Features Oceans Streams and Canals	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Transportation +++ Rails	
 Interstate Highways US Routes 	
Major Roads	

Table—Hydrologic Soil Group

Hydrologi	c Soil Group— Summary by Map Unit	- Worcester Count	y, Massachusetts, Nortl	heastern Part
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	D	2.3	6.7%
70A	Ridgebury fine sandy loam, 0 to 3 percent slopes	С	3.1	9.1%
102C	Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	В	14.3	42.6%
102D	Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes	В	6.4	19.0%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	С	4.1	12.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	В	0.7	2.0%
422B	Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	В	2.9	8.6%
Totals for Area of Inte	erest	•	33.7	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower


Water Features

Water Features include ponding frequency, flooding frequency, and depth to water table.

Depth to Water Table

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

 Map Scale: 1:3,670 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:20,000. Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of
the version date(s) listed below.
Soil Survey Area: Worcester County, Massachusetts, Northeastern Part
Survey Area Data: Version 7, May 5, 2008
Date(s) aerial images were photographed: 8/15/2003; 7/15/2003
The orthophoto or other base map on which the soil lines were
compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting
of map unit boundaries may be evident.

Table—Depth to Water Table

Depth to Water Table— Summary by Map Unit — Worcester County, Massachusetts, Northeastern Part				
Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	15	2.3	6.7%
70A	Ridgebury fine sandy loam, 0 to 3 percent slopes	23	3.1	9.1%
102C	Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	>200	14.3	42.6%
102D	Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes	>200	6.4	19.0%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	61	4.1	12.0%
420B	Canton fine sandy loam, 3 to 8 percent slopes	>200	0.7	2.0%
422B	Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	>200	2.9	8.6%
Totals for Area of Interest			33.7	100.0%

Rating Options—Depth to Water Table

Units of Measure: centimeters

Aggregation Method: Dominant Component

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Component" returns the attribute value associated with the component with the highest percent composition in the map unit. If more than one component shares the highest percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher attribute value should be returned in the case of a percent composition tie.

The result returned by this aggregation method may or may not represent the dominant condition throughout the map unit.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Interpret Nulls as Zero: No

This option indicates if a null value for a component should be converted to zero before aggregation occurs. This will be done only if a map unit has at least one component where this value is not null.

Beginning Month: January

Ending Month: December

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

Soil Physical Properties

This folder contains a collection of tabular reports that present soil physical properties. The reports (tables) include all selected map units and components for each map unit. Soil physical properties are measured or inferred from direct observations in the field or laboratory. Examples of soil physical properties include percent clay, organic matter, saturated hydraulic conductivity, available water capacity, and bulk density.

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and *plasticity index* (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Absence of an entry indicates that the data were not estimated. The asterisk '*' denotes the representative texture; other possible textures follow the dash.

		Engineering Pro	operties– W	/orcester C	ounty, Mas	sachusetts	, Northeas	stern Part				
Map unit symbol and soil	Depth	USDA texture	Classi	fication	Frag	ments	Perce	entage pass	ing sieve i	number—	Liquid	Plasticity
name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	- limit	index
	In				Pct	Pct					Pct	
51A—Swansea muck, 0 to 1 percent slopes												
Swansea	0-13	*Muck, Mucky peat	SM, SP, SP-SM	A-1, A-2, A-3	0	0	100	95-100	30-70	0-15	-	NP
	13-36	*Muck, Mucky peat	PT	A-8	_	_	_	_	_	0-15	_	_
	36-60	*Sand, Loamy coarse sand, gravelly loamy coarse sand	SM, SP- SM	A-1, A-2, A-3	0	0	60-100	60-100	30-70	5-30	_	NP
70A—Ridgebury fine sandy loam, 0 to 3 percent slopes												
Ridgebury	0-9	*Fine sandy loam	ML, SM	A-1, A-2, A-4	0	0-5	80-100	75-90	40-90	20-70	-	NP
	9-23	*Gravelly fine sandy loam, Sandy loam	GM, ML, SM	A-1, A-2, A-4	0	0-15	65-95	55-90	40-80	20-60	-	NP
	23-60	*Fine sandy loam, Gravelly loam	GM, ML, SM	A-1, A-2, A-4	0	0	75-95	75-90	35-80	20-60	-	NP

		Engineering Pro	operties– W	orcester C	ounty, Mas	sachusetts	, Northeas	tern Part				
Map unit symbol and soil	Depth	USDA texture	Classi	fication	Frag	ments	Perce	entage pass	sing sieve r	number—	Liquid	Plasticity
name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	index
	In				Pct	Pct					Pct	
102C—Chatfield-Hollis- Rock outcrop complex, 3 to 15 percent slopes												
Chatfield	0-2	*Muck, Mucky peat	SM, SP, SP-SM	A-1, A-3	0	0	100	95-100	30-70	0-15	—	NP
	2-5	*Fine sandy loam	GC-GM, GM, SC-SM, SM	A-1, A-2, A-4	0	0	75-95	70-90	30-65	15-50	10-20	1-6
	5-32	*Fine sandy loam, Gravelly loam, gravelly sandy loam	CL-ML, GM, ML, SM	A-1, A-2, A-4	0	0	75-95	70-90	33-85	15-75	10-20	1-6
	32-34	*Unweathered bedrock	_	_	_	_	_	_	_	_	_	_
Hollis	0-2	*Muck, Mucky peat	SM, SP, SP-SM	A-1, A-3	0	0	100	95-100	30-70	0-15	-	NP
	2-6	*Fine sandy loam	GM, ML, SM	A-2, A-4	0-5	0	65-100	60-95	40-85	20-65	15-25	NP-5
	6-14	*Fine sandy loam, Sandy loam, loam	GM, ML, SM	A-2, A-4	0-5	0	65-100	60-95	40-80	20-65	15-25	NP-5
	14-19	*Gravelly fine sandy loam, Sandy loam, loam	GM, ML, SM	A-2, A-4	0-5	0-15	65-100	60-95	40-80	20-65	15-25	NP-5
	19-21	*Unweathered bedrock	—	—	—	-	—	_	_	-	-	—
Rock outcrop	_	_	_	_	_	_	_	_	_	_	_	_

		Engineering Pro	operties– W	orcester C	ounty, Mas	sachusetts	, Northeas	tern Part				
Map unit symbol and soil	Depth	USDA texture	Classi	fication	Frag	ments	Perce	entage pass	sing sieve r	number—	Liquid	Plasticity
name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	index
	In				Pct	Pct					Pct	
102D—Chatfield-Hollis- Rock outcrop complex, 15 to 25 percent slopes												
Chatfield	0-2	*Muck, Mucky peat	SM, SP, SP-SM	A-1, A-3	0	0	100	95-100	30-70	0-15	—	NP
	2-5	*Fine sandy loam	GC-GM, GM, SC-SM, SM	A-1, A-2, A-4	0	0	75-95	70-90	30-65	15-50	10-20	1-6
	5-32	*Fine sandy loam, Gravelly loam, gravelly sandy loam	CL-ML, GM, ML, SM	A-1, A-2, A-4	0	0	75-95	70-90	33-85	15-75	10-20	1-6
	32-34	*Unweathered bedrock	_	_	—	_	_	_	—	_	_	_
Hollis	0-2	*Muck, Mucky peat	SM, SP, SP-SM	A-1, A-3	0	0	100	95-100	30-70	0-15	-	NP
	2-6	*Fine sandy loam	GM, ML, SM	A-2, A-4	0-5	0	65-100	60-95	40-85	20-65	15-25	NP-5
	6-14	*Fine sandy loam, Sandy loam, loam	GM, ML, SM	A-2, A-4	0-5	0	65-100	60-95	40-80	20-65	15-25	NP-5
	14-19	*Gravelly fine sandy loam, Sandy loam, loam	GM, ML, SM	A-2, A-4	0-5	0-15	65-100	60-95	40-80	20-65	15-25	NP-5
	19-21	*Unweathered bedrock	—	_	_	_	_	_	—	—	_	_
Rock outcrop	_	_	_	_	_	_	_	_	_	_	_	_

		Engineering Pro	perties– W	/orcester C	ounty, Mas	sachusetts	, Northeas	stern Part				
Map unit symbol and soil	Depth	USDA texture	Classi	fication	Frag	ments	Perce	entage pas	sing sieve ı	number—	Liquid	Plasticity
name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	index
	In				Pct	Pct					Pct	
312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony												
Woodbridge	0-9	*Fine sandy loam	GM, ML, SM	A-2, A-4	0	0-4	75-95	75-90	40-80	25-65	15-40	NP-10
	9-22	*Sandy loam, Loam, gravelly fine sandy loam	GM, ML, SM	A-2, A-4	0	0-4	75-95	75-90	45-80	25-60	15-30	NP-7
	22-60	*Sandy loam, Loam, gravelly fine sandy loam	GM, ML, SM	A-1, A-2, A-4	0	0-4	75-95	75-90	40-75	20-60	15-30	NP-7
420B—Canton fine sandy loam, 3 to 8 percent slopes												
Canton	0-4	*Fine sandy loam	ML, SM	A-2, A-4	0	0-10	85-95	75-90	55-85	30-60	15-18	NP-8
	4-13	*Fine sandy loam, Very fine sandy loam, gravelly loam	ML, SM	A-2, A-4	0	0-10	80-95	70-90	50-85	30-60	0-12	NP-8
	13-26	*Gravelly fine sandy loam, Very fine sandy loam, gravelly loam	ML, SM	A-2, A-4	0-10	0-20	80-95	70-90	50-85	30-60	0-12	NP-8
	26-60	*Gravelly loamy sand, Loamy fine sand, gravelly loamy coarse sand	SM, SP- SM	A-1, A-2	0-10	0-20	65-85	50-80	20-60	10-30	_	NP

		Engineering Pro	operties– W	/orcester C	ounty, Mas	sachusetts	, Northeas	stern Part				
Map unit symbol and soil	Depth	USDA texture	Classi	fication	Frag	ments	Perce	entage pas	sing sieve i	number—	Liquid	Plasticity
name			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	limit	index
	In				Pct	Pct					Pct	
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony												
Canton	0-4	*Fine sandy loam	ML, SM	A-2, A-4	0	0-10	85-95	75-90	55-85	30-60	15-18	NP-8
	4-13	*Fine sandy loam, Very fine sandy loam, gravelly loam	ML, SM	A-2, A-4	0	0-10	80-95	70-90	50-85	30-60	0-12	NP-8
	13-26	*Gravelly fine sandy loam, Very fine sandy loam, gravelly loam	ML, SM	A-2, A-4	0-10	0-20	80-95	70-90	50-85	30-60	0-12	NP-8
	26-60	*Gravelly loamy sand, Loamy fine sand, gravelly loamy coarse sand	SM, SP- SM	A-1, A-2	0-10	0-20	65-85	50-80	20-60	10-30	-	NP

Particle Size and Coarse Fragments

This table shows estimates of particle size distribution and coarse fragment content of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Total fragments is the content of fragments of rock and other materials larger than 2 millimeters in diameter on volumetric basis of the whole soil.

Fragments 2-74 *mm* refers to the content of coarse fragments in the 2 to 74 millimeter size fraction.

Fragments 75-249 *mm* refers to the content of coarse fragments in teh 75 to 249 millimeter size fraction.

Fragments 250-599 mm refers to the content of coarse fragments in the 250 to 599 millimeter size fraction.

Fragments >=600 *mm* refers to the content of coarse fragments in the greater than or equal to 600 millimeter size fraction.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

	F	Particle S	ize and C	oarse F	ragments– V	Vorcester County,	Massachusett	s, Northeastern P	art		
Map symbol and soil name	Horizo n	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragment s 250-599 mm	Fragments >=600 mm	I P P P R R R R n ct ct ct V V V V V V P
51A—Swansea muck, 0 to 1 percent slopes											
Swansea	01	0-13	-	—	—	2	2	_	_	_	
	02	13-36	_	_	_	—	_	—	_	_	
	H3	36-60	_	_	1-3 -5	9	9	_	_	_	
70A—Ridgebury fine sandy loam, 0 to 3 percent slopes											
Ridgebury	H1	0-9	_	_	3-7 -10	14	12	2	_	_	
	H2	9-23	_	_	2-5 -8	28	23	5	_	_	
	H3	23-60	_	_	2-5 -8	14	11	3	_	_	
102C—Chatfield- Hollis-Rock outcrop complex, 3 to 15 percent slopes											
Chatfield	0	0-2	_	_	_	2	2	_	_	_	
	H2	2-5	_	_	7-13 -18	14	7	5	_	2	
	H3	5-32	_	_	7-13 -18	13	10	3	_	—	
	H4	32-34	_	_	_	—	_	_	_	_	
Hollis	0	0-2	_	—	-	2	2	—	_	—	
	H2	2-6	-	—	3-7 -10	12	10	2	_	—	
	H3	6-14	-	—	1-5 -8	12	10	2	_	_	
	H4	14-19	-	—	1-5 -8	27	22	5	—	—	
	H5	19-21	-	-	-	—	_	—	—	—	
Rock outcrop	_	_	_	_	_	_	_	_	_	_	

	P	article S	ize and C	oarse Fr	agments– V	Vorcester County,	Massachusett	s, Northeastern Pa	art		
Map symbol and soil name	Horizo n	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragment s 250-599 mm	Fragments >=600 mm	I P P P R R R R n ct ct ct V V V V P P P P P P P P ct ct
102D—Chatfield- Hollis-Rock outcrop complex, 15 to 25 percent slopes											
Chatfield	0	0-2	-	_	-	2	2	—	-	—	
	H2	2-5	-	_	7-13 -18	14	9	3	-	2	
	H3	5-32	-	—	7-13 -18	13	10	3	-	—	
	H4	32-34	_	—	_	—	—	—	-	—	
Hollis	0	0-2	-	_	-	2	2	—	-	_	
	H2	2-6	_	_	3-7 -10	13	8	5	-	_	-
	H3	6-14	_	_	1-5 -8	14	10	4	-	_	
	H4	14-19	_	_	1-5 -8	27	22	5	-	_	
	H5	19-21	-	_	-	—	_	—	_	_	
Rock outcrop	_	_	_	_	_	_	_	—	-	_	
312B— Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony											
Woodbridge	H1	0-9	-	_	3-8 -12	14	12	2	-	_	
	H2	9-22	-	_	3-8 -12	14	12	2	—		
	НЗ	22-60	_	_	3-8 -12	14	12	2	_	_	

	F	Particle S	ize and C	Coarse Fi	ragments– V	Norcester County,	Massachusetts	s, Northeastern Pa	art		
Map symbol and soil name	Horizo n	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragment s 250-599 mm	Fragments >=600 mm	I P P R
420B—Canton fine sandy loam, 3 to 8 percent slopes											
Canton	H1	0-4	_	—	1-5 -8	13	10	3	—	_	
	H2	4-13	_	—	1-5 -8	14	12	2	—	_	
	H3	13-26	_	—	1-5 -8	23	14	6	—	3	
	H4	26-60	_	_	0-3 -5	32	23	6	—	3	
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony											
Canton	H1	0-4	_	_	1-5 -8	14	11	3	—	_	
	H2	4-13	-	_	1-5 -8	14	12	1	—	1	
	H3	13-26	_	_	1-5 -8	23	14	6	—	3	
	H4	26-60	_	_	0-3 -5	32	23	6	—	3	

Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrinkswell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil.

Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion.

There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

				Physical So	oil Propertie	es- Worcester Co	ounty, Massac	husetts, Northeas	stern Part					
Map symbol	Depth	Sand	Silt	Clay	Moist	Saturated	Available	Linear	Organic	Eros	sion fa	octors	-	Wind
and soil name					bulk density	hydraulic conductivity	water capacity	extensibility	matter	Kw	Kf	т	erodibility group	erodibility index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
51A—Swansea muck, 0 to 1 percent slopes														
Swansea	0-13	- 5-	_	_	1.10-1.35	42.34-141.14	0.03-0.08	0.0-2.9	30.0-90.0	.02	.02	2	8	0
	13-36	- 5-	_	_	0.15-0.30	4.23-42.34	0.35-0.45	0.0-2.9	30.0-90.0	.02	.02			
	36-60	-96-	- 2-	1- 3- 5	1.15-1.40	141.14-705.00	0.01-0.08	0.0-2.9	5.0-15.0	.10	.15			
70A— Ridgebury fine sandy loam, 0 to 3 percent slopes														
Ridgebury	0-9	-71-	-22-	3- 7- 10	1.00-1.30	4.23-42.34	0.06-0.24	0.0-2.9	4.0-7.0	.24	.28	3	8	0
	9-23	-66-	-29-	2- 5- 8	1.60-1.90	4.23-42.34	0.04-0.20	0.0-2.9	0.0-1.0	.32	.55			
	23-60	-66-	-29-	2- 5- 8	1.80-2.00	0.00-1.41	0.01-0.05	0.0-2.9	0.0-1.0	.24	.43			

				Physical So	oil Propertie	es- Worcester Co	ounty, Massac	husetts, Northea	stern Part					
Map symbol	Depth	Sand	Silt	Clay	Moist	Saturated	Available	Linear	Organic	Eros	ion fa	actors		Wind
and soil name					bulk density	hydraulic conductivity	water capacity	extensibility	matter	Kw	Kf	т	erodibility group	erodibility index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
102C— Chatfield- Hollis-Rock outcrop complex, 3 to 15 percent slopes														
Chatfield	0-2	- 5-	_	—	1.10-1.35	42.34-141.14	0.03-0.08	0.0-2.9	30.0-90.0	.02	.02	2	8	0
	2-5	-71-	-17-	7-13- 18	1.10-1.40	4.23-42.34	0.08-0.14	0.0-2.9	2.0-10.0	.20	.43			
	5-32	-61-	-27-	7-13- 18	1.20-1.50	4.23-42.34	0.08-0.18	0.0-2.9	1.0-5.0	.20	.32			
	32-34	_	_	_	_	0.00-1.00	_	_	_					
Hollis	0-2	- 5-	_	—	1.10-1.35	42.34-141.14	0.03-0.08	0.0-2.9	30.0-90.0	.02	.02	1	8	0
	2-6	-71-	-22-	3- 7- 10	1.10-1.40	4.23-42.34	0.08-0.17	0.0-2.9	2.0-5.0	.20	.37			
	6-14	-65-	-31-	1- 5- 8	1.30-1.55	4.23-42.34	0.06-0.18	0.0-2.9	1.0-3.0	.32	.49			
	14-19	-65-	-31-	1- 5- 8	1.30-1.55	4.23-42.34	0.06-0.18	0.0-2.9	1.0-3.0	.32	.49			
	19-21	_	_	—	_	0.00-1.00	_	_	_					
Rock outcrop	_	_	_	_	_	_	-	_	_			1		

				Physical So	oil Propertie	es- Worcester Co	ounty, Massac	husetts, Northeas	stern Part					
Map symbol	Depth	Sand	Silt	Clay	Moist	Saturated	Available	Linear	Organic	Eros	ion fa	actors	Wind	Wind
and soil name					bulk density	hydraulic conductivity	water capacity	extensibility	matter	Kw	Kf	т	erodibility group	erodibility index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
102D— Chatfield- Hollis-Rock outcrop complex, 15 to 25 percent slopes														
Chatfield	0-2	- 5-	_	_	1.10-1.35	42.34-141.14	0.03-0.08	0.0-2.9	30.0-90.0	.02	.02	2	8	0
	2-5	-71-	-17-	7-13- 18	1.10-1.40	4.23-42.34	0.08-0.14	0.0-2.9	2.0-10.0	.20	.43			
	5-32	-61-	-27-	7-13- 18	1.20-1.50	4.23-42.34	0.08-0.18	0.0-2.9	1.0-5.0	.20	.32			
	32-34	_	-	—	—	0.00-1.00	_	-	_					
Hollis	0-2	- 5-	-	-	1.10-1.35	42.34-141.14	0.03-0.08	0.0-2.9	30.0-90.0	.02	.02	1	8	0
	2-6	-71-	-22-	3- 7- 10	1.10-1.40	4.23-42.34	0.08-0.17	0.0-2.9	2.0-5.0	.20	.37			
	6-14	-65-	-31-	1- 5- 8	1.30-1.55	4.23-42.34	0.06-0.18	0.0-2.9	1.0-3.0	.32	.49			
	14-19	-65-	-31-	1- 5- 8	1.30-1.55	4.23-42.34	0.06-0.18	0.0-2.9	1.0-3.0	.32	.49			
	19-21	—	_	_	—	0.00-1.00	_	—	_					
Rock outcrop	_	_	_	_	_	—	_	_	_			1	8	0
312B— Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony														
Woodbridge	0-9	-70-	-22-	3- 8- 12	1.00-1.25	4.23-14.11	0.08-0.18	0.0-2.9	2.0-6.0	.20	.37	3	8	0
	9-22	-70-	-22-	3- 8- 12	1.35-1.60	4.23-14.11	0.08-0.18	0.0-2.9	1.0-3.0	.32	.49			
	22-60	-70-	-22-	3- 8- 12	1.70-2.00	0.00-1.41	0.05-0.10	0.0-2.9	0.0-2.0	.24	.37			

				Physical S	oil Propertie	es- Worcester C	ounty, Massac	husetts, Northea	stern Part					
Map symbol	Depth	Sand	Silt	Clay	Moist	Saturated	Available	Linear	Organic	Eros	ion fa	actors	Wind	Wind
and soil name					bulk density	hydraulic conductivity	water capacity	extensibility	matter	Kw	Kf	т	erodibility group	erodibility index
	In	Pct	Pct	Pct	g/cc	micro m/sec	In/In	Pct	Pct					
420B—Canton fine sandy loam, 3 to 8 percent slopes														
Canton	0-4	-65-	-31-	1- 5- 8	0.90-1.20	14.11-42.34	0.11-0.19	0.0-2.9	1.0-6.0	.24	.32	3	3	86
	4-13	-65-	-31-	1- 5- 8	1.20-1.50	14.11-42.34	0.09-0.17	0.0-2.9	1.0-3.0	.28	.37			
	13-26	-65-	-31-	1- 5- 8	1.20-1.50	14.11-42.34	0.09-0.17	0.0-2.9	1.0-3.0	.28	.37			
	26-60	-81-	-17-	0- 3- 5	1.30-1.50	42.34-141.14	0.04-0.08	0.0-2.9	0.0-1.0	.17	.20			
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony														
Canton	0-4	-65-	-31-	1- 5- 8	0.90-1.20	14.11-42.34	0.11-0.19	0.0-2.9	1.0-6.0	.24	.32	3	8	0
	4-13	-65-	-31-	1- 5- 8	1.20-1.50	14.11-42.34	0.09-0.17	0.0-2.9	1.0-3.0	.28	.37			
	13-26	-65-	-31-	1- 5- 8	1.20-1.50	14.11-42.34	0.09-0.17	0.0-2.9	1.0-3.0	.28	.37			
	26-60	-81-	-17-	0- 3- 5	1.30-1.50	42.34-141.14	0.04-0.08	0.0-2.9	0.0-1.0	.17	.20			

Soil Qualities and Features

This folder contains tabular reports that present various soil qualities and features. The reports (tables) include all selected map units and components for each map unit. Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Soil Features

This table gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A *restrictive layer* is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. *Depth to top* is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage, or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, saturated hydraulic conductivity (Ksat), content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel

or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as *low*, *moderate*, or *high*, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as *low*, *moderate*, or *high*. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Soil Features- Worcester County, Massachusetts, Northeastern Part										
Map symbol and		Res	strictive Layer		Subs	idence	Potential for frost	Risk of corrosion		
soil name	Kind	Depth to top	Thickness	Hardness	Initial	Total	action	Uncoated steel	Concrete	
		In	In		In	In				
51A—Swansea muck, 0 to 1 percent slopes										
Swansea	Strongly contrasting textural stratification	-	—	Noncemented	—	—	High	High	High	
70A—Ridgebury fine sandy loam, 0 to 3 percent slopes										
Ridgebury	Dense material	-	_	Very strongly cemented	_	-	High	High	High	
102C—Chatfield- Hollis-Rock outcrop complex, 3 to 15 percent slopes										
Chatfield	Lithic bedrock	20-40	—	Indurated	—	_	Moderate	Low	Moderate	
Hollis	Lithic bedrock	10-20	—	Indurated	_	_	Moderate	Low	High	
Rock outcrop	Lithic bedrock	0	_		_	_				
102D—Chatfield- Hollis-Rock outcrop complex, 15 to 25 percent slopes										
Chatfield	Lithic bedrock	20-40	_	Indurated	_	—	Moderate	Low	Moderate	
Hollis	Lithic bedrock	10-20	—	Indurated	-	—	Moderate	Low	High	
Rock outcrop	Lithic bedrock	0	_		_	_				

	Soil Features– Worcester County, Massachusetts, Northeastern Part								
Map symbol and soil name	Restrictive Layer					idence	Potential for frost	Risk of corrosion	
	Kind	Depth to top	Thickness	Hardness	Initial	Total	- action	Uncoated steel	Concrete
		In	In		In	In			
312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony									
Woodbridge	Dense material	-	_	Very strongly cemented	_	-	High	Low	Moderate
420B—Canton fine sandy loam, 3 to 8 percent slopes									
Canton	Strongly contrasting textural stratification	18-36	—	Noncemented	—	-	Low	Low	High
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony									
Canton	Strongly contrasting textural stratification	18-36	_	Noncemented	—	—	Low	Low	High

Water Features

This folder contains tabular reports that present soil hydrology information. The reports (tables) include all selected map units and components for each map unit. Water Features include ponding frequency, flooding frequency, and depth to water table.

Water Features

This table gives estimates of various soil water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas.

Surface runoff refers to the loss of water from an area by flow over the land surface. Surface runoff classes are based on slope, climate, and vegetative cover. The concept indicates relative runoff for very specific conditions. It is assumed that the surface of the soil is bare and that the retention of surface water resulting from irregularities in the ground surface is minimal. The classes are negligible, very low, low, medium, high, and very high.

The *months* in the table indicate the portion of the year in which a water table, ponding, and/or flooding is most likely to be a concern.

Water table refers to a saturated zone in the soil. The water features table indicates, by month, depth to the top (*upper limit*) and base (*lower limit*) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely

grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. The table indicates *surface water depth* and the *duration* and *frequency* of ponding. Duration is expressed as *very brief* if less than 2 days, *brief* if 2 to 7 days, *long* if 7 to 30 days, and *very long* if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. *None* means that ponding is not probable; *rare* that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); *occasional* that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and *frequent* that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and *frequency* are estimated. Duration is expressed as *extremely brief* if 0.1 hour to 4 hours, *very brief* if 4 hours to 2 days, *brief* if 2 to 7 days, *long* if 7 to 30 days, and *very long* if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. *None* means that flooding is not probable; *very rare* that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); *rare* that it is unlikely but possible under unusual weather conditions (the chance of flooding is 5 to 50 percent in any year); *frequent* that it is likely to occur often under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); *frequent* that it is likely to occur often under normal weather conditions (the chance of flooding is 0 to 0 percent in any year); *requent* that it is likely to occur often under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); *frequent* that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year) but is less than 50 percent in all months in any year); and *very frequent* that it is likely to occur very often under normal weather conditions (the chance of flooding is 50 percent in all months in any year); and *very frequent* that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

		Wate	er Features- W	orcester County	/, Massachuse	tts, Northeast	ern Part			
Map unit symbol and soil	Hydrologic	Surface	Month	Wate	r table		Ponding		Flooding	
name gi	group	runoff		Upper limit	Lower limit	Surface depth	Duration	Frequency	Duration	Frequency
				Ft	Ft	Ft				
51A—Swansea muck, 0 to 1 percent slopes										
Swansea	D	—	January	0.0-1.0	>6.0	_	_	None	_	None
	D	_	February	0.0-1.0	>6.0	_	_	None	_	None
	D	-	March	0.0-1.0	>6.0	_	—	None	—	None
	D	-	April	0.0-1.0	>6.0	-	—	None	—	None
	D	-	Мау	0.0-1.0	>6.0	-	—	None	—	None
	D	-	June	0.0-1.0	>6.0	—	—	None	—	None
	D	_	July	0.0-1.0	>6.0	_	_	None	_	None
	D	_	August	0.0-1.0	>6.0	_	_	None	_	None
	D	_	September	0.0-1.0	>6.0	_	—	None	_	None
	D	_	October	0.0-1.0	>6.0	_	—	None	_	None
	D	-	November	0.0-1.0	>6.0	—	—	None	_	None
	D	_	December	0.0-1.0	>6.0	_	—	None	_	None
70A—Ridgebury fine sandy loam, 0 to 3 percent slopes										
Ridgebury	С	_	January	0.0-1.5	1.0-2.0	_	_	None	_	None
	С	_	February	0.0-1.5	1.0-2.0	_	—	None	_	None
	С	_	March	0.0-1.5	1.0-2.0	_	_	None	_	None
	С	-	April	0.0-1.5	1.0-2.0	_	—	None	_	None
	С	—	Мау	0.0-1.5	1.0-2.0	_	_	None	_	None
	С	_	November	0.0-1.5	1.0-2.0	_	_	None	_	None
	С	_	December	0.0-1.5	1.0-2.0	_	_	None	_	None

		Wate	r Features– W	orcester County	, Massachuse	tts, Northeaste	ern Part			
Map unit symbol and soil	Hydrologic	Surface	Month	Wate	r table	Ponding			Floe	oding
name	group	runoff		Upper limit	Lower limit	Surface depth	Duration	Frequency	Duration	Frequency
				Ft	Ft	Ft				
102C—Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes										
Chatfield	В	_	Jan-Dec	_	_	_	_	None	_	-
Hollis	C/D	_	Jan-Dec	_	_	_	-	None	_	-
Rock outcrop	D	_	Jan-Dec	_	_	_	_	None	_	_
102D—Chatfield-Hollis-Rock outcrop complex, 15 to 25 percent slopes										
Chatfield	В	_	Jan-Dec	_	_	_	-	None	_	-
Hollis	C/D	_	Jan-Dec	_	—	_	-	None	_	-
Rock outcrop	D	_	Jan-Dec	_	_	_	-	None	_	-
312B—Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony										
Woodbridge	С	-	January	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	_	February	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	_	March	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	_	April	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	-	Мау	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	-	November	1.5-2.5	1.6-3.3	_	_	None	_	None
	С	-	December	1.5-2.5	1.6-3.3	_	_	None	_	None
420B—Canton fine sandy loam, 3 to 8 percent slopes										
Canton	В	_	Jan-Dec	_	_	_	_	None	_	_

	Water Features- Worcester County, Massachusetts, Northeastern Part									
Map unit symbol and soil	Hydrologic	Surface	Month	Water table		Ponding			Flooding	
name	group	runoff		Upper limit	Lower limit	Surface depth	Duration	Frequency	Duration	Frequency
				Ft	Ft	Ft				
422B—Canton fine sandy loam, 3 to 8 percent slopes, extremely stony										
Canton	В	_	Jan-Dec	_	_	_	—	None	_	_

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/ United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

Commonwealth of Massachusetts

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

				MAILING ADDR	<u>ess</u> ?
A. Facility Information				TRANSPORM	WITH WAY
-	LONS TI	NC		Townser	s, MASS 0146
TRANSFORMAT		<u> </u>			· · · · · · · · · · · · · · · · · · ·
PINE HILL VILL	AC 8			M36 P	CL 85 861
Street Address			· · · · · · · · · · · · · · · · · · ·	Map/Lot #	
HARVARD	•		MA	01451	
City			State	Zip Code	
		Lo-			
B. Site Information					
1. (Check one) 🛛 New Co	nstruction	🗌 Upgrade	🗌 Repair		
			1984	1:20000	WB
Published Soil Survey Available?	Yes	🗌 No	If yes: Year Published	d Publication Scale	Soil Map Unit
61000 BRIDGE			bigh good s	CUL AT X	
Soil Name	· · · · · · · · · · · · · · · · · · ·		Soil Limitations		
3. Surficial Geological Report Availal	ble? 🗍 Yes	M No	If yes: Year Publishe	d Publication Scale	Map Unit
· · ·				a Publication Scale	Map Ont
<u>glaciest fell</u> Geologic Material			Landform		
Geologic Material			Landroim		
4. Flood Rate Insurance Map					
Above the 500-year flood boundar	y? 🗹 Yes	🗌 No	Within the 100-year floo	od boundary? 🔲 Yes	I No
Within the 500-year flood boundar	y? 🗌 Yes	No	Within a velocity zone?	🗌 Yes	No
5. Wetland Area: Nationa	Wetland Invento	ry Map	Map Unit	Name	
10/-11		Non			
vvetianc	Is Conservancy P	rogram wap	Map Unit	Name	
6. Current Water Resource Conditi	ons (USGS):	<u> ジバク</u> Month/Year	Range: 🗌 Above No	ormal 🗌 Normal 🗹 Be	low Normal
7. Other references reviewed:					
				•	

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (minimum of	two holes requ	uired at every pro	posed primary ar	nd reserved disp	osal area)
	Deep Observation Hole Number:	810-4	<u>9(17/10</u> Date	3.50 Pix	<u>Suny So</u> Weather	
1.	Location					,
	Ground Elevation at Surface of Hole:		Location (identify or	n plan):		
2.	Land Use (e.g., woodland, agricultural	ield, vacant lot, etc.)		Surface Stones		<u>َک</u> Slope (%)
	Vegetation		Landform	704	Position on Landscape	(attach sheet)
3.	Distances from: Open Water Body	<u>2501</u> feet	Drainage Way	2 <u>50</u> ±	Possible Wet Are	a feet
	Property Line	Aut feet	- Drinking Water	Well <u>Scot</u>	Other	feet
4.	Parent Material: glocial till	(prsperzer	Unsuita	ble Materials Prese	nt: 🗌 Yes	W No
	if Yes: Disturbed Soil	Fill Material [Impervious Layer(s)	Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	[♥ No	lf yes:	Depth Weeping fro	m Pit Depth S	tanding Water in Hole
	Estimated Depth to High Groundwater:	<u> </u>	elevation			

C. On-Site Review (continued)

Deep Observation Hole Number:

210-4

Depth (in.)	Soil Horizon/ Layer	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
			Percent Depth	Color	Peterh Boroent	USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0"-4"	Α	10YR312				Si			messive	frichie	
4-16	ß	7.5YESIL	25%			FSC	. 179	•	presente	·	
16-120	C	SYRE14	>5%	strsje	30"	MLS	5%	5%	ganoler	firm in place	
	1									<u> </u>	

Additional Notes:

D. Determination of High Groundwater Elevation

1. Method Used:

Adjustment Factor	Adjusted Groundwat	er Level	
Index Well Number	Depth to soil redoximorphic features (mottles) Groundwater adjustment (USGS methodology) Index Well Number Reading Date		Index Weil Level
Groundwater adjustment (USGS n			inches
			B.
The self redevimerphic footure	·		B
Depth weeping from side of observer	ation hole	A. inches	inches
			В.
Depth observed standing water in	observation hole	A. inches	B

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - Yes 🗌 No
 - b. If yes, at what depth was it observed?

Upper boundary:

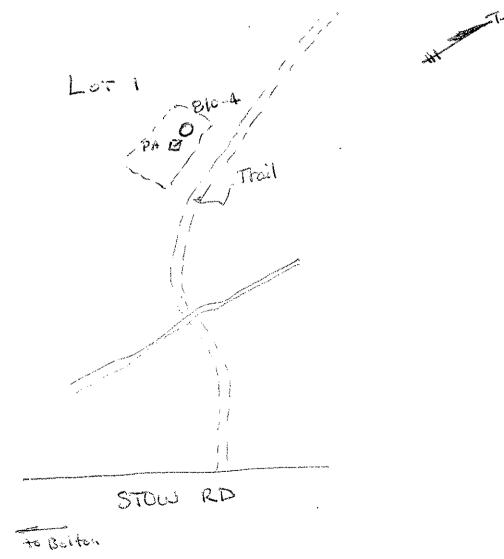
inches

Lower boundary:

i 20

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.


Rund & Wilson Signature of Soil Evaluator Russell D. Wilson Typed or Printed Name of Soil Evaluator / License # Kalene Garbarz	<u> しまた Solid Evaluator Exam</u> NAGCH
Name of Board of Health Witness	Board of Health

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

Field Diagrams

Use this sheet for field diagrams:

FORM 11 - SOIL EVALUATOR FORM Page 1 of

PROJECT No. <u>4590</u>

Date: <u>10/27/97</u>

Commonwealth of Massachusetts HARVARD, Massachusetts Soil Suitability Assessment for On-site Sewage Disposal

Performed By: W.M. MURRAY, DAVID E. Ross Assoc. Date: 10/112/97 Witnessed By: MR. DON MELOON, R.S. - NASHOBA ASSOC. BOARDS OF HEALTH

Location Address or LOT #/ Loc # OFF STOW ROAD, HARVARD, MA - Assessor's Map 3C, PARCEL 85:86 New Construction & Repair	Owner's Name. CHARLES B. WEOTGATE Address, and C.B. WEOTGATE, INC. Telephone / ILO SANBOEN ST. READING, MA 01867 (617) 935-5042
Office Review	
Published Soil Survey Available: No Yes Yes Year Published 1985 (No.11) Publication Scale Drainage Class B C Soil Limitations	X I:10,000 Soil Map Unit RAA & WhB (RIDGEBURY FINE SANDY LOOM)
Surficial Geologic Report Available: No 🔀 Yes [
Year Published Publication Scal Geologic Material (Map Unit)	ale - DECEIVE
Flood Insurance Rate Map:	
Above 500 year flood boundary No 🗌 Yes 🛛	
Within 500 year flood boundary No 🗌 Yes 🗌	. ~
Within 100 year flood boundary No 🕅 Yes 🗌	
Wetland Area: National Wetland Inventory Map (map unit) Wetlands Conservancy Program Map (map unit)	U- UPLANDS
Current Water Resource Conditions (USGS): Month Range : Above Normal Normal Belcy Norm Other References Reviewed: <u>HARVARD BOARD</u>	NAI DE HEALTH REGULATIONS

Location Address or Lot No. LOT 1, OFF STOW RD, HARVARD

<u>On-site Review</u>

Deep Hole Number TH 097-7 Date: 10	197 Time: 11:45AM	weather Pfly. Wnny, 60°F
Location (identify on site plan) Set St Land Lise Wooder LOT Slope (сетсн %) 2-5% Surface Stone	s~5% (BOULDERS)
Vegetation ZND GROWTH MIXED HARD?	SOFTWOODS	
Landform		· · · ·
Position on landscape (sketch on the back)		. , .
Distances from: Open Water Body 7200 feet	Drainage way ~ 200'	feet (FNOT PRODUCT)

Possible Wet Area 7 150' feet Drinking Water Well >200' feet

į

Property Line ~ 200' feet CERISTING IL NOT PROPOSED) Other

Depth from	Soil Horizon	Soil Texture (USDA)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, %
Surface (Inches) $0''-8''$	Ą	SANDY LOAM	104R/6/6		Gravel) ROOTS 730%; MASSIVE; FRIABLE BROKEN/DIPRISE BORDER (5/0/0/5)=(Rebbles/Stones/CobbLs/BLO
8"-18"	Bw	Sandy Loam	104r 4 6	COMMON	ROOTS ~ 15%; MASSIVE; FRIABLE BROKEN / DIFFUSE BORDER (5/0/0/0) ROOTS 25%; MASSIVE; FRIABLE
18"-36"	C,	Loam	2.54/5/4	© 25"	BEDKEN. DIFFUSE BOKKER (10/5/0/0)
36"- 96"	C ₂	V.STONY FINE SANDY LOAM	104r/4/4	COMMON THEOUGH	- DENSE; BROKEN-DIPPUSE BORDER (15/5/0/0)
96" +	C ₃	GRAVELLY FINE SANDY LOAM		+	NO ROOTS; MALSIVE, DENSE (1015/0/2)
• MINIMU Parent Material (ge		REQUIRED AT EV	VERY PROPOS	SED DISPOSA	AL AREA DepthtoBedrock: OVER 96"

.

DEP APPROVED FORM - 12/07/95

Location Address or Lot No. Lot 1, gr STOW RD, HARVARD

Determination for Seasonal High Water Table

Method Used:

Depth observed standing in observation hole inches

Depth weeping from side of observation hole _____ inches

🔀 Depth to soil mottles 🛣 👘 inches

Ground water adjustment feet

Index Well Number _____ Reading Date _____ Index well level _____

Adjustment factor Adjusted ground water level

* SEEINDIVIDUAL SOLLOGS, FORM 11 FOR HOLES TH 1097-1 & TH 1097-2

Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

If not, what is the depth of naturally occurring pervious material?

Certification

I certify that on <u>10/27/94</u> (date) I have passed the soil evaluator examination approved by the Department of Environmental Protection and that the above analysis was performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017.

Signature William E Mury Date 1920

FORM 12 - PERCOLATION TEST

Location Address or Lot No. Lot 1, OFF STOW RD., HARVARD

COMMONWEALTH OF MASSACHUSETTS

HARVARD , Massachusetts

Percolation Test* P-1097-2											
Date: //	D/1+2/97	Time: As Below									
Observation Hole #	TH 1097-2		AFTER OVERNIGHT								
Depth of Perc	80"	1	81"								
Start Pre-soak	1:00	1	12:27								
End Pre-soak	1:15		12:45								
Time at 12"	j:15		12:45								
Time at 9"	1:50		2:01								
Time at 6"	OVERNIGHT SOAK	/	Z:3708"								
Time (9"-6")	REQUIRED										
Rate Min./Inch			OVER 30 MIN/IN								

* Minimum of 1 percolation test must be performed in both the primary area AND reserve area.

Site Passed Site Failed
Performed By: WILLIAM MURRAY - DAVID E. Ross Assoc - INC.
Witnessed By: MR. DON MELOON R.S - NABOH
Comments:

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)				<u>_</u> ~
	Deep Observation Hole Number:	<u>3131198</u> Date Tir	ne	<u>Soany 2</u> Weather	>
1.	Location				
	Ground Elevation at Surface of Hole:	Location (identify on pla	an):		43 4
2.	Land Use (e.g., woodland, agricultural field, vacant lot, etc	c.)	Surface Stones		Slope (%)
	Vegetation	Landform	zeol-t	Position on Landscape	e (attach sheet)
3.	Distances from: Open Water Body $\frac{2c}{\text{feet}}$		· feet	Possible Wet Are	ea feet
	Property Line	Drinking Water We	$\ \frac{200+}{\text{feet}}$	Other	feet
4.	Parent Material: <u>glacial fill</u>	Unsuitable	Materials Preser	nt: 🗌 Yes	M No
	If Yes: Disturbed Soil Fill Material	Impervious Layer(s)		red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗹 Yes 🗌 No	If yes:	Depth Weeping fro	om Pit Depth	Standing Water in Hole
	Estimated Depth to High Groundwater: $\frac{32}{\text{inches}}$	elevation			

PINE HILL VILLACE

C. On-Site Review (continued)

Deep Observation Hole Number:

<u>398-1</u>____

	Soil Horizon/ Layer	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)			Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other
Depth (in.)			Depth	n Color	Percent	(USDA)	Gravel	/el Cobbles & Stones	Structure massive	(Moist)	
0.58	Α	10/123/2				FSin				truble	
 శా. రం	S.	1042416				FSL			prismethe	Friche	
20 36	-	2.545/4	32	SYRUII	75%	FSL			geonater souther	from in phase	
36 112	ca	2.5493				F51	• tana	10%	granular szij-hazs	hrm	
		-									
			-								

Additional Notes:

NOTESTANEN FROM DAUIDE ROSS ASSOC, and NABOLA

Soil Structure and Consistence added

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)		
	Deep Observation Hole Number: <u>398-2</u>	33198 Date Time	S∪4nγ_8⊖້ Weather
1.	Location		
	Ground Elevation at Surface of Hole:	Location (identify on plan):	
2.	Land Use (e.g., woodland, agricultural field, vacant lot, etc.)		s Slope (%)
	Vegetation	Landform	Position on Landscape (attach sheet)
3.	Distances from: Open Water Body <u>200</u>	Drainage Way	$\frac{1}{2}$ Possible Wet Area $\frac{120}{\text{feet}}$
	Property Line	کے ۔ Drinking Water Well feet	Other feet
4.	Parent Material: <u>glacial Fill</u>	Unsuitable Materials P	resent: 🗌 Yes 🗹 No
	If Yes: Disturbed Soil Elli Material	🔲 Impervious Layer(s) 🛛 🗌 We	eathered/Fractured Rock
5.	Groundwater Observed: Yes INO	If yes: <u>Depth Weep</u>	
	Estimated Depth to High Groundwater: $\frac{30}{\text{inches}}$	elevation	

C. On-Site Review (continued)

Deep Observation Hole Number:

398-2

Depth (in.)	Soil Horizon/ Layer	Soil Matrix: Color-	Redoximorphic Features (mottles)			Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other
		Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	other
0-2	15	104232				732			messive	forable	
C-20	ß	1042416				FSL			prismitie	Triable	
20-36	< _i	2.5425/4	30	Syauli	75%	FSL			garoinular in/frincs.	. from inplace	
36-21	62	2.54513				FS	10%	10%	Granuler	frien	
,											
				,							···-

Additional Notes:

datas taken from David E Reis and NABOH held notes

. Soil structure and consistence added

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)				SUNAY BOR	
	Deep Observation Hole Number: <u>3</u>	<u>98-3</u>	<u>3131198</u> Date	Time	Weather	
1.	Location					
	Ground Elevation at Surface of Hole:		Location (identify on p	olan):		
	in welland			Sea		
2.	Land Use (e.g., woodland, agricultural field,	vacant lot, etc.)		Surface Stones	S	ilope (%)
	trees	. ,	doundin			
	Vegetation		Landform		Position on Landscape (a	
3.	Distances from: Open Water Body	<u>2ouit</u> feet	- Drainage Way	<u>Ecol t</u> feet	Possible Wet Area	1 50 ' ± feet
	Property Line	i 50 ¹ to feet	Drinking Water W	/ell 7 <u>2001+</u> feet	Other	feet
4.	Parent Material: <u>glacial</u> fill		Unsuitab	le Materials Prese	nt: 🗌 Yes	No
	If Yes: Disturbed Soil	Material	Impervious Layer(s)	Weather	red/Fractured Rock	Bedrock
5.	Groundwater Observed: Yes	🗍 No	If yes:	62 Depth Weeping fro		anding Water in Hole
	Estimated Depth to High Groundwater:	inches	elevation			

C. On-Site Review (continued)

Deep Observation Hole Number:

398-3

Denth (in)	Soil Horizon/ Layer	Soil Matrix: Color- Moist (Munsell)	Kedoximorphic Features (mottles)			Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other
Depth (in.)			Depti	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	Other
0-6	Ą	1672 312				PSC			massive	Frichle	
6-21	ß	1042416				12 SL			prismatic	Priciple	
21-38	C,	2.58514	32	5426/1	>5%	FSL.			grandes	him in place	
38-116	C.,	2.54 513				FSL	(0"]>	10%	grandar (diase)	firm	
						,					

Date takan: David F Pors Asson and NABOW held notes Soil Storedune and Consideries added

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

				MAILING A	OURESS .
. Facility Inform	ation				NTH WAY
TERNSFO	ZMATIONS, INC	• -			MO 0146
Owner Name		-		,	
	L VILLAGE				85 + 86.1
Street Address				Map/Lot #	1
City HARUAR	Ð .		<u>M N</u> State	Zip Code	<u> </u>
Ony		1		·	
		LC	DT 2		
. Site Information	on				
(Check one) [New Construction	🗌 Upgrade	🗌 Repair		
	v Available? 🗹 Yes	□ No	1984	1:20000	PEB
Published Soil Surve	y Available?		If yes. Year Published	Publication Scale	Soil Map Unit
PAKTON Soil Name			9.0. permeabilit Soil Limitations	γ	
Surficial Geological Re	eport Available? 📋 Yes	No No	If yes: Year Published	Publication Scale	Map Unit
GLAICAL TIL			DRUMLIN Landform		
Geologic Material			Landionn		
Flood Rate Insurance	e Map				
Above the 500-year flo	ood boundary? 🗹 Yes	🗌 No	Within the 100-year flood bo	undary? 🗌 Yes	No No
Within the 500-year flo	ood boundary? 📋 Yes	No	Within a velocity zone?	🗌 Yes	No
Wetland Area:	National Wetland Invento	ory Map	Map Unit	Name	
N/A	Wetlands Conservancy I	Program Map	Map Unit	Name	
Current Water Resou	rce Conditions (USGS):	Month/Year	Range: 🔲 Above Normal	🗹 Normal 🔲 Bel	ow Normal

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

$\overline{\mathbf{c}}$	On-Site Review (continued)					
υ.			,		1	•
	Deep Observation Hole Number:	-604	6 (19 04 Daté Ti	ime	<u>Cldy 8</u> Weather	◦
1.	Location					
,	Ground Elevation at Surface of Hole:	295.0	Location (identify on pla	an):		
-	woodland			few		3
2.	Land Use (e.g., woodland, agricultural field,	vacant lot, etc.)		Surface Stones		Slope (%)
	<u>Small frees no o</u> Vegetation	4	Landform	······	Position on Landscape	(attach sheet)
3.	Distances from: Open Water Body	7 300 feet	⊇ Drainage Way	> <u>300</u> feet	Possible Wet Are	a $\frac{1501}{\text{feet}}$
	Property Line	<u>50 ±</u>	 Drinking Water We 	ell feet	Other	feet
4.	Parent Material: <u>glacial till</u>		Unsuitable	Materials Prese	nt: 🗌 Yes	No No
	If Yes: Disturbed Soil Fill	Material [Impervious Layer(s)	🗌 Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	V No	If yes:	Depth Weeping fro	m Pit Depth S	Standing Water in Hole
	Estimated Depth to High Groundwater:	<u>33</u> inches	<u>292.35</u> elevation			

A-604

C. On-Site Review (continued)

Deep Observation Hole Number:

	Soil Horizon/ Layer	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)			Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-8	A	104R3/2				SL			massive	Friable	
8-26	ß	7.54R5/6				54			Columnar		
26-104	C	51R6 3	33 .	5425 8	75%	SL	10%	20%	50% gran. 50% plator	firm	
				-							
				·					1		

not compacted CLOYER

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)					
	Deep Observation Hole Number:	<u>B-604</u>	61904 Date	Time	<u>cldr 80</u> Weather	
1.	Location					
•	Ground Elevation at Surface of Hole:	287.5	Location (identify on	ı plan):		
2.	Land Use <u>Woodland</u> (e.g., woodland, agricultural field Small frees - 1	, vacant lot, etc.)	south drowl	Surface Stones		4 Slope (%)
	Vegetation	10 Onazi git	Landform		Position on Landscape (attach sheet)
3.	Distances from: Open Water Body	<u>> 360</u> feet	Drainage Way	<u>>300</u> feet	Possible Wet Area	→2.00 feet
	Property Line	E6 +	Drinking Water	Well	Other	feet
4.	Parent Material: <u>glacial till</u>	·····	Unsuita	ble Materials Prese	nt: 🗌 Yes	No No
	If Yes: Disturbed Soil Fil	Il Material	Impervious Layer(s)	🗌 Weathe	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	Y No	If yes:	Depth Weeping fro	om Pit Depth St	anding Water in Hole
	Estimated Depth to High Groundwater:	<u>40</u> inches	284 elevation	1 m 7		

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

B-604

C. On-Site Review (continued)

Deep Observation Hole Number:

	Soil Horizon	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0'-8"	A	10YR3/2				SL			mossive	Frichle	
8"-26"	B	7.5YR-5/6				SL			columnar	Friable	
26-114	C	542613	40	SYRL (1	75%	SL	15%	30%	granular	loose	
										-	

C.	On-Site Review	(continued)					
	Deep Observation Ho	ble Number:	310-5	<u> </u>	Time	Sunny 8 Weather	<u> 5</u>
1.	Location						
·	Ground Elevation at S	urface of Hole:	283.3	Location (identify on	plan):		•
2.		wood land oodland, agricultural field,			Surface Stones		3 Slope (%)
	<u> </u>	<u>ill frees - no ur</u> tion	<u>Idesgro</u> wt	Landform		Position on Landscape	-
3.	Distances from: (Open Water Body	> 3 00 feet	- Drainage Way	<u>> 300</u> feet	Possible Wet Are	a <u>130 ¹</u> feet
	ĩ	Property Line	<u>50</u> feet	- Drinking Water V	Vell feet	Other	feet
4.	Parent Material:	glocial till		Unsuitab	le Materials Prese	nt: 🗌 Yes	No No
	If Yes: Disturb	ed Soil 🛛 🗌 Fill	Material [] Impervious Layer(s)	🗌 Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observe	d: 🗌 Yes	V No	If yes:	Depth Weeping fro	m Pit Depth S	Standing Water in Hole
	Estimated Depth to High	gh_Groundwater:	<u> </u>	<u> </u>	0		

810-5

C. On-Site Review (continued)

Deep Observation Hole Number:

	Soil Horizon/	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	outer
6-6	A	104R3(2				۲			massure	Friable	
6.22	ß	7.5 YR-5/6				SL			Colomnar	freable_	
22.102	C	5YR63	30	STRULI	75%	SL	Zo	30	70% gran 30% Eine	firm in place	
				-					- 10		

Soil is not compacted

C.	On-Site Review (continued)				
	Deep Observation Hole Number:	W-A	3 16 04 Date	Time	<u>cldy</u> 4-0 Weather
1.	Location				
-	Ground Elevation at Surface of Hole:	283.0	Location (identify on p	olan):	
2.	Land Use <u>(e.g., woodland</u>	vacant lot, etc.)		Surface Stories	<u>3</u> Slope (%)
	Small frees Vegetation		<u>drumlin</u> Landform		Position on Landscape (attach sheet)
3.	Distances from: Open Water Body	feet	 Drainage Way 	$\frac{300+}{\text{feet}}$	Possible Wet Area
	Property Line	<u>Ao</u> feet	- Drinking Water W	/ell	Other feet
4.	Parent Material: glacial till		Unsuitabl	e Materials Prese	nt: 🗌 Yes 🗹 No
	If Yes: Disturbed Soil Fill	Material [] Impervious Layer(s)	Weather	ed/Fractured Rock 🔲 Bedrock
5.	Groundwater Observed: 🗌 Yes	No No	If yes:	Depth Weeping fro	m Pit Depth Standing Water in Hole
	Estimated Depth to High Groundwater:	<mark>77</mark> inches	<u> このの、</u> 7 elevation	·	

C. On-Site Review (continued)

Deep Observation Hole Number:

GW-A

		Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	.Structure	(Moist)	
0-6	A	10 YR3 2				SL			massive	Friable	
6-27	B	7.542516				SL			columnar		
27-108		5YR_6/3	27	5486/1		36	20	20	1/2 gran. 1/2 fines	firm in place	

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

PINE HILL VILLAGE

C. On-Site Review (minimum of two holes required at every proposed primary and reserved disposal area)

Υ.						
	Deep Observation Hole Number:	GW-B	3/16/04 Date Time	8	<u>Cldy 40</u> Weather	
1.	Location					
	Ground Elevation at Surface of Hole:	293.0	Location (identify on pla	in):		
2.	Land Use (e.g., woodland, agricultural f	ield, vacant lot, etc.))	Surface Stones		Slope (%)
	Vegetation		Landform		Position on Landscape	(attach sheet)
3.	Distances from: Open Water Body	feet	 Drainage Way 	feet	Possible Wet Are	ea $\frac{150 \pm}{\text{feet}}$
	Property Line	100 feet	 Drinking Water Wel 	l feet	Other	feet
4.	Parent Material:glacia(till	<u></u>	Unsuitable	Materials Prese	nt: 🗌 Yes	No
	If Yes: Disturbed Soil	Fill Material	Impervious Layer(s)	Weather	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	No	If yes:	Depth Weeping fro	om Pit Depth S	Standing Water in Hole
	Estimated Depth to High Groundwater:	<u>38</u> inches	<u></u> <u>28%.83</u> elevation	·		

GW-B

PINE HILL VILLAGE

C. On-Site Review (continued)

Deep Observation Hole Number:

	Soil Horizon/	Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)			Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-6	A	10 VR3/2				SL			massive	Friable	
6-24	ß	7.54R5/L				SL			Frable	Friable	
24-74	C1	SYR6/2	38	SYRS/B		SL	20	20	granular (70%)	loose	
74-96	Съ	frac roch				frac Rock	~	-	-		

D. Determination of High Groundwater Elevation

1 Method Used:

			Α.		В.		
	Depth observed standing water in observ	ation hole	inches		inches		
	Depth weeping from side of observation h	nole	A. inches A 33 , 40		B. inches B.	30,27	38
	Depth to soil redoximorphic features (mo	ottles)	inches		inches		
	Groundwater adjustment (USGS method	ology)	A. inches		B. inches		
2.	Index Well Number	Reading Date	•	Index Well Le	evel		
	Adjustment Factor	Adjusted Groundwater Lev	rel				

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

TY Yes No No

b. If yes, at what depth was it observed?

Upper boundary:

ZG (ove) inches

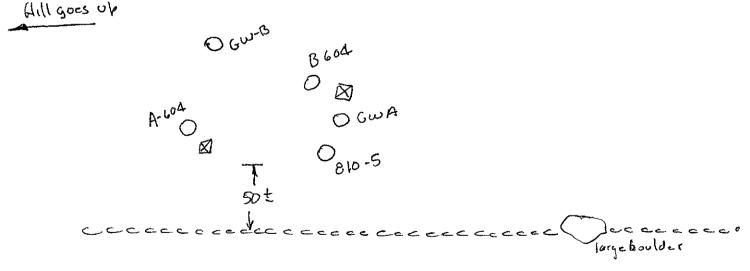
Lower boundary:

102 (avr) inches

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Russel D. Wilson	9/12/10
Signature of Soil Evaluator	Date
Russell D. Wilson SEZ621	7/95
Typed or Printed Name of Soil Evaluator / License #	Date of Soil Evaluator Exam
Fra Grossman	HARUARD / NABOH
Name of Board of Health Witness (KALENE GARBARZ For hole 810-5)	Board of Health / -


Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams

Use this sheet for field diagrams:

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

						AILING BOD	
A.	Facility Information		,		9.0	CO PPERSA	TIONS INC.
	TRANSFORMATIO	NS IN	<u>Ç. </u>		40	WASENO. A	KOSS OLGE 9
	Owner Name					n	<u>esign</u> ;
	PINE HILL VILLE	HCE_				Map/Lot #	<u>- 20,20</u> 00
	Street Address			محر کم م	•	· 01451	
	HARUARO	•		<u>NAA</u> State		Zip Code	<u></u>
	City	2	-	012.0		·	
			<u>) T 3</u>			<u></u>	
Β.	Site Information						
1.	(Check one) 📝 New Construct	ction _	Upgrade	🗌 Re	epair		
2.	Published Soil Survey Available?	Yes	🗌 No	If yes:	9 5.4. Published	<u>してたらのの</u> Publication Scale	<u>しい。</u> Soil Map Unit
	WEDBBEIDGE			high an	andwate	<u> </u>	
	Soil Name			Soil Limitations			
3.	Surficial Geological Report Available?] Yes	🗌 No	If yes: Year	Published	Publication Scale	Map Unit
	Geologic Material			Landform			
4.	Flood Rate Insurance Map						
	Above the 500-year flood boundary? [Yes	🗌 No	Within the 100-	year flood bound	ary? 🗌 Yes	I No
	Within the 500-year flood boundary? [Yes	I No	Within a velocit	y zone?	🗌 Yes	No
5.	Wetland Area: National Wet	land Inventory	/ Map	Map Unit		Name	
	N/A Wetlands Co	nservancy Pro	ogram Map	Map Unit	<u> </u>	Name	
6.	Current Water Resource Conditions (USGS):	<u> おいひ</u> Month/Year	Range: 🗌 At	bove Normal	Normal Bel	ow Normal
7.	Other references reviewed:	•	·····		<u>,,</u>	•	

:

C.	On-Site Review (minimum of	two holes requ	uired at every pro	posed primary ar	nd reserved disp	osal area)
	Deep Observation Hole Number:	810-3	0117/10	Time	<u>Surny Cc</u> Weather	<u>٤</u>
1	Location	320,0				
	Ground Elevation at Surface of Hole:	300,0	Location (identify on	plan):		-
2.	Land Use (e.g., woodland, agricultural			Nonこ Surface Stones		3 Slope (%)
	Vegetation		dromin	. (_	Position on Landscape	(attach sheet)
3.	Distances from: Open Water Body	feet	 Drainage Way 	$\frac{6 e^{\frac{1}{7}} rom}{\text{feet}}$	* Possible Wet Are	ea <u>500 -</u> feet ·
	Property Line		 Drinking Water \ 	Nell <u>Cry-</u> feet	Other	feet
4.	Parent Material:	+ill	Unsuita	ble Materials Preser	nt: 🗌 Yes	No
	If Yes: Disturbed Soil	Fill Material	Impervious Layer(s)	🗌 Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: Yes	No No	If yes:	Depth Weeping fro	m Pit Depth S	Standing Water in Hole
	Estimated Depth to High Groundwater:	<u>30</u> ínches	SIT: elevation	5		

8:10-3

C. On-Site Review (continued)

Deep Observation Hole Number:

		Soil Matrix: Color- Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	.Structure	(Moist)	
ن - ن	· A	1042312				56			messive	80 2	
6-22	B	7.547-5/2				54			prism	Snihle	
22-96	C	SYR UB		54e-512	25%	SC	10%	15%	granular Koine	firm in pisce	
					3.				Fines)	•	
							•				
					-						

not compacted

С	. On-Site Review (minimum of	two holes req	uired at every pro	posed primary a	nd reserved dis	oosal area)
	Deep Observation Hole Number:	F-04	3/16/04			40 5
			Date	Time	Weather	
1.	Location					
	Ground Elevation at Surface of Hole:	315,0	Location (identify on	plan):		
2.	Land Use			none		3
£.	(e.g., woodland, agricultural fi hrd with free		drwmhin	Surface Stones		Slope (%)
	Vegetation	5 7 0	Landform		Position on Landscape	(attach sheet)
3.	Distances from: Open Water Body	<u>300 t</u> feet	Drainage Way	feet race		Tom.
	Property Line		Prinking Water W	Vell 2301	Other	feet
4.	Parent Material: <u>Glacial Frit</u>	<u>ල</u> ,	-	ole Materials Preser	nt: 🗌 Yes	1 No
	If Yes: Disturbed Soil I	Fill Material] Impervious Layer(s)	🗋 Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	No	If yes:	Depth Weeping from	n Pit Denth 9	Standing Water in Hole
	Estimated Depth to High Groundwater:	<u> </u>	elevation	<u>}</u>	Dopure	Actions water in hole

C. On-Site Review (continued)

Deep Observation Hole Number:

F-04

Depth (in.)	Soil Horizon/ Layer	Soil Matrix: Color-	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
		Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	.Structure	(Moist)	Other
<u> </u>	A	1048312				SL			messive	friche	
6-28	B	7,5425/6				SC			iprismatic	frieble	
22-24	C	SVR-613	32	IOYRS12	25%	>C	io	10	garatet	firm in	
									Some Sincs		
										•	

not compacted

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C	. On-Site Review (minimum of	two holes req	uired at every prop	osed primary a	nd reserved disposal area)
	Deep Observation Hole Number:	3-04	<u>3/16/04</u> Date T	īme	<u>þddy 40[°]</u> Weather
1.	Location				
·	Ground Elevation at Surface of Hole:	314.5	Location (identify on	olan):	·
2.	Land Use (e.g., woodland, agricultural fi	eld, vacant lot, etc.)		Nonc.	<u>3</u>
	krawd tree Vegetation	·>	Landform		Position on Landscape (attach sheet)
3.	Distances from: Open Water Body	<u>300</u> feet	Drainage Way	i <u>co ±</u> feet prop	Possible Wet Area
	Property Line	<u>L5 s</u> feet	- Drinking Water W	ell CIOÍ	Other feet
4.	Parent Material:	<u>u</u>	Unsuitabl	e Materials Preser	nt: 🗌 Yes 🗹 No
	If Yes: Disturbed Soil	Fill Material	Impervious Layer(s)	U Weather	ed/Fractured Rock
5.	Groundwater Observed: 🗍 Yes	No	If yes:	Depth Weeping from	n Pit Depth Standing Water in Hole
	Estimated Depth to High Groundwater:	inches	elevation		Soper Standing Water III Hole

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (continued)

Commonwealth of Massachusetts

Deep Observation Hole Number:

5-04

Depth (in.)	Soil Horizon/	Horizon/ Soil Matrix: Color- Layer Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Debru (ur.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	Other
0 ¹¹ ب	A	1042312				SL			massive	Frieble	
6-26	ß	7.542.57c				SL			prismatic	frieble	
26°- 24"	C	54x 63	32	542575	25%	SL	15	15	granular	Firm in picee	
									fines	V	

Additional Notes:

Not compacte

C.	On-Site Review (continued)				19 6 ⁹	
	Deep Observation Hole Number:	200-3	2/1/00 Date T	ime	<u>ిరో గ్రిం</u> Weather	Υ <u>΄</u>
1.	Location					
	Ground Elevation at Surface of Hole:	321,0	Location (identify on pl	an):		
2.	Land Use (e.g., woodland, agricultura	l field, vacant lot, etc.)		AONC_ Surface Stones		3 Slope (%)
	Vegetation	9. (x	Landform	1301£	Position on Landscap	S. Sugar in
3.	Distances from: Open Water Boo	ly <u>500-5</u> feet	Drainage Way	feet	Possible Wet Ar	feet
	Property Line	<u>50' t</u> feet	Drinking Water We	ell feet	Other	feet
4.	Parent Material:	<u>N</u>	Unsuitable	e Materials Prese	nt: 🗌 Yes	
	If Yes: Disturbed Soil	Fill Material	Impervious Layer(s)	Weather	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	No	If yes:	Depth Weeping fr	om Pit Depth	Standing Water in Hole
	Estimated Depth to High Groundwate	inches	elevation			
		See eva	luction by Se	th hajoie	- included	

FORM 11 - SOIL EVALUATOR FORM

Page 3 of 7

Location Address or Lot No. Lots 1 Stow Rd., Ha	11vard DTH 200-3
<u>On-sit</u>	e Review
Deep Hole Number: <u>TH 200-3</u> Date: <u>2/7/00</u> Location (identify on site plan) <u>See attached sketch plan</u>	Time: 1:30 PM Weather: 30° P. Cloudy
Land Use Woodland Slope (%) 5-10% Vegetation Oaks and White Pines, Low Forest Vegetation	Surface Stones Stones ±5%
Landform Drumlin	
Position on landscape (sketch on back) See sketch Distances from:	
Open Water Body <u>>100'</u> feet Possible Wet Area <u>>100'</u> feet Drinking Water Well <u>>100'</u> feet	Drainage way >100' feet Property Line >100' feet Other

Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Soil Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders,
0 - 4"	Ар	Sandy Loam	10YR/4/4	few to none	Consistency, % Gravel) blocky, friable, smooth border, <5 (% cobbles, stones, boulders)
4-29"	Bw	Sandy Loam	2.5¥/6/4	few to none	massive, friable, smooth border, <5% stones
29-112"	С	Sandy Loam	10YR/5/2	5% @ 32" 10YR/7/6 & 10YR/3/4	massive, friable, 5/5/10
* MINIMU	JM OF 2 HOLES RE				

 Parent Material (geologic):
 glacial till
 Depth to Bedrock: >112"

 Depth to Groundwater:
 >112"
 Standing Water in Hole:
 none

 Estimated Seasonal High Groundwater:
 32"

 DEP APPROVED FORM - 12/07/95

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1. Method Used:

			А.		<u>р.</u>			
	Depth observed standing water in observed	ation hole	inches		inches			
			А.		В.		•	
	Depth weeping from side of observation	hole	inches		inches			
			A. 32.	30	В.	32	32	
	Depth to soil redoximorphic features (me	ottles)	inches		inches	-		
			Α.		В.			
	Groundwater adjustment (USGS method	ology)	inches		inches			
2.		Reading Date	· · · · · · · · · · · · · · · · · · ·	Index Well L	evel		<u> </u>	
	Index Well Number	Reading Date						
	Adjustment Factor	Adjusted Groundwater	Level	-				

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - M Yes No
 - b. If yes, at what depth was it observed?

Upper boundary:

20 inches

Lower boundary:

204inches

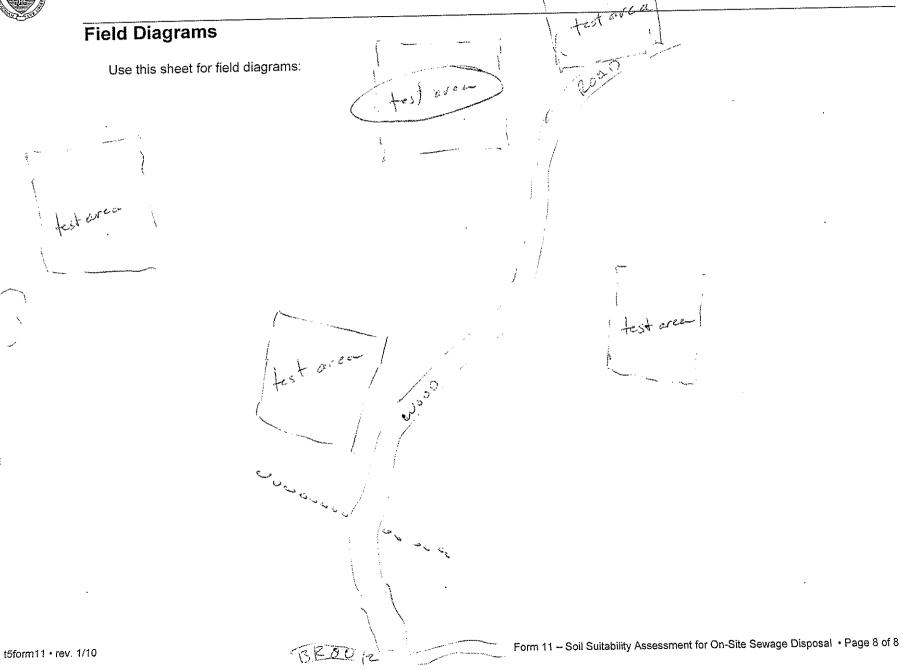
F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

well & Within Signature of Soil Evaluator

Typed or Printed Name of Soil Evaluator / License # TEA GROSSMAN, RALENE GORBARZ

Name of Board of Health Witness


Date

Date of Soil Evaluator Exam

<u> いんらつら</u> Board of Health

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with Percolation Test Form 12.

					MALING A	
A.	Facility Information					MATIONS INC
	TRANSFORMATIONS, INC.				TOURSEN	<u>0 MA 0</u> 1469
	Owner Name					s and a
	PINE HILL VILLAGE				<u>Map/Lot #</u>	Yers 83/801
	HARNAND		MA		0140	2
	City		State		Zip Code	
				T 4		
B	Site Information	<u> </u>				
_1.	(Check one) Sew Construction	Upgrade		🗌 Repair		
2.	Published Soil Survey Available?	No	If yes:	1984	1:20000	PeB
2.	Published Soll Survey Available? IV res PACTON		-	Year Published	Publication Scale	Soil Map Unit
	Soil Name		Soil Limita	tions	ility	
~		No				
3.	Surficial Geological Report Available? 🗌 Yes	NO	If yes:	Year Published	Publication Scale	Map Unit
	Geologic Material		Landform			
4.	Flood Rate Insurance Map					
	Above the 500-year flood boundary? 🗹 Yes	🗌 No	Within th	ne 100-year flood boun	idary? 🗌 Yes	Mo No
	Within the 500-year flood boundary?	₫ No	Within a	velocity zone?	🗋 Yes	r No
5.	Wetland Area: National Wetland Invento	ry Map	Map Unit		blanca	
			мар опп		Name	
	Wetlands Conservancy P	rogram Map	Map Unit		Name	
6.	Current Water Resource Conditions (USGS):	Month/Year	Range:	Above Normal	🗌 Normal 🗹 Bel	ow Normal
7	Other references reviewed:					
1.						

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)					
	Deep Observation Hole Number:	210-4	Date	Time	<u>Sony 22</u> Weather	*
1.	Location					
	Ground Elevation at Surface of Hole: 3	17,30	Location (identify on	plan):		
~	would and			feier		<u>"3</u> Slope (%)
2.	Land Use (e.g., woodland, agricultural field, v	acant lot, etc.)		Surface Stones		Slope (%)
	hydrich trees		Landform		Position on Landscape	(attach sheet)
	Vegetation	<u>300'-</u>	2	300't		RAN A
3.	Distances from: Open Water Body	feet	Drainage Way	· feet	Possible Wet Are	ea feet
	Property Line	15 t	Drinking Water V	Well (<u>20</u>	Other	feet
4.	Parent Material: glacici Hill		Unsuital	ble Materials Pres	ent: 🗌 Yes	No
	If Yes: Disturbed Soil Fill I	Vlaterial [Impervious Layer(s)	🗌 Weath	ered/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	No No	If yes:	Depth Weeping f	rom Pit Depth	Standing Water in Hole
	Estimated Depth to High Groundwater:	<u>30</u> inches	elevation	<u> </u>		

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (continued)

Deep Observation Hole Number:

810-4

Soil is not compacted

	Soil Horizon/	Soil Matrix: Color-	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-6	A	1042312				SL			massive		
6-20	ß	7.5YRS/L				SE			prismot.	frable	
20-104		5472613	30	5Y.2.5/8	>5%	Si	10	15	gran. wy		

Additional Notes:

Commonwealth of Massachusetts

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (minimum of two	o holes requ	uired at every prop	bosed primary and	reserved dis	posal area)
	Deep Observation Hole Number:	6-04	316634 Date	Time	Weather	<u>le</u>
1.	Location					
	Ground Elevation at Surface of Hole:	3176	Location (identify on	plan):		
2.	Land Use (e.g., woodland, agricultural field,	vacant lot, etc.)	4	గంగిండి. Surface Stones		<u>3</u> Siope (%)
3.	<u>in rd with free</u> Vegetation Distances from: Open Water Body	- <u>300-</u> feet 70-	L Diamage Way	(2c) + (coad)	psition on Landscap Possible Wet A	Scolt
4.	Property Line Parent Material:	feet	Dimking vvaler v	vell <u>feet</u>	Other	feet No
	If Yes: Disturbed Soil Fill	Material [] Impervious Layer(s)	U Weathered	/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗹 Yes	🗌 No	If yes:	문서 Depth Weeping from I	Pit Depth	どム Standing Water in Hole
	Estimated Depth to High Groundwater:	inches	elevation	÷		

C. On-Site Review (continued)

Deep Observation Hole Number:

G-04

Donth (in)	Soil Horizon/	Horizon/ ayer Moist (Munsell) Bepth Color Percent Coarse Fragments (mottles) Depth Color Percent Coarse Fragments (USDA) Gravel Cobbles & Stones		Soil	Soil Consistence	Other					
Depth (in.)	Layer			Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0"- 6"	A	10712-312				SL			mcssk-2		
6"-18"	ß	7.542516	32	Stasly	>5	کنہ			prismat.	Freible	
28-126	C	5-fa 613				54	10	15	gran z.	him in hice	
······											

Additional Notes:

not compacted

Commonwealth of Massachusetts City/Town of

. - .

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C	. On-Site Review (minimum of tw	o holes req	uired at every pro	posed primary a	nd reserved dis	posal area)
	Deep Observation Hale Number	4-04	<u>316104</u> Date		Weather	.0
	Deep Observation Hole Number: -		Date	Time	Weather	
1.	Location					
	Ground Elevation at Surface of Hole:	515.6	Location (identify or	plan):		
2	Land Use (100 alland			none		3
۷.	(e.g., woodiand, agricultural neid		•	Surface Stones		Slope (%)
	Nrdwd tr Vegetation		Landform		Position on Landscap	e (attach sheet)
3.	Distances from: Open Water Body	<u>300[†]</u> feet		(S <u>O (road</u> feet		Cord.
	Property Line	<u>-55</u> feet	Drinking Water \	Vell <u>250'±</u>	Other	feet
4.	Parent Material: <u>glacked fr</u>	11	Unsuita	ble Materials Preser	nt: 🗌 Yes	No
	If Yes: Disturbed Soil Fil	Material [] Impervious Layer(s)	U Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: 💟 Yes	🗌 No	If yes:	ング Depth Weeping from		인다. Standing Water in Hole
	Estimated Depth to High Groundwater:	<u> </u>	elevation	<u>.</u>		

.

C. On-Site Review (continued)

Deep Observation Hole Number:

<u>H-04</u>

Depth (in.)	Soil Horizon/	il Horizon/ Soil Matrix: Color- Layer Moist (Munsell)	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil		
Deput (m.)	Layer		Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	Consistence (Moist)	Other
0-6	A	10483/2				SL			Messive	Frable	
6-24	6	7592516				SL			prismat	Friende	
24-77	\mathcal{C}_1	5992 G/3	30	549513	>5%	1.5	15	15	gran,	loose	•••••••••••••••••••••••••••••••••••••••
77-88	42	542514				56	10	:5	gran Winnis	Simmace	
									2		
]										

Additional Notes:

Not compacted

t5form11 • rev. 1/10

Commonwealth of Massachusetts City/Town of

• •

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

					TAJE HIL	LVILLAGE
C.	. On-Site Review (minimum of t	wo holes req	uired at every prop	oosed primary a	nd reserved dis	sposal area)
	Deep Observation Hole Number:	<u>t-04</u>	<u>316104</u> Date	Time	pcldy 4-c Weather	>
1.	Location					
	Ground Elevation at Surface of Hole:	315,2	Location (identify on	plan):		
2	Land Use acadland			nene		3
	(e.g., woodland, agricultural fie hrolwid fr		drumin	Surface Stones		Slope (%)
	Vegetation		Landform	······································	Position on Landscap	e (attach sheet)
3.	Distances from: Open Water Body	<u> చెంలా</u> feet ,	 Drainage Way 	- Z <u>ひひ </u>	Possible Wet A	rea 300t
	Property Line	<u>955</u> feet	Drinking Water W	feet	Other	feet
4.	Parent Material: <u>glocial</u>	-1((Unsuitab	le Materials Preser	nt: 🗌 Yes	Mo No
	If Yes: Disturbed Soil F	ill Material] Impervious Layer(s)	Weather	ed/Fractured Rock	Bedrock
5.	Groundwater Observed: Ves	🗌 No	If yes:	Depth Weeping from	n Pit Depth	으스 Standing Water in Hole
	Estimated Depth to High Groundwater:	<u> </u>	<u> </u>			

.

.

Commonwealth of Massachusetts City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

1-04

C. On-Site Review (continued)

PINE HILL VILLACE

Deep Observation Hole Number:

Depth (in.)		Soil Matrix: Color-	Red	oximorphic Fe (mottles)	eatures	Soil Texture		e Fragments by Volume	Soil	Soil Consistence (Moist)	
	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure		Other
0-4	A	lovrsiz				SC			massive	Frichie.	·
6-24	8	754256				SL			prisinat.	Strable	
24-77	C _i	542613	30	5125 8	>15	LS .	15	61	losse		
77 124	<u>Cn</u>	592514				SU	10	15	FIRM 11-	STRA.	<u> </u>
									1		

Additional Notes:

not comparted

C. On-Site Review (continued)

Deep Observation Hole Number:

200-4 Duy 2/7/00 Soth Lajoie soil evaluator

Depth (in.)	Soil Horizon/	Soil Matrix: Color-	or- (mottles) Soil Texture % by Vol	e Fragments by Volume	Soil	Soil Consistence	Other				
Deput (m.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	Other
0 - G	Aip	10423/2				SU			massive	friche	·····
6-30	Bw	7,544-5/8				56			prismah	Frichle	
30 92	C	54R512	32	SYRSIE	>5%	Su	(5	10	firm in Inece	SMM WI Ands	
						 			1	1	

Additional Notes:

D. Determination of High Groundwater Elevation

1.	Method Used:			(r	_	30 1
	Depth observed standing water in observa	ation hole	A. inches	30,	B. inches	.)
	Depth weeping from side of observation h	ole	A. inches		B. inches	
	Depth to soil redoximorphic features (mot	tles)	A. inches	<i>V</i>	B. inches	
	Groundwater adjustment (USGS methodo	logy)	A. inches		B. inches	
2.	Index Well Number-	Reading Date		Index Well L	evel	
	Adjustment Factor	Adjusted Groundwater Lev	/el			

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

24

- Yes No
- b. If yes, at what depth was it observed?

Upper boundary:

Lower boundary:

<u>92</u> Inches

Commonwealth of Massachusetts City/Town of

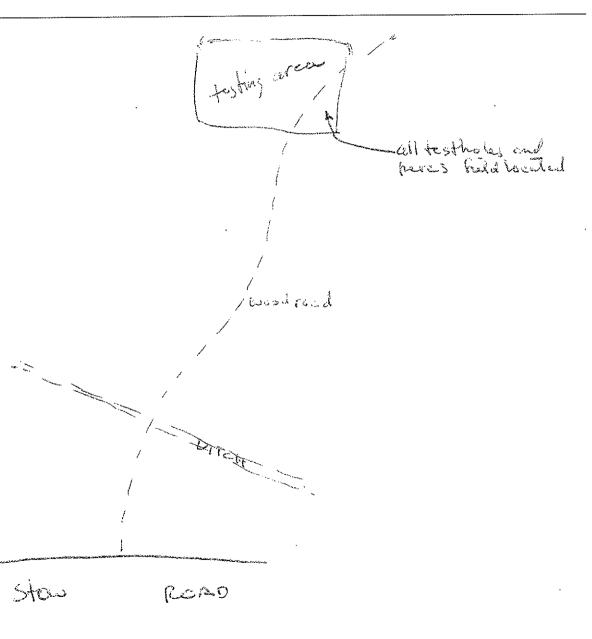
Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (minimum o	t two holes red		oposed prin	nary and reserved	l disposal area)
	Deep Observation Hole Number:	1.00-4	2/7/00 Date	Time	Weather	40
1.	Location					
	Ground Elevation at Surface of Hole:	314.0	Location (identify o	n plan):		·
2.	Land Use Garage Land Use				owe	4
	e.g., woodland, agricultural		drumlin	Surface Sto	nes	Slope (%)
	Vegetation	· · · · · · · · · · · · · · · · · · ·	Landform		Position on Lan	dscape (attach sheet)
3.	Distances from: Open Water Bod	y <u>300</u> feet	Drainage Way	fe	Possible W	
	Property Line	feet	Drinking Water	Well 21	<u>⊖∔</u> Other	feet
4.	Parent Material:	-U.	Unsuita	able Materials	Present:	res Dr No
	If Yes: Disturbed Soil	Fill Material	Impervious Layer(s) 🗆 V	Veathered/Fractured Re	ock 🗌 Bedrock
5 <i>.</i>	Groundwater Observed: 🗌 Yes	⊡ No	lf yes:	Depth We	eping from Pit	Depth Standing Water in Hole
	Estimated Depth to High Groundwater:	inches	<u>SII</u> elevation	<u>`````````````````````````````````````</u>		

.

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.


Unill & Wilson Date Signature of Soil Evaluator 7/95 ssell D. Wilson Date of Soil Evaluator Exam Typed or Printed Name of Soil Evaluator / License # NABOLA IM Grossman Kalene Gorbur Board of Health Name of Board of Health Witness

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams

Use this sheet for field diagrams:

					MAILING AL	
A.	Facility Information				TRANSFORM 8 COPPERS	
	TRANSFORMATIONS THE				TOWNSEND	
	Owner Name					ale actor
	PINE HILL VILLAGE				<u>Map/Lot #</u>	<u>els 8548</u> 6
	LI ARNARD		MA		<u> </u>	
	City		State		Zip Code	
			OT	5		
B.	Site Information					
1.	(Check one) Vew Construction	Upgrade		Repair		_
~	Published Soil Survey Available? Ves	No	If yes:	1984	1:20000	P.B
2.			•	Year Published	Publication Scale	Soil Map Unit
	Soil Name		<u>ع</u> . بع. Soil Limitation	permeabil	ПУ	
3.	Surficial Geological Report Available?	No	If yes:	Year Published	Publication Scale	Map Unit
	glacial fill		Drum			map offic
	Geologic Material		Landform			
4.	Flood Rate Insurance Map					
	Above the 500-year flood boundary? Yes] No	Within the	100-year flood bound	dary? 🗌 Yes	No No
	Within the 500-year flood boundary? Yes	No	Within a ve	locity zone?	🗌 Yes	No
5.	Wetland Area: National Wetland Inventory Ma	ар	Map Unit		Name	
	N/A Wetlands Conservancy Progra	am Map	Map Unit		Name	
6.	Current Water Resource Conditions (USGS):	onth/Year	Range:] Above Normal [Y Normal 🗌 Bel	ow Normal
7	Other references reviewed:					
••	-				•	

C.	. On-Site Review (minimum of two holes requ	uired at every pro	posed primary a	nd reserved disp	oosal area)
	Deep Observation Hole Number: <u>A-(004</u>	10 20 0 4 Date	Time	pcdγ 4 Weather	
1.	Location				
	Ground Elevation at Surface of Hole: 303.0	Location (identify o	n plan):		
2.	Land Use <u>(e.g., woodland, agricultural field, vacant lot, etc.)</u> <u>small frees</u> Some undergr	owth drum	<u>None</u> Surface Stones		3 Slope (%)
	Vegetation	Landform		Position on Landscape	e (attach sheet)
3.		- Drainage Way	feet	Possible Wet Ar	ea <u>300</u> ‡
	Property Line (00 ⁻	t Drinking Water	Well <u>200</u> -	† Other	feet
4.	Parent Material: <u>glacial fill</u>	Unsuita	able Materials Prese	nt: 🗌 Yes	Mo No
	If Yes: 🔲 Disturbed Soil 🔄 Fill Material [Impervious Layer(s	-	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗹 Yes 🗌 No	If yes:	95 Depth Weeping fro		99 " Standing Water in Hole
	Estimated Depth to High Groundwater: $\frac{25}{\text{inches}}$	elevation			

C. On-Site Review (continued)

Deep Observation Hole Number:

A-1004

Depth (in.)	Soil Horizon/ Layer	Soil Matrix: Color-	Redoximorphic Features (mottles)		Soil Texture (USDA)	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
		Moist (Munseli)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-6	A	10412312				SL			massive	Strable	
6-24	ß	7.54R5/L				SL			columnar		
24-120	C	5/r4/4	25.	STRS18	75%	SC	10	5	60% gran 40% fine	firm in s place	
			··- ···								

Additional Notes:

Clayer: not compacted

,

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)			. >
	Deep Observation Hole Number:	Date 10/20/04	Time	y cídr 40° Weather
1.	Location			
•	Ground Elevation at Surface of Hole:	Location (identify	on plan):	-
_	woodland		none	<u> </u>
2.	(e.g., woodand, agricultura nota,	vacant lot, etc.)	Surface Stones	Slope (%)
	small trees	drumlin		Durilling on Landagene (attach shoot)
	Vegetation	Landform		Position on Landscape (attach sheet) 200 +
3.	Distances from: Open Water Body	feet Drainage W	ay feet	Possible Wet Area
	Property Line	<u>(OO エ</u> Drinking Wa	ter Well <u>200+</u>	Other feet
4.	Parent Material: glacial fill	Uns	uitable Materials Prese	ent: 🗌 Yes 🗹 No
	If Yes: 🔲 Disturbed Soil 🗌 Fill	Material 🔲 Impervious Laye	er(s) 🗌 Weathe	red/Fractured Rock
5.	Groundwater Observed: 🗌 Yes	No If ye	S: Depth Weeping fr	om Pit Depth Standing Water in Hole
	Estimated Depth to High Groundwater:	inches 52 2°	16 <u>27</u> ation	

C. On-Site Review (continued)

Deep Observation Hole Number:

B-1004

Depth (in.)	Soil Horizon/ Layer	A Color-	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
		Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-6	A	104R3 2				SL			mossive		
6-26	ß	7.5425/6				SL			Columnau		
26 114	с	54R6/3	52.	54125/2	75%	3L	20	30	granular Rolofines		
									Entrop		

Additional Notes:

soil in c layer - not compacted

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C.	On-Site Review (continued)		0/17/10		SUNNY E	0 3
	Deep Observation Hole Number:	0-1		Time	Weather	
1.	Location					
	Ground Elevation at Surface of Hole:	<u>05.0</u>	Location (identify on pl	lan):		2
	woodland			None		3
2.	Land Use (e.g., woodland, agricultural field, va	acant lot, etc.)		Surface Stones		Slope (%)
	Small trees		drumlin			
	Vegetation		Landform	<u>~</u>	Position on Landscape	
3.	Distances from: Open Water Body	feet	- Drainage Way	<u>200 +</u> feet	Possible Wet Are	a Zoot
	Property Line	<u>60 ±</u> feet	 Drinking Water Weight 	ell $\frac{200 +}{\text{feet}}$	Other	feet
4.	Parent Material: <u>glacual</u> fill	· · · · · · · · · · · · · · · · · · ·	Unsuitable	e Materials Prese	nt: 🗌 Yes	MO No
	If Yes: Disturbed Soil Fill N	laterial [Impervious Layer(s)	U Weathe	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🗌 Yes	No No	If yes:	Depth Weeping fro	om Pit Depth S	Standing Water in Hole
	Estimated Depth to High Groundwater:	38 inches	<u> </u>	3		

C. On-Site Review (continued)

810-1

Soil Horizon/ Layer	/ Soil Matrix: Color- Moist (Munsell)	Redoxi	imorphic Fe (mottles)	atures	Soil Texture			Soil	Soil Consistence	Other
		Depth	Color	Percent	USDA)	Gravel	Cobbles & Stones		(Moist)	
Δ	IOYR312				SL			massive	Frable	
					34			Columnar	Arcuble	
<u>с</u>		38.	512518	75%	SL	30	10	granular (20% fine	firmin place	
	-		×				-		1	
										,
nal Notes:						6				
	<u>د</u>	layer	: not	compo	acted					
	Layer A B C	A $(0YR3/2)$ B $7.5YR5/1$ C $5YR6/3$	Soil Matrix: Color- Moist (Munsell) Depth A $(0 Y R - 3/2)$ B $7.5 Y R - 5/L$ C $5 Y R - 5/L$ Image: Soil Matrix: Color- Moist (Munsell) Image: Soil Matrix: Color- Moist (Munsell) Depth Image: Soil Matrix: Color- Moist (Munsell) Image: Soil Matrix: Color- Moist (Munsell) Image: Soil Matrix: Color- Image: Soil Matrix: Color- Image: Soil Motes:	Soil Horizon/ LayerSoil Matrix: Color- Moist (Munsell)(mottles)A $(0 \lor R \cdot 3 \mid Z)$ DepthColorA $(0 \lor R \cdot 3 \mid Z)$ \Box \Box B $7.5 \lor R \cdot 5 \mid L$ \Box \Box C $5 \lor R \cdot 6 \mid 3$ $3 \cdot 8$ $5 \lor R \cdot 5 \mid E$ \Box </td <td>Soil Horizon/ Soil Matrix: Color- Layer Moist (Munsell) Depth Color Percent A $(0YR3/2$ B $7.5YR5/L$ C $5YR6/3$ 38 $5YR5/B$ $>5%$ a local Notes:</br></td> <td>Soil Matrix: Color- Moist (Munsell)Soil Texture (USDA)A$(0 \lor R \cdot 3 \mid Z)$DepthColorPercentSoil Texture (USDA)B$7.5 \lor R \cdot 5 \mid L$SSLC$5 \lor R \cdot 6 \mid 3$38$5 \lor R \cdot 5 \mid E$$75\%$S LImage: Soil Matrix: Color (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)A$(0 \lor R \cdot 3 \mid Z)$DepthColor PercentPercentSoil Texture (USDA)B$7.5 \lor R \cdot 5 \mid L$SSSC$5 \lor R \cdot 6 \mid 3$38$5 \lor R \cdot 5 \mid E$$75\%$S LImage: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)B$7.5 \lor R \cdot 5 \mid L$SSImage: Soil Texture (USDA)Soil Texture (USDA)C$5 \lor R \cdot 5 \mid L$SSImage: Soil Texture (USDA)Soil Texture (USDA)C$5 \lor R \cdot 5 \mid L$SImage: Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)Image: Soil Textur</br></br></br></br></br></br></br></br></td> <td>Redokting for rotationSoil Matrix: Color- Moist (Munsell)DepthColorPercentSoil Texture (USDA)% by 'A$(0 \lor R \cdot 3 \mid 2$DepthColorPercentSoil Texture (USDA)% by 'B$7.5 \lor R \cdot 5 \mid L$SCSCSCC$5 \lor R \cdot 6 \mid 3$38$5 \checkmark R \cdot 5 \mid B$$30$</td> <td>Soil Horizon/ LayerSoil Matrix: Color- Moist (Munsell)(mottles)Soil Texture (USDA)% by volumeA$(0YPZ/Z)$DepthColorPercentSoil Texture (USDA)GravelCobbles & StonesB$7.5YR 5 L$$5L$$5L$$5L$$CC5YR 6 X$$38$$5YR5 B$$75\%$$SL$$30$$10$Image: Soil Texture (USDA)Image: Soil Texture (USDA)<math>Soil Texture(USDA)$Volume$B$7.5YR 5 L$$S$$5L$$5L$$CC5YR 6 X$$38$$5YR5 B$$75\%$$SL$$30$$10$Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)B$7.5YR 5 L$Image: Soil Texture (USDA)Image: Soil Texture (USD</math></td> <td>Soil Horizon/ Layer Soil Matrix: Color- Moist (Munsell) Redokting protecting (mottles) Soil Texture (USDA) % by Volume Soil Structure A $(0 \forall P.3/2)$ Depth Color Percent Soil Gravel Cobbles & Stones Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Massive C $5 \forall R.5/L$ Structure Soil Soil Soil Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Soil C $5 \forall R.5/L$ Structure Soil Soil Soil Soil Image: Soil (Structure Soil Soil Soil Soil Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Soil C $5 \forall R.5/R$ Structure Soil Soil Soil Soil Soil Image: Soil Structure Soil Soil Soil Soil Soil Soil Image: Soil Soil Soil Soil Soil Soil Soil Soil <</td> <td>Soil Horizon LayerSoil Matrix: Color (Moist (Munsell))Redokting intervent (mottles)Soil Texture (USDA)% by Volume GravelSoil StructureSoil Consistence (Moist)A$(0YR3/2)$DepthColorPercentSoilStructureSoil GravelSoil StonesStructureSoil Complex StructureB$7.5YR5/L$SSCSCColumnarArableC$5YR5/L$SSC3010GravelFires in ColumnarC$5YR6/2$SSSSC3010GravelC$5YR6/2$SSS/LSCSCSCScC$SYR5/L$SSSSCSCSCC$SYR5/L$SSSSSCSCSCC$SYR5/L$SSSSSCSCSCSoilSSSSSSSCSCSCCSYR5/LSSSSSCSCSCSoilSSSSSSSCSCSCSoilSSSSSSSSSSSSSoilSSSSSSSSSSSSSoilSSS</td>	Soil Horizon/ Soil Matrix: Color- Layer Moist (Munsell) Depth Color Percent A $(0YR3/2$ B $7.5YR5/L$ C $5YR6/3$ 38 $5YR5/B$ $>5%$ 	Soil Matrix: Color- Moist (Munsell)Soil Texture (USDA)A $(0 \lor R \cdot 3 \mid Z)$ DepthColorPercentSoil Texture (USDA)B $7.5 \lor R \cdot 5 \mid L$ SSLC $5 \lor R \cdot 6 \mid 3$ 38 $5 \lor R \cdot 5 \mid E$ 75% S LImage: Soil Matrix: Color (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)A $(0 \lor R \cdot 3 \mid Z)$ DepthColor PercentPercentSoil Texture (USDA)B $7.5 \lor R \cdot 5 \mid L$ SSSC $5 \lor R \cdot 6 \mid 3$ 38 $5 \lor R \cdot 5 \mid E$ 75% S LImage: Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)B $7.5 \lor R \cdot 5 \mid L$ SSImage: Soil Texture (USDA)Soil Texture (USDA)C $5 \lor R \cdot 5 \mid L$ SSImage: Soil Texture (USDA)Soil Texture (USDA)C $5 \lor R \cdot 5 \mid L$ SImage: Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture (USDA)Soil Texture (USDA)Image: Soil Texture (USDA)Image: Soil Texture (USDA)Soil Texture 	Redokting for rotationSoil Matrix: Color- Moist (Munsell)DepthColorPercentSoil Texture (USDA)% by 'A $(0 \lor R \cdot 3 \mid 2$ DepthColorPercentSoil Texture (USDA)% by 'B $7.5 \lor R \cdot 5 \mid L$ SCSCSCC $5 \lor R \cdot 6 \mid 3$ 38 $5 \checkmark R \cdot 5 \mid B$ 30	Soil Horizon/ LayerSoil Matrix: Color- Moist (Munsell)(mottles)Soil Texture (USDA)% by volumeA $(0YPZ/Z)$ DepthColorPercentSoil Texture (USDA)GravelCobbles & StonesB $7.5YR 5 L$ $5L$ $5L$ $5L$ C C $5YR 6 X$ 38 $5YR5 B$ 75% SL 30 10 Image: Soil Texture (USDA)Image: Soil Texture (USDA) $Soil Texture(USDA)VolumeB7.5YR 5 LS5L5LCC5YR 6 X385YR5 B75\%SL3010Image: Soil Texture(USDA)Image: Soil Texture(USDA)Image: Soil Texture(USDA)Image: Soil Texture(USDA)Image: Soil Texture(USDA)Image: Soil Texture(USDA)B7.5YR 5 LImage: Soil Texture(USDA)Image: Soil Texture(USD$	Soil Horizon/ Layer Soil Matrix: Color- Moist (Munsell) Redokting protecting (mottles) Soil Texture (USDA) % by Volume Soil Structure A $(0 \forall P.3/2)$ Depth Color Percent Soil Gravel Cobbles & Stones Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Massive C $5 \forall R.5/L$ Structure Soil Soil Soil Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Soil C $5 \forall R.5/L$ Structure Soil Soil Soil Soil Image: Soil (Structure Soil Soil Soil Soil Soil B $7.5 \forall R.5/L$ Structure Soil Soil Soil Soil C $5 \forall R.5/R$ Structure Soil Soil Soil Soil Soil Image: Soil Structure Soil Soil Soil Soil Soil Soil Image: Soil Soil Soil Soil Soil Soil Soil Soil <	Soil Horizon LayerSoil Matrix: Color (Moist (Munsell))Redokting intervent (mottles)Soil Texture (USDA)% by Volume GravelSoil StructureSoil Consistence (Moist)A $(0YR3/2)$ DepthColorPercentSoilStructureSoil GravelSoil StonesStructureSoil Complex StructureB $7.5YR5/L$ SSCSCColumnarArableC $5YR5/L$ SSC3010GravelFires in ColumnarC $5YR6/2$ SSSSC3010GravelC $5YR6/2$ SSS/LSCSCSCScC $SYR5/L$ SSSSCSCSCC $SYR5/L$ SSSSSCSCSCC $SYR5/L$ SSSSSCSCSCSoilSSSSSSSCSCSCCSYR5/LSSSSSCSCSCSoilSSSSSSSCSCSCSoilSSSSSSSSSSSSSoilSSSSSSSSSSSSSoilSSS

	•						
C	On-Site Review (continued)						
ψ.			8/17/10			Sunny 80	3
	Deep Observation Hole Number:	310-2	Date	Time		Weather	
1.	Location						
	Ground Elevation at Surface of Hole:	303.5	Location (identify on	plan):			
	woodland				none		
2.	Land Use (e.g., woodland, agricultural field,	vacant lot, etc.)		Surfac	e Stones		Slope (%)
	small trees		dromlin				
	Vegetation		Landform			Position on Landscape	
3.	Distances from: Open Water Body	feet	– Draiņage Way		feet	Possible Wet Are	$\frac{700 + 1}{\text{feet}}$
	Property Line	GO feet	± − Drinking Water V	Vell	<u>700+</u> feet	Other	feet
4.	Parent Material: <u>glacial</u> till	"	Unsuitat	ole Mate	rials Prese	nt: 🗌 Yes	M No
	If Yes: Disturbed Soil Eil	Material [] Impervious Layer(s)		Weather	red/Fractured Rock	Bedrock
5.	Groundwater Observed: 🔲 Yes	Mo_	If yes:	Dep	th Weeping fro	om Pit Depth	Standing Water in Hole
	Estimated Depth to High Groundwater:	38 inches	elevation	2. 			

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (continued)

Deep Observation Hole Number:

810-2

	Soil Horizon/ Layer		Redoximorphic Features (mottles)		Soil Texture	0/ 1	e Fragments by Volume	Soil	Soil Consistence	Other	
Depth (in.)		Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
- /	A	104123/2				SL			massive	Friable	
0-6 6-24	B	7.51R5/L				SL			Columnar	Frable	
24-76	С	54R63.	38	5425/E	75%	SL	20	20	granular 30% fine	firm in place	
21 10											
										-	

Additional Notes:

boulder a bottom hole Soil in Clayer - not compacted

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal • Page 5 of 8

Commonwealth of Massachusetts

City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1. Method Used:

			А.	<u>B.</u>	
	Depth observed standing water in obser	vation hole	inches	inches .	
	 Depth weeping from side of observation hole Depth to soil redoximorphic features (mottles) 		A. inches A. 25,52 inches	B. inches B. 38 38 inches	
~	Groundwater adjustment (USGS metho	dology)	A. inches	B. inches	
2.	Index Well Number	Reading Date	·	Index Well Level	
	Adjustment Factor	Adjusted Groundwater Lo	evel		

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

Yes ∏ No

b. If yes, at what depth was it observed?

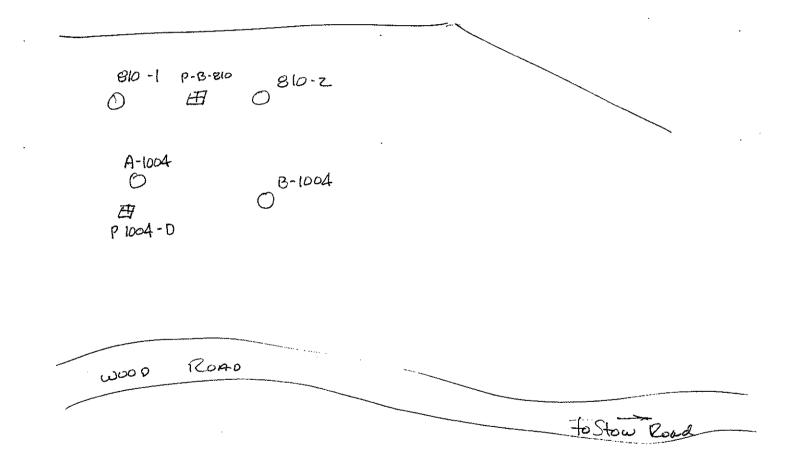
24 Upper boundary: inches

Lower boundary:

96 inches

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.


Russell D. Wilson	9/12/10
Signature of Soil Evaluator	Date
Russell D. Wilson SE 2621	7195
Typed or Printed Name of Soil Evaluator / License #	Date of Soil Evaluator Exam
Ira CROSSMAN	NABOH
Name of Board of Health Witness	Board of Health
Name of Board of Health Witness KALENE GARBARZ (210-1 : 210-2)	

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams

Use this sheet for field diagrams:

BW0118 - Pine Hill Village Infiltration Tests: 8/18/2010 Weather: 80° and mostly sunny

Soils Information:

Test Pit ID	Depth Below Ground Surface (BGS)	Soil Description
	0-6"	brown organic soils
TP#1	6-18"	medium tan, silt with trace sand; gravel present
11 # 1	18-84"	light tan, silt with trace sand; gravel present
	78"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#2	10-24"	medium brown, silt with trace sand
11 #2	24-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#3	10-18"	medium brown, silt with trace sand
11 #5	18-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#4	6-30"	medium brown, silt with trace sand
	30"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#5	10-28"	medium brown, silt with trace sand
11 #5	28-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#6	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#7	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#8	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#9	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#10	10-30"	medium brown, silt with trace sand
18#10	30-36"	light gray, silt/clay with trace sand
	78"	seasonal high groundwater observed

Test Pit Information: 4/14/2011

Test Pit ID	Depth Below Ground Surface (BGS)	Soil Description
TH#1	28"	seasonal high groundwater observed
TH#2	26"	seasonal high groundwater observed
TH#3	24"	seasonal high groundwater observed

BW0118 - Pine Hill Village Infiltration Tests: 8/18/2010 Weather: 80° and mostly sunny

Soils Information:

Test Pit ID	Depth Below Ground Surface (BGS)	Soil Description
	0-6"	brown organic soils
TP#1	6-18"	medium tan, silt with trace sand; gravel present
11 17 1	18-84"	light tan, silt with trace sand; gravel present
	78"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#2	10-24"	medium brown, silt with trace sand
11 #2	24-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#3	10-18"	medium brown, silt with trace sand
16#3	18-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#4	6-30"	medium brown, silt with trace sand
	30"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#5	10-28"	medium brown, silt with trace sand
1640	28-36"	light gray, silt/clay with trace sand
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#6	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#7	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#8	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-6"	brown organic soils
TP#9	6-36"	medium tan, silt with trace sand; gravel present
	36"	seasonal high groundwater observed
	0-10"	brown organic soils
TP#10	10-30"	medium brown, silt with trace sand
117#10	30-36"	light gray, silt/clay with trace sand
	78"	seasonal high groundwater observed

BW0118 - Pine Hill Village Infiltration Tests: 8/18/2010

Weather: 80° and mostly sunny

Double ring infiltrometer test

TP#1 (7 ft Below Ground Surface)

$V_{IR} = \Delta V_{IR} / (A_{IR} \Delta t)$	nner ring incremental infiltration velocity (cm/h)			
	Volume of liquid used during time interval to maintain constant head in the inner ring (cm3)			
A _{IR}	Internal area of inner ring (cm2)			
Δt	Time interval (h)			

$V_A = \Delta V_A / (A_A^* \Delta t)$	Annular space increment infiltration velocity (cm/h)				
	Volume of liquid used during time interval to maintain constant head in the annular space between the ring I(cm3)				
A _A	Area of annular space between the rings				
Inner Ring	Outer Ring Annulus				

2121

 Diamter (cm)
 30
 60

 Area (cm²)
 706.9
 2827

Ring Flow Space Flow V_A V_{IR} V_{IR} V_{A} (cm^3) ΔV_{IR} (cm³) (cm^3) $\Delta V_A (cm^3)$ (in/h) time (min) Δt (hr) (cm/h) (cm/h) (in/h) 0.00 3000 0 6.076066 2.75 100 4500 1500 3.08664 1.2152 0.05 100 15.4332066 0.06 400 300 5500 1000 6.79061 2.970521 6.50 7.545123228 2.6735 9.75 0.05 750 350 6700 1200 9.14121 10.4470937 3.5989 4.113029 3.91766 2.611773425 13.00 0.05 900 150 7000 300 1.5424 1.028257 17.50 0.08 900 7000 0 0 0 0 0 0 25.00 0 0 0 0 0.13 900 7000 0 0 1.623841738 1650 1.33746 0.5266 0.639308 53.75 0.48 1353 453 8650 85.75 0.53 772 3750 3.315727981 2125 12400 2.04779 0.8062 1.305405 2.46978486 0.6664 0.972356 1.69262 Average 50% of Avg. 0.333

Soils Information:

0-5" brown organic soils

5-16" medium tan, silt with trace sand; gravel present

16-84" light tan, silt with trace sand; gravel present

BW0118 - Pine Hill Village Infiltration Tests: 8/18/2010

Weather: 80° and mostly sunny

Double ring infiltrometer test

TP#2 (6 inches Below Ground Surface)

$V_{IR} = \Delta V_{IR} / (A_{IR}^* \Delta t)$	Inner ring incremental infiltration velocity (cm/h)
	Volume of liquid used during time interval to maintain constant head in the inner ring (cm3)
A _{IR}	Internal area of inner ring (cm2)
Δt	Time interval (h)

$V_A = \Delta V_A / (A_A^* \Delta t)$	Annular space increment infiltration velocity (cm/h)				
	Volume of liquid used during time interval to maintain constant head in the annular				
ΔV_A	space between the ring I(cm3)				
A _A	Area of annular space between the rings				

Inner Ring Outer Ring Annulus

Diamter (cm)	30	ັ60							
Area (cm ²)	706.9	2827	2121						
		Ring Flow		Space Flow		V _{IR}	V _A	V _{IR}	V _A
time (min)	Δt (hr)	(cm ³)	$\Delta V_{IR} (cm^3)$	(cm ³)	$\Delta V_A (cm^3)$		(cm/h)	(in/h)	(in/h)
0.00		2050							
15.25	0.25	3600	1550			8.62742		3.3966	
21.00	0.10	4800	1200			17.7146		6.9743	
21.00	0.00	50							
29.25	0.14	1050	1000			10.2888		4.0507	
36.50	0.12	2150	1100			12.8787		5.0704	
43.75	0.12	3450	1300			15.2203		5.9923	
49.25	0.09	4200	750			11.5749		4.557	
					Average	12.7175		5.0069	
							50% of Avg.	2.503	

Soils Information:

0-10" brown organic soils

10-24" medium brown, silt with trace sand

24-36" light gray, silt/clay with trace sand

BW0118 - Pine Hill Village Infiltration Tests: 8/18/2010

Weather: 80° and mostly sunny

Double ring infiltrometer test

TP#4 (2.5 ft Below Ground Surface)

$V_{IR} = \Delta V_{IR} / (A_{IR}^* \Delta t)$	Inner ring incremental infiltration velocity (cm/h)
ΔV _{IR}	Volume of liquid used during time interval to maintain constant head in the inner ring (cm3)
A _{IR}	Internal area of inner ring (cm2)
Δt	Time interval (h)
$V_A = \Delta V_A / (A_A^* \Delta t)$	Annular space increment infiltration velocity (cm/h)

	Volume of liquid used during time interval to maintain constant head in the annular
ΔV_A	space between the ring I(cm3)
A _A	Area of annular space between the rings

	Inner Ring	Outer Ring	Annulus
Diamter (cm)	30	60	
Area (cm ²)	706.9	2827	2121

				Ring Flow		Space Flow		V _{IR}	V _A	V _{IR}	V _A
time (r	min)	∆t	(hr)	(cm ³)	ΔV_{IR} (cm ³)	(cm ³)	$\Delta V_A (cm^3)$	(cm/h)	(cm/h)	(in/h)	(in/h)
	0.00			2275		4300					
3	30.25		0.50	3050	775	7500	3200	2.17468	2.993106735	0.8562	1.178388
4	46.00		0.26	3600	550	9900	2400	2.96416	4.311498987	1.167	1.697441
6	66.00		0.33	4300	700	12200	2300	2.97089	3.253834392	1.1696	1.281037
							Average	2.70324	3.519480038	1.0643	1.385622
									50% of Avg.	0.532	

Soils Information:

0-6" brown organic soils

6-30" medium brown, silt with trace sand

ATTACHMENT B

Design Calculations

Pine Hill Village

Appendix B.1 – Recharge Calculations

Attachment B.1 – Recharge Volume Calculations

Standard 3. Stormwater Recharge

RECHARGE VOLUME

STEP 1) REQUIRED RECHARGE VOLUME

Calculate *Required Recharge Volume*.⁷ The *Required Recharge Volume* equals a depth of runoff corresponding to the soil type times the impervious areas covering that soil type at the post-development site.

Rv = F x impervious area Equation (1)

Rv= Required Recharge Volume, expressed in Ft³, cubic yards, or acre-feetF= Target Depth Factor associated with each Hydrologic Soil GroupImpervious Area= pavement and rooftop area on site

Soil Type	Soil Texture	F (in)	Imp. Area (ac)	Rv (cf)
(Table 2.3.2)	(Table 2.3.2)	(Table 2.3.2)	(from plans)	-
HSG A	sand	0.60	0.00	0
HSG B	loam	0.35	1.65	2096
HSG C	silty loam	0.25	0.52	472
HSG D	clay	0.10	0.00	0
		Total	2.17	2568

For Impervious Areas (excludes pervious paver walkways):

Step 2) Sizing Storage Volume Using Static Method

A) Static Method - Rv does not change **Rv = 2568** cf Note: Since the Required Water Quality Volume is higher: the BMPs will be sized to capture an

Note: Since the Required Water Quality Volume is higher; the BMPs will be sized to capture and treat the Required Water Quality Volume.

Pine Hill Village Appendix B.2 – Drawdown Calculations

Attachment B.2 Drawdown within 72 hours

$$Time_{drawdown} = \frac{Rv}{(K)(Bottom \ Area)}$$

Where:

Rv = Storage Volume

K = Saturated Hydraulic Conductivity For "Static" and "Simple Dynamic" Methods, use Rawls Rate (see Table 2.3.3). For "Dynamic Field" Method, use 50% of the in-situ saturated hydraulic conductivity.

Bottom Area = Bottom Area of Recharge $Structure^{22}$

Raingarden ID	Storage Volume (cf)	Saturated Hydraulic Conductivity (K) (in/hr)	Bottom Area (sf)	Drawdown Time (hrs)
RG #3	338	0.52	423.0	18.46
RG #4	743	0.52	391.0	43.85
RG #5	485	0.52	266.0	42.12
RG #10	509	0.52	334.0	35.19
RG #11	281	0.52	184.0	35.19
RG #12	760	0.52	584.5	30.00
RG #13	706	0.52	415.3	39.21
RG #14	273	0.52	206.5	30.55
RG #19	2127	0.52	1309.0	37.50
RG #20	1191	0.52	733.0	37.50
RG #21	748	0.52	650.0	26.54
RG #22	853	0.52	656.0	30.00
RG #23	568	0.52	413.0	31.73
Bus Station	2200	0.52	1222.0	41.54
Cul-de-sac	4393	0.52	2834.0	35.77

NOTE: Raingardens designed to exfiltrate were evaluated for drawdown time. Raingardens that are lined were not included in the drawdown calculation (RG 15, 16).

Total Storage Volume

Provided = 6223 cf

Total Storage Volume > Required Recharge Volume OK Total Storage Volume > Required Water Quality Volume OK

Pine Hill Village Attachment B.3 - Water Quality Volume Calculations

Standard 4. Water Quality Volume Calculations

WATER QUALITY TREATMENT VOLUME²⁶

 $V_{WQ} = (D_{WQ}/12 \text{ inches/foot}) * (A_{IMP} * 43,560 \text{ square feet/acre})$

Equation (3)

V_{WQ} = *Required Water Quality Volume* (in cubic feet)

 Dwo
 = Water Quality Depth: one-inch for discharges within a Zone II or Interim Wellhead Protection Area, to or near another critical area, runoff from a LUHPPL, or exfiltration to soils with infiltration rate greater than 2.4 inches/hour or greater; ½-inch for discharges near or to other areas.

 A_{IMP} = Impervious Area (in acres)

For Impervious Areas (outside IWPA):

D (WQ) =	0.5	in
Total Area =	9.80	acres
A (IMP)=	1.17	acres
V (WQ)=	2124	cf

For Impervious Areas (inside IWPA):

D (WQ) =	1	in
Total Area =	7.36	acres
A (IMP)=	1.13	acres
V (WQ)=	4102	cf

Total Required Water Quality Volume =

6225 cf

Pine Hill Village Appendix B.4 – Raingarden Schedule

RAINGARDEN SCHEDULE

	Designed to													
Raingarden ID*	Designed to Exfiltrate (No = Lined) ¹	Standard Detail No. (Figure 5)	Drainage Area (Ft^2)	Drainage Area (ac)	Impervious Area (ac)	BMP Water Quality Volume (cf) ²	Storage Volume (cf) ^{3, 5}	Surface Area (sf)	Depth of Bioretention Soil (ft)	Pre-treatment Device ⁴	Rim Elev. (ft)	Base Elev. (ft)	High Groundwater Elevation (ft)	Existing Ground Surface Elevation (ft)
RG #3	YES	С	6534	0.150	0.070	254	338	423	0.50	v	311.0	309.5	301.5	304.0
RG #4	YES	Α	1525	0.035	0.012	44	743	391	3.00	GV	307.0	302.4	299.5	302.0
RG #5	YES	Α	2265	0.052	0.021	76	485	266	3.00	GV	307.0	302.7	298.5	301.0
RG #10	YES	Α	2091	0.048	0.015	54	509	334	2.00	GV	307.1	303.8	301.5	304.0
RG #11	YES	Α	1873	0.043	0.027	98	281	184	2.00	GV	307.1	303.8	301.5	304.0
RG #12	YES	Α	9278	0.213	0.050	182	760	585	1.25	VS and GV	313.1	310.6	309.5	312.0
RG #13	YES	Α	4312	0.099	0.053	192	706	415	2.33	VS and GV	308.2	304.3	303.5	306.0
RG #14	YES	Α	2396	0.055	0.035	127	273	207	1.33	GV	305.2	302.5	301.5	304.0
RG #15	NO	В	44213	1.015	0.199	722	523	367	1.00	GV	301.0	298.0	301.5	304.0
RG #16	NO	В	10716	0.246	0.000	0	1017	607	1.00	VS and GV	301.0	298.0	302.5	305.0
RG #19	YES	A	31233	0.717	0.168	305	2127	1309	1.25	VS and V	296.0	293.2	287.5	290.0
RG #20	YES	A	11543	0.265	0.000	0	1191	733	1.50	-	295.3	292.5	291.5	294.0
RG #21	YES	A	9932	0.228	0.155	281	748	650	1.00	GV	291.8	289.6	289.5	292.0
RG #22	YES	A	6665	0.153	0.023	42	853	656	1.00	GV	258.8	256.2	255.5	258.0
RG #23	YES	A	1307	0.030	0.007	13	568	413	1.25	GV	258.1	255.3	254.5	257.0
Bus Station	YES	A	24132	0.554	0.204	370	2200	1222	1.00	VS	257.8	254.5	254.5	257.0
Cul-de-sac	YES	A	10585	0.243	0.072	261	4393	2834	1.00	GV	300.5	297.9	297.5	300.0

Notes

*Bold and Italics Raingarden ID, indicates raingarden located in IWPA (required water quality volume = 1.0 inch).

1. Raingardens not designed to exfiltrate will be lined ensuring no infiltration.

2. All BMPs are designed to provide storage for the Water Quality Volume, which is greater than the Recharge Volume for the Site.

3. Storage Volume is calculated assuming 30% void space in mulch, bioretention soil, pea gravel and sand layers.

4. GV = 8-inches of pea gavel and 3 to 5-foot vegetated filter strip; V = 10' vegetated filter strip; VS = vegetated swale

5. RG #21 has a 1.2" ponding depth instead of a 6" ponding depth.

Recharge Volume

Soil Type	F (in)	Imp. Area (ac)	Rv (cf)
HSG A	0.60	0	0
HSG B	0.35	1.65	2096
HSG C	0.25	0.52	472
HSG D	0.10	0	0
	Total	2.17	2568

Required Water Quality Volume

Depth (in):	0.5	1.0
Impervious Area (ac):	1.17	1.13
WQ Volume (cf):	2124	4102

Total Proposed Storage Vol (cf) 17,714

Required WQv (cf) 6,225

Proposed Volume (cf)

17,714

16,174

- Required Recharge Vol (cf) 3,875
- Impervious Area draining to Raingardens (ac) 0.912
- Additional Roof Area draining to Recharge (ac) 0.238
- Impervious area in Draining Areas 10S and 11s draining to Recharge (ac) 0.288
 - Total Impervious Area routed to Recharge (ac) 1.438
 - Ratio of Area Draining to Recharge to Total Impervious Area 1.51
 - Percentage of Impervious Draining to Recharge 66%
 - Static Calculated Original Recharge Volume (cf) 2,568
 - Adjusted Minimum Required Recharge Volume (cf) 3,875

Pine Hill Village Appendix B.4 – Raingarden Schedule (Continued)

OTHER CONSIDERATIONS FOR STANDARD 3 CAPTURE AREA ADJUSTMENT: DETERMININING IF ENOUGH RUNOFF IS DIRECTED TO THE RECHARGE PRACTICE²³

Sufficient runoff must be directed to the infiltration BMPs to ensure infiltration of the Required Recharge Volume. In some cases, designers size exfiltration practices based on the Required Recharge Volume, but then direct only a portion of the site's impervious area to the practice. As a result, the infiltration BMPs may not be able to capture sufficient rainfall on an average annual basis to meet the Required Recharge Volume. In this case, designers and reviewers have two options: either redesign the site so that runoff from more of the impervious areas located on the site is directed to the infiltration BMPs, or increase the storage capacity of the infiltration BMPs so that they may capture more of the runoff from the impervious surfaces located within the contributing drainage area. The following procedure describes the method that must be used where runoff from only a portion of the impervious area on a site is directed to one or more infiltration BMPs. This procedure is required to ensure that the infiltration BMPs are able to capture sufficient runoff from the impervious surfaces within the contributing drainage area to infiltrate the Required Recharge Volume. This procedure is not required for those sites where all impervious surfaces drain to an infiltration BMP. In no case shall runoff from less than 65% of the site's impervious cover be directed to the BMPs intended to infiltrate the Required Recharge Volume. When less than 65% of impervious surfaces on a site are directed to infiltration BMPs, the system cannot capture sufficient runoff to infiltrate the Required Recharge Volume.

 Calculate the Required Recharge Volume based on total site impervious cover and underlying soil classification and size the infiltration BMP using the "Static" Method or one of the "Dynamic" Methods

2) Calculate the site's impervious area that drains to proposed recharge facilities.

 Divide the total site impervious area by the impervious area draining to the proposed recharge facilities.

4) Multiply the resulting quotient from Step 3 by the original Required Recharge Volume calculated under Step 1 to determine the adjusted minimum storage volume needed to meet the recharge volume requirement. The "Static" Method or either of the Dynamic Methods may be used to determine the storage volume.

Pine Hill Village Appendix B.5 – Raingarden Details

ID: RG #3				
Drainage Area	0.150	ac		
Impervious Area	0.070			
Water Quality Vol	254			
•				
Prop. Surface Elev.	311			
Ex. Surface Elev.	304			
Depth to GW	2.5	ft		
Max Depth Elev.	303.5	ft		
Depth BGS (ft)	Elevation (ft)	Description	Area (sf)	Cumm. Volume (cf)
0.00	311.00	Rim	423.00	0.00
0.50	310.50	6" Ponding	423.00	211.50
0.75	310.25	3" Mulch	423.00	243.23
1.25	309.75	0.5' Soil	423.00	306.68
1.50	309.50	3" Pea Gravel	423.00	338.40
1.50	309.50	5 Pea Glavel	423.00	336.40
Outlet Structure Overflow Berm	Inv. El. (ft) 311.00	Out El (ft)		
ID: RG #4				
Drainage Area	0.035	ac		
Impervious Area	0.012			
Water Quality Vol		cf		
Prop. Surface Elev.	307			
Ex. Surface Elev.	302			
Depth to GW	2.5			
Max Depth Elev.	301.5	ft		
Depth BGS (ft)	Elevation (ft)	Description	Area (sf)	Cumm. Volume (cf)
0.00	307.00	Rim	391.00	0.00
0.25	306.75	3" Freeboard	391.00	97.75
0.75	306.25	6" Ponding	391.00	293.25
	000.20	3" Mulch		
	306.00			
1.00	306.00		391.00	322.58
1.00 4.00	303.00	3' Soil	391.00	674.48
1.00 4.00 4.25	303.00 302.75	3' Soil 3" Pea Gravel	391.00 391.00	674.48 703.80
1.00 4.00	303.00	3' Soil	391.00	674.48
1.00 4.00 4.25 4.58	303.00 302.75 302.42	3' Soil 3" Pea Gravel 4" Sand	391.00 391.00	674.48 703.80
1.00 4.00 4.25	303.00 302.75	3' Soil 3" Pea Gravel	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58	303.00 302.75 302.42	3' Soil 3" Pea Gravel 4" Sand	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure	303.00 302.75 302.42 Inv. El. (ft)	3' Soil 3" Pea Gravel 4" Sand Out El (ft)	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe	303.00 302.75 302.42 Inv. El. (ft) 306.75	3' Soil 3" Pea Gravel 4" Sand Out El (ft)	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain	303.00 302.75 302.42 Inv. El. (ft) 306.75	3' Soil 3" Pea Gravel 4" Sand Out El (ft)	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5	303.00 302.75 302.42 Inv. El. (ft) 306.75	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.052 0.021	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Impervious Area Water Quality Vol Prop. Surface Elev.	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac ac cf ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev.	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft	391.00 391.00	674.48 703.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev.	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft	391.00 391.00 391.00	674.48 703.80 742.90
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev.	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft)	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft tt Description	391.00 391.00 391.00	674.48 703.80 742.90
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft ft ft ft f	391.00 391.00 391.00 Area (sf) 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft ft ft ft f	391.00 391.00 391.00 391.00 201.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch	391.00 391.00 391.00 391.00 201.00 266.00 266.00 266.00 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.00	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.25	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00 302.75	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil 3" Pea Gravel	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85 478.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.00	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.25 4.33	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00 302.75 302.67	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil 3" Pea Gravel 4" Sand	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85 478.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.00 4.25 4.33	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00 302.75 302.67 Inv. El. (ft)	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil 3" Pea Gravel	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85 478.80
1.00 4.00 4.25 4.58 Outlet Structure 12" HDPE Riser Pipe 8" Underdrain ID: RG #5 Drainage Area Impervious Area Water Quality Vol Prop. Surface Elev. Ex. Surface Elev. Depth to GW Max Depth Elev. Depth BGS (ft) 0.00 0.25 0.75 1.00 4.25 4.33	303.00 302.75 302.42 Inv. El. (ft) 306.75 301.3 0.052 0.021 76 307 301 2.5 300.5 Elevation (ft) 307.00 306.75 306.25 306.00 303.00 302.75 302.67	3' Soil 3" Pea Gravel 4" Sand Out El (ft) 301.1 ac ac cf ft ft ft ft ft m 3" Freeboard 6" Ponding 3" Mulch 3' Soil 3" Pea Gravel 4" Sand	391.00 391.00 391.00 391.00 Area (sf) 266.00 266.00 266.00 266.00 266.00 266.00	674.48 703.80 742.90 Cumm. Volume (cf) 0.00 66.50 199.50 219.45 458.85 478.80

ID: RG #10				
Drainage Area	0.048	20		
Impervious Area	0.048			
Water Quality Vol		cf		
-	34 307.1			
Prop. Surface Elev. Ex. Surface Elev.				
	304			
Depth to GW	2.5			
Max Depth Elev.	303.5	n		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	307.10	Rim	334.00	0.00
0.00	306.85	3" Freeboard	334.00	83.50
0.25	306.35	6" Ponding	334.00	250.50
1.00	306.10	3" Mulch	334.00	275.55
3.00	304.10	2' Soil	334.00	475.95
3.25	303.85	3" Pea Gravel	334.00	501.00
3.33	303.77	4" Sand	334.00	509.35
Outlet Structure 12" HDPE Riser Pipe	Inv. El. (ft) 306.85	Out El (ft)		
ID: RG #11				
Drainage Area	0.043	ac		
Impervious Area	0.027			
Water Quality Vol		cf		
Prop. Surface Elev.	307.10			
Ex. Surface Elev.	304			
Depth to GW	2.5	ft		
Max Depth Elev.	303.5			
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	307.10	Rim	184.00	0.00
0.25	306.85	3" Freeboard	184.00	46.00
0.75	306.35	6" Ponding	184.00	138.00
1.00	306.10	3" Mulch	184.00	151.80
3.00	304.10	2' Soil	184.00	262.20
3.25	303.85	3" Pea Gravel	184.00	276.00
3.33	303.77	4" Sand	184.00	280.60
Outlet Structure 12" HDPE Riser Pipe	Inv. El. (ft) 306.85	Out El (ft)		
ID: Cul-de-sac Bioretenti	on Cell			
Drainage Area	0.243	ac		
Impervious Area	0.072	ac		
Water Quality Vol	261			
Prop. Surface Elev.	300.5	ft		
Ex. Surface Elev.	300	ft		
Depth to GW	2.5	ft		
Max Depth Elev.	299.5	ft		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	300.50	Rim	2834.00	0.00
0.25	300.25	3" Riser Freeboard	2834.00	708.50
0.75	299.75	6" Ponding	2834.00	2834.00
1.00	299.50	3" Mulch	2834.00	3046.55
2.00	298.50	1' Soil	2834.00	3896.75
2.25	298.25	3" Pea Gravel	2834.00	4109.30
2.58	297.92	4" Sand	2834.00	4392.70
Outlet Structure 12" CPP Riser Pipe	Inv. El. (ft) 300.25	Out El (ft)		

ID: RG #12				
Drainage Area	0.213	ac		
Impervious Area	0.050			
Water Quality Vol	182			
Prop. Surface Elev.	313.1			
Ex. Surface Elev.	312			
Depth to GW	2.5			
Max Depth Elev.	311.5	o ft		
		D	A	0
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	313.10	Rim	584.50	0.00
0.25	312.85	3" Freeboard	584.50	146.13
0.75	312.35	6" Ponding	584.50	438.38
1.00	312.10	3" Mulch	584.50	482.21
2.25	310.85	1.25' Soil	584.50	701.40
2.50	310.60	3" Pea Gravel	584.50	745.24
2.58	310.27	4" Sand	584.50	759.85
Outlet Structure 12" HDPE Riser Pipe	Inv. El. (ft) 312.85	Out El (ft)		
ID: RG #13				
Drainage Area	0.099			
Impervious Area	0.053			
Water Quality Vol	192			
Prop. Surface Elev.	308.2	2 ft		
Ex. Surface Elev.	306	i ft		
Depth to GW	2.5	5 ft		
Max Depth Elev.	305.5			
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	308.20	Rim	415.26	0.00
0.00	307.95	3" Freeboard	415.26	103.82
0.23	307.45	6" Ponding	415.26	311.45
1.00	307.20	3" Mulch	415.26	342.59
3.33	304.87	2.33' Soil	415.26	632.86
3.58	304.62	3" Pea Gravel	415.26	664.00
3.91	304.29	4" Sand	415.26	705.53
Outlet Structure 12" HDPE Riser Pipe	Inv. El. (ft) 307.95	Out El (ft)		
ID: RG #14				
Drainage Area	0.055			
Impervious Area	0.035			
Water Quality Vol	127			
Prop. Surface Elev.	305.2			
Ex. Surface Elev.	304	⊧ ft		
Depth to GW	2.5	5 ft		
Max Depth Elev.	303.5	5 ft		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	305.20	Rim	206.54	0.00
0.25	304.95	3" Freeboard	206.54	51.64
0.75	304.45	6" Ponding	206.54	154.91
1.00	304.20	3" Mulch	206.54	170.40
2.33	302.87	1.33' Soil	206.54	252.80
2.53	302.62		206.54	
		3" Pea Gravel		268.30
2.66	302.54	4" Sand	206.54	273.46
Outlet Structure 12" HDPE Riser Pipe	Inv. El. (ft) 304.95	Out El (ft)		

ID: RG# 15				
Drainage Area	1.015	ac		
Impervious Area	0.199			
Water Quality Vol	722	cf		
Prop. Surface Elev.	301	ft		
Ex. Surface Elev.	304	ft		
Depth to GW	2.5	ft		
Max Depth Elev.	303.5	ft		
-				
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	301.00	Rim	367.00	0.00
0.25	300.75	3" Freeboard	367.00	91.75
0.75	300.25	6" Ponding	367.00	275.25
1.00	300.00	3" Mulch	367.00	302.78
2.00	299.00	1' Soil	367.00	412.88
3.00	298.00	1' Pea Gravel	367.00	522.98
Outlet Structure 18" HDPE Riser Pipe	Inv. El. (ft) 300.75	Out El (ft)		
ID: RG#16				
Drainage Area	0.246	ac		
Impervious Area	0.000			
Water Quality Volume		cf		
Depth to GW	2.5			
Prop. Surface Elev.	301			
Ex. Surface Elev.	305	ft		
		-		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	301.00	Rim	607.00	0.00
0.25	300.75	3" Riser Free Board	607.00	151.75
0.75	300.25	6" Ponding	607.00	607.00
1.00	300.00	3" Mulch	607.00	652.53
2.00	299.00	1' Soil	607.00	834.63
3.00	298.00	1' Pea Gravel	607.00	1016.73
Outlet Structure 18" HDPE Rise Pipe	Inv. El. (ft) 300.75			
ID. D.0#40				
ID: RG#19	0.747	20		
Drainage Area	0.717			
Impervious Area	0.168			
Water Quality Vol	305			
Ex. Surface Elev.	290			
Prop. Surface Elev.	296			
Depth to GW	2.5			
Max Depth Elev.	289.5	ιι		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	296.00	Rim	1309.00	0.00
0.00	295.75	3" Free Board		327.25
0.25		6" Ponding	1309.00 1309.00	
1.00	295.25 295.00	3" Mulch	_	<u>1309.00</u> 1407.18
2.25	293.75	1.25' Soil	1309.00 1309.00	1898.05
2.50 2.83	293.50 293.2	3" Pea Gravel 4" Sand	1309.00 1309.00	1996.23 2127.12
2.03 Outlet Structure 18" HDPE Rise Pipe	293.2 Inv. El. (ft) 295.75		1303.00	2121.12

ID: RG#20				
Drainage Area	0.265	ac		
Impervious Area	0.000			
Water Quality Vol		cf		
Ex. Surface Elev.	294			
Prop. Surface Elev.	295.3			
Depth to GW	2.5			
Max Depth Elev.	293.5	ft		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	295.30	Rim	733.00	0.00
0.25	295.05	3" Riser Free Board	733.00	183.25
0.75	294.55	6" Ponding	733.00	733.00
1.00	294.30	3" Mulch	733.00	787.98
2.50	292.80	1.5' Soil	733.00	1117.83
2.75	292.55	3" Pea Gravel	733.00	1172.80
2.83	292.47	4" Sand	733.00	1191.13
Dutlet Structure 18" HDPE Riser	Inv. Elevation (ft) 295.05			
D: RG#21				
Drainage Area	0.228			
mpervious Area	0.155			
Vater Quality Vol	281			
Ex. Surface Elev.	292	ft		
Prop. Surface Elev.	291.8	ft		
Depth to GW	2.5	ft		
Max Depth Elev.	291.5	ft		
•				
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	291.80	Rim	650.00	0.00
0.25	291.55	3" Riser Free Board	650.00	162.50
0.35	291.45	1.2" Ponding	650.00	390.00
0.60	291.20	3" Mulch	650.00	438.75
1.60	291.20	1' Soil	650.00	633.75
			_	
1.85 2.18	289.95 289.62	3" Pea Gravel 4" Sand	650.00 650.00	682.50 747.50
Dutlet Structure 12" HDPE Riser	Inv. Elevation (ft) 291.55			
D: RG #22	0.452			
Drainage Area	0.153			
mpervious Area	0.023			
Nater Quality Vol		cf		
Ex. Surface Elev.	258			
Prop. Surface Elev.	258.8			
Depth to GW	2.5	ft		
Max Depth Elev.	257.5	ft		
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	258.80	Rim	656.00	0.00
0.25	258.55	3" Freeboard	656.00	164.00
0.25	258.05	6" Ponding	656.00	492.00
		-		
1.00	257.80	3" Mulch	656.00	541.20
2.00	256.80	1' Soil	656.00	738.00
2.25	256.55	3" Pea Gravel	656.00	787.20
2.58	256.22	4" Sand	656.00	852.80
Dutlet Structure 12" HDPE Riser Pipe	Inv. Elevation (ft) 258.55			

ID: RG #23				
Drainage Area	0.030	ac		
Impervious Area	0.007	ac		
Water Quality Vol	13	cf		
Ex. Surface Elev.	257	ft		
Prop. Surface Elev.	258.1	ft		
Depth to GW	2.5	ft		
Max Depth Elev.	256.5			
Depth BGS (ft)	Elevation (ft)	Desc.	Area (sf)	Cumm. Volume (cf)
0.00	258.10	Rim	413.00	0.00
0.25	257.85	3" Freeboard	413.00	103.25
0.75	257.35	6" Ponding	413.00	309.75
1.00	257.10	3" Mulch	413.00	340.73
2.25	255.85	1.25' Soil	413.00	495.60
2.50	255.60	3" Pea Gravel	413.00	526.58
2.83	255.27	4" Sand	413.00	567.88
Outlet Structure	Inv. Elevation (ft)			
12" HDPE Riser Pipe	257.85			
ID: Bus Station Bioreten	tion Cell			
Drainage Area	0.554	ac		
Impervious Area	0.204	ac		
Water Quality Vol	370	cf		
Ex. Surface Elev.	257	ft		
Prop. Surface Elev.	257.8	ft		
	201.0			
Depth to GW	2.5	ft		
Depth to GW GW Elev.				
-	2.5			
-	2.5		Area (sf)	Cumm. Volume (cf)
GW Elev.	2.5 254.5	ft	Area (sf) 1222.00	Cumm. Volume (cf)
GW Elev.	2.5 254.5 Elevation (ft)	ft Desc.	, , ,	
GW Elev. Depth BGS (ft) 0.00	2.5 254.5 Elevation (ft) 257.80	ft Desc. Rim	1222.00	0.00
GW Elev. Depth BGS (ft) 0.00 0.50	2.5 254.5 Elevation (ft) 257.80 257.30	ft Desc. Rim 6" Freeboard	1222.00 1222.00	0.00 305.50
GW Elev. Depth BGS (ft) 0.00 0.50 1.50	2.5 254.5 Elevation (ft) 257.80 257.30 256.30	ft Desc. Rim 6" Freeboard 6" Ponding	1222.00 1222.00 1222.00	0.00 305.50 1527.50
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75	2.5 254.5 Elevation (ft) 257.80 257.30 256.30 256.05	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch	1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75	2.5 254.5 Elevation (ft) 257.80 257.30 256.30 256.05 255.05	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00	2.5 254.5 Elevation (ft) 257.80 257.30 256.30 256.05 255.05 255.05 254.80	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00	2.5 254.5 Elevation (ft) 257.80 257.30 256.30 256.05 255.05 255.05 254.80	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33	2.5 254.5 Elevation (ft) 257.80 257.30 256.30 256.05 255.05 255.05 254.80 254.47	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure	2.5 254.5 254.5 257.80 257.80 256.30 256.05 255.05 255.05 254.80 254.47 Inv. Elevation (ft)	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure	2.5 254.5 254.5 257.80 257.80 256.30 256.05 255.05 255.05 254.80 254.47 Inv. Elevation (ft)	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure 18" HDPE Riser Sediment Forebay Volume Required (cf)	2.5 254.5 254.5 257.80 257.80 256.30 256.05 255.05 255.05 254.80 254.47 Inv. Elevation (ft)	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure 18" HDPE Riser Sediment Forebay	2.5 254.5 254.5 257.80 257.30 256.30 256.05 255.05 254.80 254.47 Inv. Elevation (ft) 257.30	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure 18" HDPE Riser Sediment Forebay Volume Required (cf)	2.5 254.5 254.5 257.80 257.30 256.30 256.05 255.05 254.80 254.47 Inv. Elevation (ft) 257.30 74.1	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure 18" HDPE Riser Sediment Forebay Volume Required (cf) Depth (ft)	2.5 254.5 254.5 257.80 257.30 256.30 256.05 255.05 254.80 254.47 Inv. Elevation (ft) 257.30 74.1 0.25	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40
GW Elev. Depth BGS (ft) 0.00 0.50 1.50 1.75 2.75 3.00 3.33 Outlet Structure 18" HDPE Riser Sediment Forebay Volume Required (cf) Depth (ft) Surface Area (sf)	2.5 254.5 254.5 257.80 257.30 256.30 256.05 255.05 254.80 254.47 Inv. Elevation (ft) 257.30 74.1 0.25 270.0	ft Desc. Rim 6" Freeboard 6" Ponding 3" Mulch 1' Soil 3" Pea Gravel 4" Sand	1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00 1222.00	0.00 305.50 1527.50 1619.15 1985.75 2077.40

Attachment B.6 - Constructed Wetland Calculations I Pine Hill Village Harvard, Massachusetts

Constructed Wetland Water Budget

Project Name: Pine Hill Village

Location: Harvard, MA Project Number: BW0118

Prepared By (Name and Date):

Checked By (Name and Date):

Daniel Bourdeau, PE 10MAY2011 Steve Roy 10MAY2011

		Evapotr	ranspiration ¹					In	puts	Out	put	Storage		e
Month	Average Temp ² (F,	Average Temp ²	Heat Index	ET (cm)	ET (in)	Precipitation ²	Runoff ³ (in)	Runoff	Direct Fall ⁴	ET ⁴	Seepage ⁵	Permanent	Change in	Storage in Excess of
	30 Year Average)	(C, 30 Year				(in)		(acre-ft)	(acre-ft)	(acre-ft)	(acre-ft)	Pool ⁶	Storage (acre-	Permanent Pool
		Average)										(acre-ft)	ft)	(acre-ft)
January	29.30	-1.50	0.00	0.00	0.00	3.92	2.47	1.56	0.04	0.00	0.89	0.180	0.71	0.53
February	31.40	-0.33	0.00	0.00	0.00	3.30	1.92	1.21	0.03	0.00	0.89	0.180	0.35	0.17
March	38.90	3.83	0.67	1.17	0.46	3.85	2.41	1.52	0.04	0.00	0.89	0.180	0.66	0.48
April	48.30	9.06	2.46	3.47	1.37	3.61	2.20	1.38	0.04	0.01	0.89	0.180	0.52	0.34
May	58.50	14.72	5.13	6.42	2.53	3.23	1.86	1.17	0.03	0.02	0.89	0.180	0.29	0.11
June	68.00	20.00	8.16	9.47	3.73	3.22	1.85	1.17	0.03	0.04	0.89	0.180	0.27	0.09
July	73.80	23.22	10.23	11.44	4.51	3.06	1.71	1.08	0.03	0.04	0.89	0.180	0.18	0.00
August	72.30	22.39	9.68	10.93	4.30	3.37	1.98	1.25	0.03	0.04	0.89	0.180	0.35	0.17
September	64.70	18.17	7.05	8.38	3.30	3.47	2.07	1.31	0.03	0.03	0.89	0.180	0.42	0.24
October	54.10	12.28	3.90	5.10	2.01	3.79	2.36	1.48	0.04	0.02	0.89	0.180	0.61	0.43
November	44.90	7.17	1.72	2.58	1.02	3.98	2.53	1.59	0.04	0.01	0.89	0.180	0.73	0.55
December	34.70	1.50	0.16	0.36	0.14	3.73	2.30	1.45	0.04	0.00	0.89	0.180	0.60	0.42
	Mon	thly Heat Index (I):	49.15									-		

Coefficient Rate (a): 1.27

Notes:

1. The Thornthwaite Method was used to assess evapotranspiration and assumes that there is no evapotranspiration when temperatures are less than zero.

2. Precipitation and Annual temperature data represents 30-year average (1971 to 2000) for the Boston area taken from Northeast Regional Climate Center

(http://www.nrcc.cornell.edu/page_nowdata.html, January, 2011)

3. Runoff was estimated for the entire site using TR-55 method with a CN of 86 to represent the developed residential Pine Hill developmenet of 7.56 acres.

4. Area of the wetland (5,072 sq.ft.) for ET estimates and direct fall was taken as the permanent pool elevation 258.3 ft.

5. An infiltration rate of 0.125 in/hr was used for a seepage estimate and represents the recommended value for C soils.

6. Permanent pool area was assumed to be below the 258.3 contour with a volume of 7,845cubic feet.

7. Storage in excess of Permanent Pool represents temporary ponding above the permanent pool that eventually will drain through the outlet structure. A positive

value of Storage in Excess of Permanent Pool represents a positive water balance to the constructed wetland; therefore is expected to be sufficient for sustaining a

permanent pool and wetland vegetation.

8. Estimated water balance in July predicts a 0.00 acre feet change in storage during the month.

Attachment B.6 - Constructed Wetland Calculations II Pine Hill Village Harvard, Massachusetts

Constructed Wetland Calculations Project Name: Pine Hill Village Location: Harvard, MA Project Number: BW0118 Prepared By (Name and Date): Checked By (Name and Date):

Daniel Bourdeau, PE 16June2011 Steve Roy 16 June2011

Wetland Type: Pocket Wetland

Constructed Wetland Elevation (ft)	Surface Area (sq.ft.)	Incremental Storage Volume (cu.ft.)	Cummulative Storage Volume (cu.ft.)
254	729	0.0	0.0
255	972	850.5	850.5
256	1244	1108.0	1958.5
257	1541	1392.5	3351.0
258	4558	3049.5	6400.5
259	6345	7886.0	11237.0
260	7660	12218.0	18618.5
261	9072	15417.0	26654.0
262	10584	18244.0	36862.5

Outlet Schedule					
Elevation	Description				
258.30	4" Inlet Pipe				
258.32	2 Colums of 0.5 inch holes at 5" OC				
260.30	Overflow Riser (4ft x 4 ft @ 4(H):1(V))				
260.90	Emergency Spillway (22 feet long, 12 ft breath)				

Note:

1. Elevation represents the center of the hole for ease of construction and not the invert.

Attachment B.6 - Constructed Wetland Calculations III Pine Hill Village Harvard, Massachusetts

Constructed Wetland Calculations Project Name: Pine Hill Village Location: Harvard, MA Project Number: BW0118 Prepared By (Name and Date): Checked By (Name and Date):		el Bourdeau, PE 16June2011 e Roy 16 June2011
Impervious Area (Untreated; sq.ft.): WQV (cf):	<u>24569</u> <u>1024</u>	
Perm Pool Elev:	258.3	

Surface Area (@ PP):

Design Criteria	Recommended Criteria	(Min)	Site Design (Provided)
Minimum Drainage Area (acres)	>1		12.23
Surface Area/Watershed Ratio	>0.01		0.01
Length to Width Ratio	>2:1		2.03
Extended Detention (ED)	OPTIONAL	NO	NO
Allocation of WQ Volume			
wet pools (%, cf)	20	205	235
high and low marsh (%, cf)	80	819	755
Extended Detention (ED; %, cf)	2	20	34
Allocation of Surface Area			
deep water (1.5 ft to 6 ft)	5	254	0
low marsh (0.5 ft to 1.5 ft)	50	2536	0
high marsh (0 to 0.5 ft)	40	2029	0
semi-wet (90th Percentile Event Flood)	5	254	0
Sediment Forebay (20% of 0.5" WQV)	REQUIRED	205	259

<u>5072</u>

Attachment B.7 Pine Hill Village - Harvard, MA 24" Culvert - Main Line

Dra	inage	Area =	5.518	acres
	~	. 1		

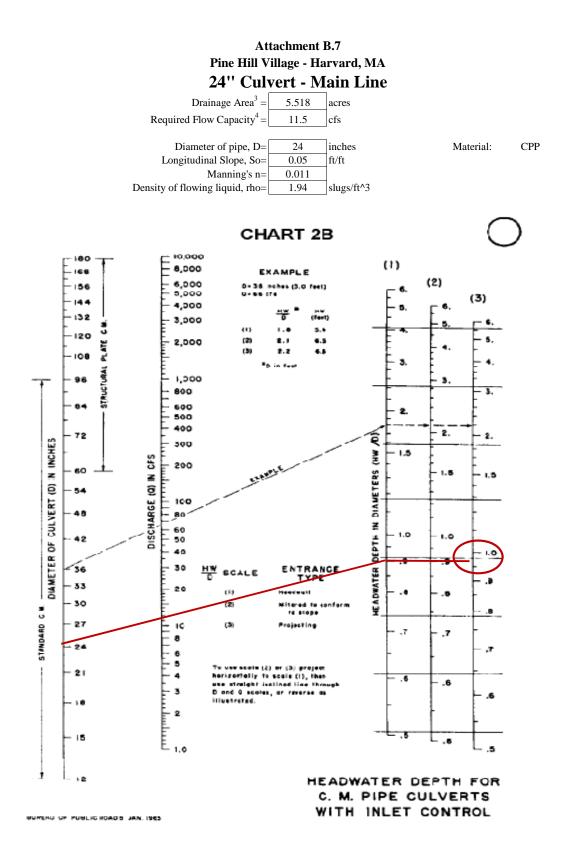
Required Flow Capacity¹ = cfs 11.5

CPP Material:

inches Diameter of pipe, D= 24 Longitudinal Slope, So= 0.05 Manning's n= 0.011 Density of flowing liquid, rho= 1.94

ft/ft slugs/ft^3

Theta radians	Theta degrees	Depth of Flow y inches	Area of Flow A ft^2	Wetted Perimeter P ft	Hydraulic Radius R ft	Average Velocity V ft/s	Discharge Q=A*V cfs	Force* F Ibf
0.00	0	0.0	0.000	0.00		0.0	0.00	0.0
0.25	14	0.1	0.001	0.25	0.01	0.9	0.00	0.0
0.50	29	0.4	0.010	0.50	0.02	2.3	0.02	0.1
0.75	43	0.8	0.034	0.75	0.05	3.9	0.13	1.0
1.00	57	1.5	0.079	1.00	0.08	5.6	0.44	4.8
1.25	72	2.3	0.151	1.25	0.12	7.4	1.11	15.9
1.50	86	3.2	0.251	1.50	0.17	9.2	2.31	41.2
1.75	100	4.3	0.383	1.75	0.22	11.0	4.21	89.8
2.00	115	5.5	0.545	2.00	0.27	12.7	6.94	171.5
2.25	129	6.8	0.736	2.25	0.33	14.4	10.58	295.0
2.50	143	8.2	0.951	2.50	0.38	15.9	15.11	465.9
2.75	158	9.7	1.184	2.75	0.43	17.3	20.45	684.9
3.00	172	11.2	1.429	3.00	0.48	18.5	26.41	946.3
3.25	186	12.7	1.679	3.25	0.52	19.5	32.74	1238.3
3.50	201	14.1	1.925	3.50	0.55	20.3	39.15	1544.0
3.75	215	15.6	2.161	3.75	0.58	21.0	45.31	1843.2
4.00	229	17.0	2.378	4.00	0.59	21.4	50.93	2115.7
4.25	244	18.3	2.572	4.25	0.61	21.7	55.74	2343.4
4.50	258	19.5	2.739	4.50	0.61	21.7	59.56	2513.2
4.75	272	20.6	2.875	4.75	0.61	21.7	62.29	2618.1
5.00	286	21.6	2.979	5.00	0.60	21.4	63.89	2658.1
5.25	301	22.4	3.054	5.25	0.58	21.1	64.46	2639.4
5.50	315	23.1	3.103	5.50	0.56	20.7	64.15	2573.1
5.75	329	23.6	3.129	5.75	0.54	20.2	63.16	2473.3
6.00	344	23.9	3.140	6.00	0.52	19.7	61.74	2355.3
6.25	358	24.0	3.142	6.25	0.50	19.1	60.14	2233.6


MAX FLOW CAPACITY = 64.5 CFS 11.5

CFS

REQUIRED FLOW CAPACITY = MAX CAPACITY > REQ'D CAPACITY? Y

NOTES:

1. Required Flow Capacity (cfs) was based on 25-year peak discharge

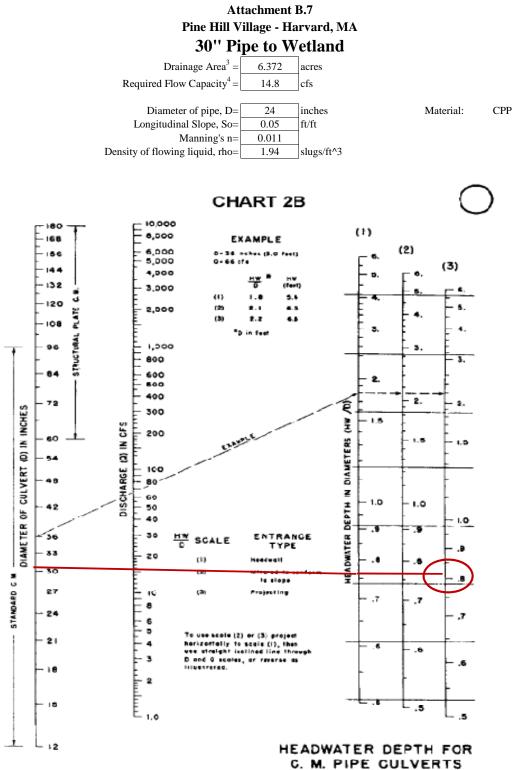
Attachment B.7 Pine Hill Village - Harvard, MA 30'' Pipe to Wetland

	_	_	
Drainage Area =	6.372	acres	
Required Flow Capacity ¹ =	14.8	cfs	
Diameter of pipe, D=	30	inches	Mater

erial: CPP

Longitudinal Slope, So= Manning's n= Density of flowing liquid, rho= 1.94 Slope, So= 0.01 ft/ft slugs/ft^3

Theta radians	Theta degrees	Depth of Flow y inches	Area of Flow A ft^2	Wetted Perimeter P ft	Hydraulic Radius R ft	Average Velocity V ft/s	Discharge Q=A*V cfs	Force* F Ibf
0.00	0	0.0	0.000	0.00		0.0	0.00	0.0
0.25	14	0.1	0.002	0.31	0.01	0.5	0.00	0.0
0.50	29	0.5	0.016	0.63	0.03	1.2	0.02	0.0
0.75	43	1.0	0.053	0.94	0.06	2.0	0.11	0.4
1.00	57	1.8	0.124	1.25	0.10	2.9	0.36	2.0
1.25	72	2.8	0.235	1.56	0.15	3.8	0.90	6.7
1.50	86	4.0	0.393	1.88	0.21	4.8	1.87	17.4
1.75	100	5.4	0.598	2.19	0.27	5.7	3.41	37.8
2.00	115	6.9	0.852	2.50	0.34	6.6	5.63	72.2
2.25	129	8.5	1.150	2.81	0.41	7.5	8.58	124.1
2.50	143	10.3	1.486	3.13	0.48	8.2	12.25	196.1
2.75	158	12.1	1.850	3.44	0.54	9.0	16.58	288.2
3.00	172	13.9	2.233	3.75	0.60	9.6	21.41	398.3
3.25	186	15.8	2.624	4.06	0.65	10.1	26.55	521.1
3.50	201	17.7	3.008	4.38	0.69	10.6	31.74	649.8
3.75	215	19.5	3.376	4.69	0.72	10.9	36.74	775.7
4.00	229	21.2	3.716	5.00	0.74	11.1	41.30	890.4
4.25	244	22.9	4.020	5.31	0.76	11.2	45.20	986.2
4.50	258	24.4	4.279	5.63	0.76	11.3	48.30	1057.7
4.75	272	25.8	4.492	5.94	0.76	11.2	50.51	1101.8
5.00	286	27.0	4.655	6.25	0.74	11.1	51.81	1118.7
5.25	301	28.0	4.773	6.56	0.73	11.0	52.27	1110.8
5.50	315	28.9	4.848	6.88	0.71	10.7	52.02	1082.9
5.75	329	29.5	4.889	7.19	0.68	10.5	51.22	1040.9
6.00	344	29.8	4.906	7.50	0.65	10.2	50.07	991.2
6.25	358	30.0	4.909	7.81	0.63	9.9	48.77	940.0


MAX FLOW CAPACITY = 52.3 CFS

CFS

REQUIRED FLOW CAPACITY = 14.8 MAX CAPACITY > REQ'D CAPACITY? Y

NOTES:

1. Required Flow Capacity (cfs) was based on 25-year peak discharge

BUREAU OF PUBLIC ROADS JAN. 1965

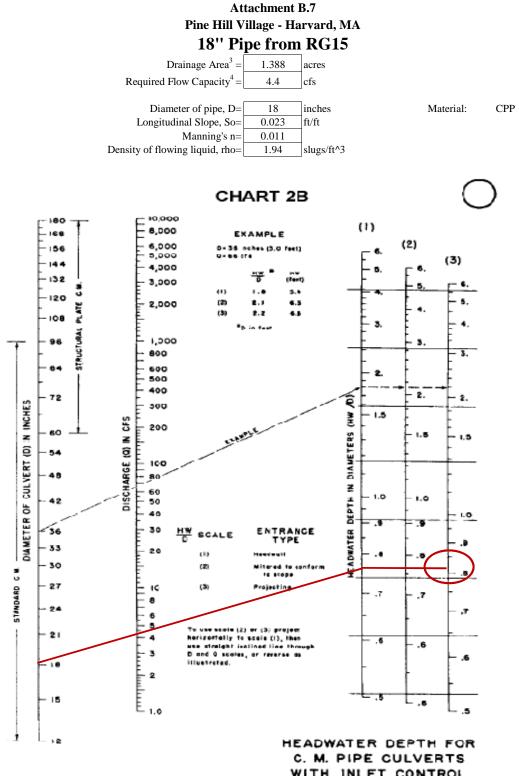
G. M. PIPE CULVERTS WITH INLET CONTROL

Attachment B.7 Pine Hill Village - Harvard, MA 18" Pipe from RG15

	L			
Drainage Area =	1.388	acres		
Required Flow Capacity ¹ =	4.4	cfs		
Diameter of pipe, D=	18	inches	Material:	CPP
Longitudinal Slope, So=	0.023	ft/ft		
Manning's n=	0.011]		

Density of flowing liquid, rho= 1.94 slugs/ft^3

Theta radians	Theta degrees	Depth of Flow y inches	Area of Flow A ft^2	Wetted Perimeter P ft	Hydraulic Radius R ft	Average Velocity V ft/s	Discharge Q=A*V cfs	Force* F Ibf
0.00	0	0.0	0.000	0.00		0.0	0.00	0.0
0.25	14	0.1	0.001	0.19	0.00	0.5	0.00	0.0
0.50	29	0.3	0.006	0.38	0.02	1.3	0.01	0.0
0.75	43	0.6	0.019	0.56	0.03	2.2	0.04	0.2
1.00	57	1.1	0.045	0.75	0.06	3.1	0.14	0.8
1.25	72	1.7	0.085	0.94	0.09	4.1	0.35	2.8
1.50	86	2.4	0.141	1.13	0.13	5.1	0.73	7.3
1.75	100	3.2	0.215	1.31	0.16	6.2	1.33	15.8
2.00	115	4.1	0.307	1.50	0.20	7.1	2.19	30.2
2.25	129	5.1	0.414	1.69	0.25	8.0	3.33	52.0
2.50	143	6.2	0.535	1.88	0.29	8.9	4.76	82.1
2.75	158	7.2	0.666	2.06	0.32	9.7	6.44	120.7
3.00	172	8.4	0.804	2.25	0.36	10.3	8.32	166.8
3.25	186	9.5	0.944	2.44	0.39	10.9	10.31	218.3
3.50	201	10.6	1.083	2.63	0.41	11.4	12.33	272.2
3.75	215	11.7	1.215	2.81	0.43	11.7	14.27	324.9
4.00	229	12.7	1.338	3.00	0.45	12.0	16.04	373.0
4.25	244	13.7	1.447	3.19	0.45	12.1	17.55	413.1
4.50	258	14.7	1.541	3.38	0.46	12.2	18.76	443.0
4.75	272	15.5	1.617	3.56	0.45	12.1	19.61	461.5
5.00	286	16.2	1.676	3.75	0.45	12.0	20.12	468.6
5.25	301	16.8	1.718	3.94	0.44	11.8	20.30	465.3
5.50	315	17.3	1.745	4.13	0.42	11.6	20.20	453.6
5.75	329	17.7	1.760	4.31	0.41	11.3	19.89	436.0
6.00	344	17.9	1.766	4.50	0.39	11.0	19.44	415.2
6.25	358	18.0	1.767	4.69	0.38	10.7	18.94	393.7


MAX FLOW CAPACITY = 20.3 CFS 4.4

CFS

REQUIRED FLOW CAPACITY = MAX CAPACITY > REQ'D CAPACITY? Y

NOTES:

1. Required Flow Capacity (cfs) was based on 25-year peak discharge

WUMERU OF PUBLIC ROADS JAN. 1965

WITH INLET CONTROL

Attachment B.7 Pine Hill Village - Harvard, MA 18" Culvert from Lot 4

Dra	inage	Area =	0.397	acres
	~	. 1		

Required Flow Capacity¹ = cfs 1.0

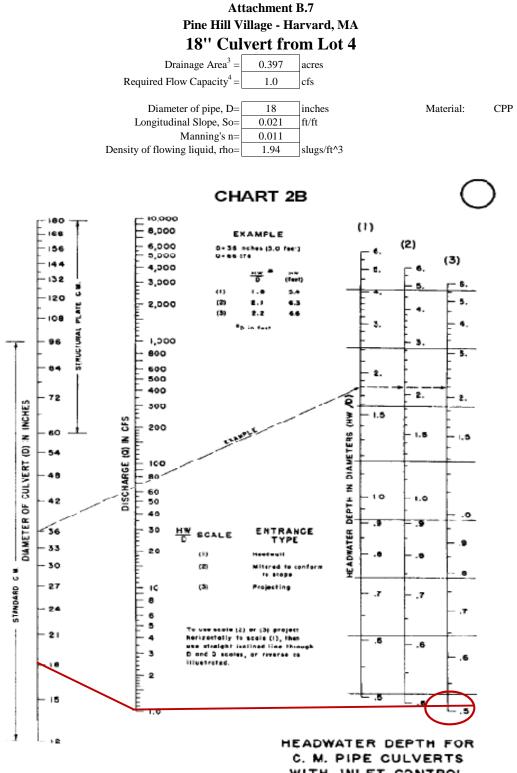
Material:	CPP
material.	

Diameter of pipe, D= Longitudinal Slope, So= Manning's n=

inches 18 0.021 ft/ft 0.011

slugs/ft^3 Density of flowing liquid, rho= 1.94

Theta radians	Theta degrees	Depth of Flow y inches	Area of Flow A ft^2	Wetted Perimeter P ft	Hydraulic Radius R ft	Average Velocity V ft/s	Discharge Q=A*V cfs	Force* F lbf
0.00	0	0.0	0.000	0.00		0.0	0.00	0.0
0.25	14	0.1	0.001	0.19	0.00	0.5	0.00	0.0
0.50	29	0.3	0.006	0.38	0.02	1.2	0.01	0.0
0.75	43	0.6	0.019	0.56	0.03	2.1	0.04	0.2
1.00	57	1.1	0.045	0.75	0.06	3.0	0.13	0.8
1.25	72	1.7	0.085	0.94	0.09	3.9	0.33	2.6
1.50	86	2.4	0.141	1.13	0.13	4.9	0.70	6.6
1.75	100	3.2	0.215	1.31	0.16	5.9	1.27	14.5
2.00	115	4.1	0.307	1.50	0.20	6.8	2.09	27.6
2.25	129	5.1	0.414	1.69	0.25	7.7	3.18	47.5
2.50	143	6.2	0.535	1.88	0.29	8.5	4.55	75.0
2.75	158	7.2	0.666	2.06	0.32	9.2	6.15	110.2
3.00	172	8.4	0.804	2.25	0.36	9.9	7.95	152.3
3.25	186	9.5	0.944	2.44	0.39	10.4	9.85	199.3
3.50	201	10.6	1.083	2.63	0.41	10.9	11.78	248.5
3.75	215	11.7	1.215	2.81	0.43	11.2	13.63	296.7
4.00	229	12.7	1.338	3.00	0.45	11.5	15.32	340.5
4.25	244	13.7	1.447	3.19	0.45	11.6	16.77	377.2
4.50	258	14.7	1.541	3.38	0.46	11.6	17.92	404.5
4.75	272	15.5	1.617	3.56	0.45	11.6	18.74	421.4
5.00	286	16.2	1.676	3.75	0.45	11.5	19.23	427.8
5.25	301	16.8	1.718	3.94	0.44	11.3	19.40	424.8
5.50	315	17.3	1.745	4.13	0.42	11.1	19.30	414.2
5.75	329	17.7	1.760	4.31	0.41	10.8	19.00	398.1
6.00	344	17.9	1.766	4.50	0.39	10.5	18.58	379.1
6.25	358	18.0	1.767	4.69	0.38	10.2	18.10	359.5


MAX FLOW CAPACITY = 19.4 CFS 1.0

CFS

REQUIRED FLOW CAPACITY = MAX CAPACITY > REQ'D CAPACITY? Y

NOTES:

1. Required Flow Capacity (cfs) was based on 25-year peak discharge

WUMERU OF PUBLIC ROADS JAN. 1965

WITH INLET CONTROL

Pine Hill Village Harvard, MA

Attachment B8. TSS Calculations

TSS Removal Percentage Calculations

Prepared By (Name and Date): Renee Fitsik (05.10.11) (updated by Julia Keay (07.30.18)

Checked By (Name and Date): Daniel Bourdeau, PE (05.10.11)

Calculated using the Simple Method

where L = pollutant load (lbs); P = annual rainfall depth (42.5 inches);

L = [P*P_j*R_v/12)]*C*A*2.72

Pj = correction for P for storms that don't produce runoff (0.90); Rv = 0.05 + 0.009 (I); I = % impervious area

C = pollutant concentration (TSS EMC, Stormwater Center Model Value); A = drainage area (acres)

BMP	Drainage Area (ac)	Impervious Area (ac)	% Impervious	TSS EMC (mg/L) ¹	TSS Load (lbs/year) ²	BMP Removal Efficiency with Appropriate	Load Removed (Ibs/year)
RG #3	0.150	0.070	47%	100	61.12	Pretreatment ³ 90%	55.0
RG #3 RG #4	0.035	0.012	34%	100	10.88	90%	9.8
RG #4 RG #5	0.052	0.012	40%	100	18.64	90%	16.8
RG #10	0.032	0.015	31%	100	13.79	90%	10.8
RG #11	0.043	0.027	63%	100	22.93	90%	20.6
RG #12	0.213	0.050	23%	100	48.25	90%	43.4
RG #13	0.099	0.053	54%	100	45.65	90%	41.1
RG #14	0.055	0.035	64%	100	29.69	90%	26.7
RG #15	1.015	0.199	20%	100	199.28	90%	179.4
RG #16	0.246	0.000	0%	100	10.66	90%	9.6
RG #19	0.717	0.168	23%	100	162.17	90%	146.0
RG #20	0.265	0.000	0%	100	11.49	90%	10.3
RG #21	0.228	0.155	68%	100	130.83	90%	117.7
RG #22	0.153	0.023	15%	100	24.58	90%	22.1
RG #23	0.030	0.007	23%	100	6.76	90%	6.1
Bus Station	0.554	0.204	37%	100	183.20	90%	164.9
Cul-de-sac	0.243	0.072	30%	100	66.72	90%	60.0
Constructed V	9.800			100	83.21	80%	66.6

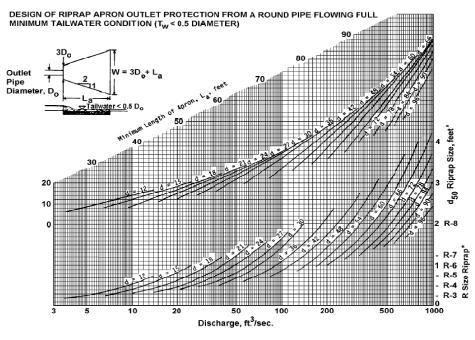
TOTAL LOAD ⁵ :	1046.64
TOTAL REMOVED ⁶ :	1008.5
% REMOVAL ⁷ :	96%

Notes and Supplemental Calculations

1. TSS EMC Values (http://www.stormwatercenter.net/monitoring%20and%20assessment/simple%20meth/simple%20TSS%20table%201.htm)

2. Annual Load (lbs) was calculated using the Simple Method

3. BMP Removal Efficiency values were taken from the MA Stormwater BMP Manual, dated February 2008.


4. Load Removed calculated by multiplying the Annual Load times the BMP Removal Efficiency

5. Total Load calculated as the sum of the TSS load within the watershed

6. Total Removal is sum of the difference between the starting load and the load after BMP removal

7. Watershed Percent removal is calculated as the total load divided by the load removed

	ATTACHMENT B9		
PROJECT NAME:	Pine Hill Village		
LOCATION:	Harvard, MA		
PREPARED BY:	DHB	DATE:	6/3/2011
CHECKED BY:	SR	DATE:	6/3/2011

	Riprap Apron Schedule										
Apron	Outfall	Diameter	Discharge	Rip Rap Size, D ₅₀	Thickness, T	Length, A _L	Initial Width, A _{IW}	Terminal Width, A _{TW}			
		(in)	(cfs)	(in)	(ft)	(ft)	(ft)	(ft)			
RRA-1	Constructed Wetland	30	22.5	6	1.5	10	6.0	16.0			
RRA-2	MH#1	30	11	6	1.5	10	6.0	6.0			
RRA-3	12" RCP/PS7	12	3	6	1.5	6	3.0	9.0			
RRA-4	12" RCP/PS7	12	2	6	1.5	6	3.0	9.0			
E Spill	CTW	NA	0	6	1.5	12	22.0	22.0			

NOTES:

1. Outfall refers to thelocation referenced on Figure 4.

2. Peak discharge associated with the 25 year, 24 hour design storm water used in the analysis, except for the CTW calculation which uses the 100 year, 24 hour...

3. Riprap aprons are required when the design velocity anticipated at the outfall of a conveyance is less than 14.5 fps.

4. Table 9 is used to evaluate acceptable velocities for various rip rap gradations.

	Graded Rock Size (in)		Filter Blanket Requirements**			
NSA No.	Max.	d50*	Min.	Size NSA No.	Placement Thickness	V _{max} (ft/sec
R-1	1.5	.75	No. 8	FS-1	N/A	2.5
R-2	3	1.5	1	FS-1	N/A	4.5
R-3	6	3	2	FS-1	3	6.5
R-4	12	6	3	FS-2	4	9.0
R-5	18	9	5	FS-2	6	11.5
R-6	24	12	7	FS-3	8	13.0
R-7	30	15	12	FS-3	10	14.5

The d_{tg} stone size is the size exceeded by 50% of the total weight of the tonnage shipped (i.e. 50% by weight shall consist of pieces larger than the d_{tg} stone size"). This is a general standard. Soil conditions at each site should be analyzed to determine actual filter size. A suitable overon ron-woven geotextile underlayment, used according to manufacturer's recommendations, may be substituted for the filter stone.

TABLE 9 Riprap Gradation, Filter Blanket Requirements, Maximum Velocities

ATTACHMENT C

Long Term Pollution Prevention Plan

Prepared for:

Pine Hill Village LLC PO Box 468 Tyngsboro, MA 01879

Long Term Pollution Prevention Plan for the Storm Water Management System

Pine Hill Village Harvard, Massachusetts

Prepared by:

Geosyntec^C consultants

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, MA 01720

Project Number BW0118

October 18, 2010

TABLE OF CONTENTS

1.	BAG	CKGROUND	1
2.	FAC	CILITY DESCRIPTION AND CONTACT INFORMATION	1
	2.1	Owner Information Error! Bookmark not define	ed.
	2.2	Operator Information Error! Bookmark not define	ed.
3.	LON	NG TERM PRACTICES	1
	3.1	Good Housekeeping	1
	3.2	Material Storage	2
	3.3	Vehicle Washing;	2
	3.4	Spill Prevention and Response;	2
	3.5	Lawns, Gardens, and Landscaped Area Maintenance;	2
	3.6	Pet Waste Management;	2
	3.7	On-site Sanitary Systems;	2
	3.8	Deicing Chemicals and Snow Removal	3

1. BACKGROUND

The development and implementation of this Long Term Pollution Prevention Plan (LTPPP) is based on the requirements of the Massachusetts Wetland Protection Act (M.G.L. c. 131 §40) and the Massachusetts Clean Water Act (M.G.L. c. 21 §§26-53) under Stormwater Management Standard #4. The purpose of the LTPPP is to ensure that the stormwater management system covered under this plan incorporate long-term suitable practices for source control of pollutants and that these pollution prevention measures are implemented and maintained to protect the quality of Massachusetts' waters from pollutants, which may harm drinking water, fish, wildlife, and recreational activities.

2. FACILITY DESCRIPTION AND CONTACT INFORMATION

2.1 <u>Owner Information</u>

Name: Pine Hill Village LLC Address: PO Box 468 City, State, Zip Code: Tyngsboro, MA 01879 Telephone Number: 978.509.3235

2.2 **Operator Information**

Name: Pine Hill Village LLC Address: PO Box 468 City, State, Zip Code: Tyngsboro, MA 01879 Telephone Number: 978.509.3235

Should property owners or operators change, a formal written and signed transfer of operational control shall be made between the parties that includes requirements of this LTPPP.

3. LONG TERM PRACTICES

Long term pollution prevention practices are recommended to be implemented at the Pine Hills Village as part of the stormwater management plan:

3.1 <u>Good Housekeeping</u>

The owner is expected to use good housekeeping practices to ensure the following:

- Surfaces without vegetative cover are stabilized to prevent the loss of soil;
- Debris, trash and other materials are not allowed to accumulate in stormwater features; and

• Sediment on pavement including driveways, walkways, roads, etc. are swept and properly disposed prior to precipitation events to prevent sediment migration in stormwater runoff.

3.2 <u>Material Storage</u>

The owner is expected to use safe material storage practices to the maximum extent practicable as follows:

- Store municipal solid waste in covered containers or within storage buildings; and
- Store household materials (e.g., paints, cleaners, etc.) in storage areas that are not exposed to precipitation; and
- Store fertilizers, herbicides, chemicals and pesticides according to label requirements and if possible within storage buildings.

3.3 <u>Vehicle Washing</u>

The owner should use hoses equipped with trigger nozzles to reduce the amount of water used as well as to direct as much runoff water toward raingardens and/or vegetated surfaces as possible.

3.4 <u>Spill Prevention and Response</u>

In the event of a spill on private property or within the roadway, the local fire department should be called to respond. Spills should be cleaned according to local, state and federal regulations. If a large spill (i.e., greater than five gallons) of petroleum occurs and migrates into the stormwater system, the bioretention cells and raingardens should be inspected, cleaned and have material replaced as needed and described in the OMP for the site.

3.5 Lawns, Gardens, and Landscaped Area Maintenance

The owner should use natural lawn care and garden practices. There are no irrigation systems throughout the village and irrigation is not recommended because the vegetation of the village is drought tolerant.

3.6 <u>Pet Waste Management</u>

Homeowners should be educated on proper pet waste management including pickup after their pets and not disposing of pet waste in stormwater features.

3.7 <u>On-site Sanitary Systems</u>

The on-site sanitary system will require annual inspections to inspect septic tanks, pump stations and gravity sewers for any required cleaning, pumping or maintenance. Septic tanks will be pumped out every five to seven years typically, however if inspection reveals solids or scum in excess of design levels, more frequent pumping will be required. The treatment system is required to be inspected and sampled quarterly for the first two years, following which a reduction in sampling/inspection can be requested provided that the system is performing as designed. The dispersal systems will be inspected annually. Maintenance activities in accordance with manufacturer's recommendations will be conducted, if necessary, during the annual inspections.

3.8 Deicing Chemicals and Snow Removal

Sand/salt mixtures will be used to reduce salt application amounts and snow will not be deposited within the constructed wetlands, bioretention cells or raingardens.

ATTACHMENT D

Operation and Maintenance Plan

Prepared for:

Pine Hill Village LLC PO Box 468 Tyngsboro, MA 01879

Operations and Maintenance Plan for the Storm Water Management System

Pine Hill Village Harvard, Massachusetts

Prepared by:

Geosyntec^C consultants

engineers | scientists | innovators

289 Great Road, Suite 105 Acton, MA 01720

Project Number BW0118

October 18, 2010 (Revised January 26, 2011 and July 18, 2018)

TABLE OF CONTENTS

1.	BACKGROUND	.1
2.	FACILITY DESCRIPTION AND CONTACT INFORMATION.2.1 Owner Information2.2 Operator Information	. 1
3.	MAINTENANCE	.1
4.	PLANS	.2
5.	PUBLIC SAFETY INFORMATION	.2
6.	BUDGET	.3
7.	OMP APPENDICES	.3

1. BACKGROUND

The development and implementation of this Operation and Maintenance Plan (OMP) is based on the requirements of the Massachusetts Wetland Protection Act (M.G.L. c. 131 §40) and the Massachusetts Clean Water Act (M.G.L. c. 21 §§26-53) under Stormwater Management Standard #9, Operations and Maintenance Plan. The purpose of the OMP is to ensure that the stormwater management systems covered under this plan function as they are designed over the service life of the system and protect the quality of Massachusetts' waters from pollutants, which may harm drinking water, fish, wildlife, and recreational activities.

2. FACILITY DESCRIPTION AND CONTACT INFORMATION

2.1 <u>Owner Information</u>

Name: Pine Hill Village LLC Address: PO Box 468 City, State, Zip Code: Tyngsboro, MA 01879 Telephone Number: 978.509.3235

2.2 **Operator Information**

Name: Pine Hill Village LLC Address: PO Box 468 City, State, Zip Code: Tyngsboro, MA 01879 Telephone Number: 978.509.3235

Should operation control of the stormwater management features identified in this OMP be change, a formal written and signed transfer of operational control shall be made between the parties clearly identifying the responsibilities and associated budgets being transferred. The agreement shall be incorporated into this OMP.

3. MAINTENANCE

Routine maintenance shall be conducted by qualified personnel identified by the Operator. Maintenance shall be performed in a manner that minimizes impacts to wetland resource areas. Recommended routine maintenance for each type of stormwater facility is identified in Appendix A. General guidelines for maintenance for all stormwater facilities are as follows:

- 1. Follow local, state, and federal safety requirements as well as public safety guidelines and requirements described in this OMP.
- 2. Perform maintenance during daylight hours.
- 3. Follow recommended maintenance for each facility described in Appendix A.

- 4. Snow removal and storage shall be managed in accordance with the Snow Storage Plan.
- 5. Sediment removed from the stormwater facilities shall be managed according to Massachusetts Department of Environmental Protection (MA DEP) requirements summarized below:
 - MA DEP characterizes catch basin debris as solid waste, unless there is evidence that they have been contaminated by a spill or other means. Contaminated catch basin debris is categorized according to Hazardous Waste Regulations 310 CMR 30.000;
 - Catch basin cleanings may be taken to a landfill or other solid waste facility permitted by MA DEP to accept solid waste without any prior approvals through MA DEP; and
 - MA DEP regulations prohibit solid waste facilities to accept material that contains free-draining liquids. Catch basin cleanings should be dewatered by draining the liquid back to the stormwater facility.
- 6. Maintain an operation and maintenance log, including inspections, repairs, replacement and disposal (for disposal, the log shall indicate the type of material and the disposal location). A log is included in Appendix B.

4. PLANS

The following plans identify the stormwater management facilities described in this OMP:

1. "Proposed Conditions Stormwater Management Plan, Pine Hill Village in Harvard, Mass.," dated January 2018.

5. PUBLIC SAFETY INFORMATION

Public safety guidelines and local, state, and federal safety requirements shall be followed during maintenance activities described in this OMP. Public safety shall take priority over maintenance activities. Public safety shall include, but not be limited to, the following:

- 1. Operators shall have required personal protective equipments (PPE) during maintenance activities;
- 2. Maintenance activities that are conducted entirely or partially in a right of way, shall have proper police detail according local and state requirements;
- 3. Although not anticipated, confined space entry regulations may be applied during inspection of catch basins, culverts, and manholes. Confined space entry is regulated under 29 CFR 1910, Occupation Safety and Health Standards (OSHA).

6. BUDGET

The annual maintenance budget for the road features (i.e., catch basins, manholes, etc...) and landscape features (i.e., constructed wetland, swales, raingardens and bioretention cells) will be incorporated under the Pine Hill Village Association annual maintenance budget. Should the road be accepted as a public way, it's annual maintenance will be incorporated under the Town of Harvard's Annual Budget. The annualized effort budget estimated for maintenance of the stormwater BMPs described in this OMP is summarized as follows:

Task	Estimate Annual Effort ¹
Clean Accumulated Sediment ²	\$6,653
Restore BMPs ³	\$3,458
Total Annual Budget	\$10,111

NOTES:

- 1. Assumes the hourly rate for one skilled laborer costs \$65 per hour, therefore \$524 per laborer-day
- 2. Assumes three skilled laborers for two full 8 hour days at \$524 per laborer-day, a light machine with operator for two days at \$1200 per day plus 20% contingency (does not include export costs to dispose sediment offsite).
- 3. Assume three skilled laborers for two full 8 hour days at \$524 per laborer-day, plus 10% for equipment operations.

7. **OMP APPENDICES**

The following documentation is attached to this OMP:

Appendix A – Routine Maintenance; and

Appendix B – Routine Maintenance Log.

APPENDIX A

ROUTINE MAINTENANCE

Stormwater Improvements Pine Hill Village, Harvard, Massachusetts Routine Maintenance

Best Management Practice	Maintenance Activity	Frequency
Sediment Forebay	Remove accumulated sediment and debris from forebay, sediment should be removed on the scheduled frequency and when sediment accumulates to the elevation of the clean out stake	Spring
	Restore denuded vegetation and vegetation damaged from cleaning activities	Spring
	Replenish sand base to original elevation	As Required
	Inspect and clean overflow spillway and low-flow outlet (if applicable) and repair rills and replenish rip-rap	Every Other Spring
	Mow vegetation and remove saplings, etc. in the areas of the access points, inlets and outlets	
Vegetated Channels and Swales	Inspect channels to ensure vegetation is adequate and look for signs of riling and erosion, repair rills and replace denuded vegetation	Spring
	Mow vegetation when vegetation height exceeds the channel depth and remove debris Restore denuded vegetation that may be damaged from winter plowing and sanding/salting	
	Remove accumulated sediment and debris	Spring
	Inspect check dams and replenish rip-rap to restore to original condition	

Stormwater Improvements Pine Hill Village, Harvard, Massachusetts Routine Maintenance

Best Management Practice	Maintenance Activity	Frequency
	Remove accumulated sediment and debris	Spring
Rip-Rap Outfalls	Inspect channel lining and outfalls for signs of riling and erosion, repair rills and replace/restore rip-rap	Spring
Constructed Wetland	Maintain the sediment forebay portion of the constructed wetland according to "Sediment Forebay" described above	Spring
	Manually clear accumulated sediment from the wetland portion of the constructed wetlandInspect wetland plants for health and vigor, replace dead, or impaired plants with native species that are colonizing the wetland. Inspect for invasive species and manually remove from the constructed wetlandInspect embankments and outlet control structural damage and debris. Repair as requiredInspect outfall and spillway for signs of riling and erosion, repair rills and replace/restore rip-rap	
	Inspect wetland for rills or evidence of channelized flow; restore wetland micro- topography to ensure flows through wetland are distributed through the wetland area	Once every 10 Years

Stormwater Improvements Pine Hill Village, Harvard, Massachusetts Routine Maintenance

Best Management Practice	Maintenance Activity	Frequency
Drain Basins	Clean accumulated sediment and debris from the sump at the scheduled frequency. Sediment should also be removed when accumulated sediment depths are greater than one half the depth from the bottom of the invert of the lowest pipe in the basin.	Quarterly
Bioretention and Raingarden Areas	Inspect site including soil and plants and remove any accumulated sediment, debris and waste	Monthly
	Add mulch and fertilizers to help vegetation growthAddRemove and replace visible dead or weak vegetationAddMow and trim adjacent areasAdd	
Porous Pavers	Inspect the pavers to ensure that the surface drains properly after storms. Replace joint material when material has settled or eroded to more than 25 percent the thickness of the paver block.	Annually
	Inspect paver surface for deterioration. Replace or reinstall pavers once paver surface deteriorates (e.g., chips, erodes, settles, etc.) to a point that causes risk to public safety.	Annually
Clean surface using power washer and then vacuum sweep the area.		Annually

The Operation and Maintenance Log is intended for stormwater management features described in the Operations and Maintenance Plan for Pine Hill Village, Harvard, Massachusetts prepared by Geosyntec Consultants, Inc. and dated October 2010.

APPENDIX B

ROUTINE MAINTENANCE LOG

Stormwater Improvements Pine Hill Village, Harvard, Massachusetts Maintenance Log

Date	Description of Maintenance	Operator	Estimated Volume of Material Removed (CYD)	Disposal Facility

The Operation and Maintenance Log is intended for stormwater management features described in the Operations and Maintenance Plan for Pine Hill Village, Harvard, Massachusetts prepared by Geosyntec Consultants, Inc. and dated July 2018.

ATTACHMENT E

Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

1. 1/31/18

Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

🖂 Soil A	Analysis	provided.
----------	----------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static	
---------------	--

 \boxtimes Simple Dynamic \square Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- · Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)										
Standard 4: Water Quality (continued)										
The BMP is sized (and calculations provided) based on:										
The ½" or 1" Water Quality Volume or										
The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.										
The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.										
A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.										
Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)										
 The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i> to the discharge of stormwater to the post-construction stormwater BMPs. 										
The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.										
LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.										
All exposure has been eliminated.										
All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.										
The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.										
Standard 6: Critical Areas										

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.

Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project
 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
Bike Path and/or Foot Path
Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an

explanation of why these standards are not met is contained in the Stormwater Report.

The project involves redevelopment and a description of all measures that have been taken to

improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

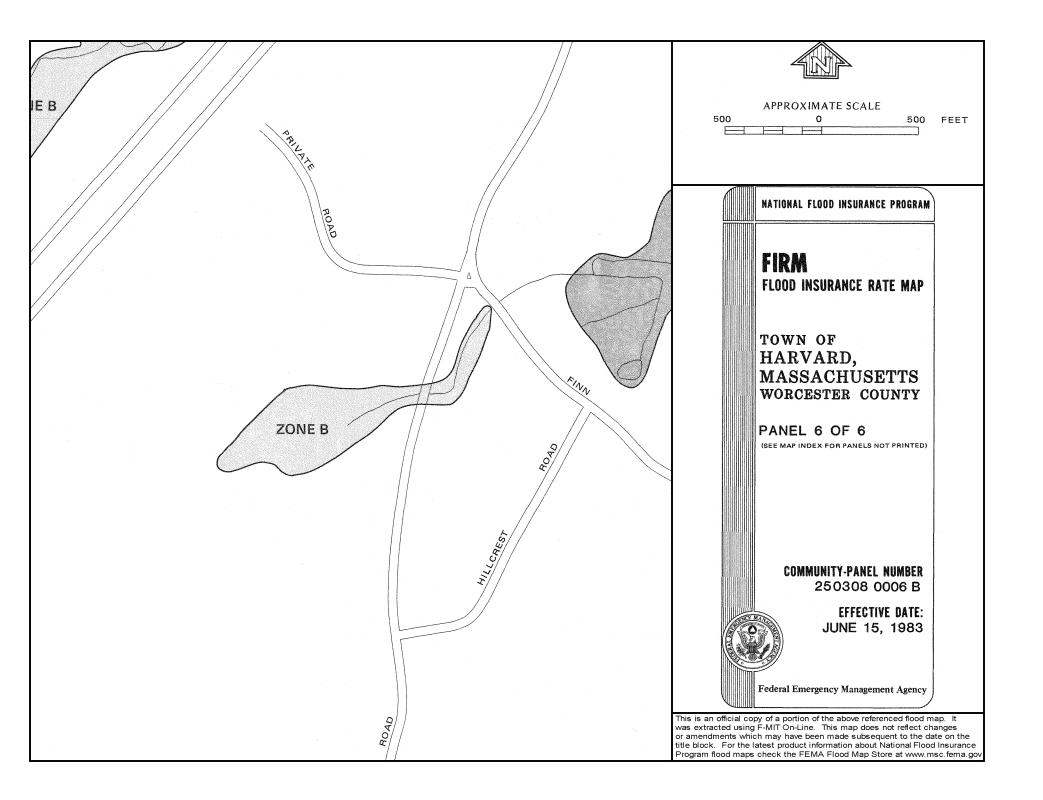
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

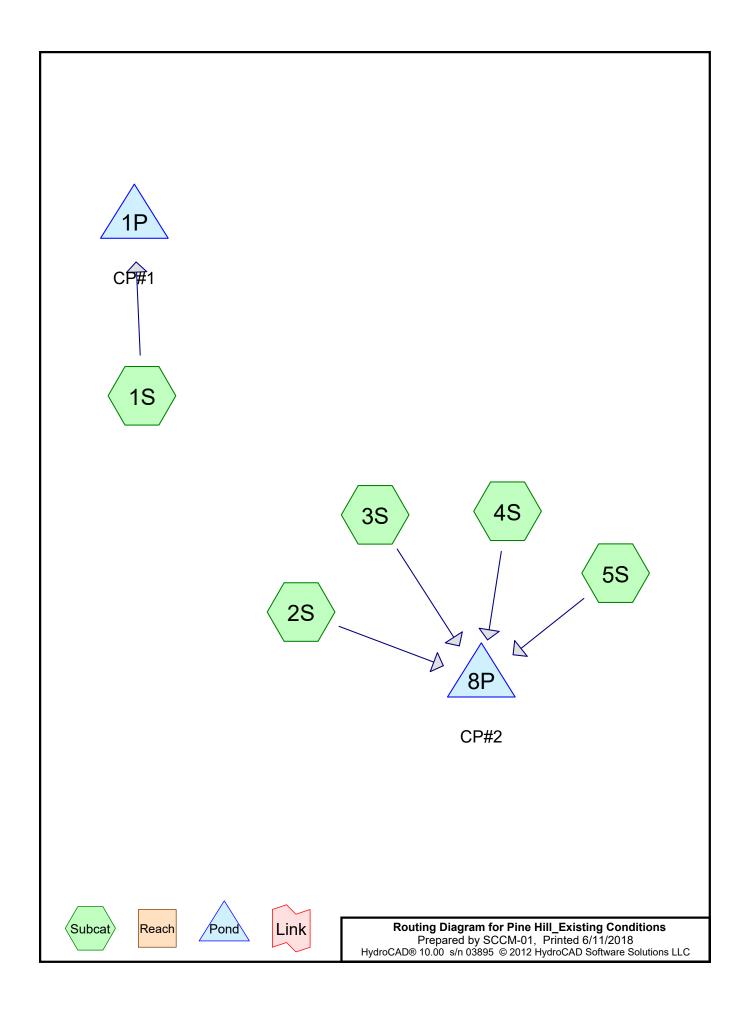
Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

ATTACHMENT F


FEMA Flood Map

ATTACHMENT G

HydroCAD Output

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.055	98	Paved parking & roofs (5S)
8.941	60	Woods, Fair, HSG B (1S, 2S, 3S, 4S)
5.569	73	Woods, Fair, HSG C (2S, 3S, 4S)
2.103	79	Woods, Fair, HSG D (2S, 3S)
16.668	67	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
8.941	HSG B	1S, 2S, 3S, 4S
5.569	HSG C	2S, 3S, 4S
2.103	HSG D	2S, 3S
0.055	Other	5S
16.668		TOTAL AREA

Ground Covers (all nodes)

	HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
-	0.000	0.000	0.000	0.000	0.055	0.055	Paved parking & roofs	58
	0.000	8.941	5.569	2.103	0.000	16.613	Woods, Fair	1S, 2S, 3S,
								4S
	0.000	8. 94 1	5.569	2.103	0.055	16.668	TOTAL AREA	

Pine Hill_Existing Condi Prepared by SCCM-01	Type III 24-hr 2-yr Rainfall=3.00" Printed 6/11/2018	
<u>HydroCAD® 10.00 s/n 03895 ©</u>	Page 5	
	001 points SCS ting by Stor-Ind method	
Subcatchment1S: F	Runoff Area=139,834 sf low Length=50' Slope=0.0700 '/' Tc=7.7	0.00% Impervious Runoff Depth=0.33" 7 min CN=60 Runoff=0.57 cfs 0.089 af
Subcatchment2S:		0.00% Impervious Runoff Depth=0.58" 2 min CN=67 Runoff=3.86 cfs 0.414 af
Subcatchment3S:		0.00% Impervious Runoff Depth=0.86" 1 min CN=73 Runoff=2.42 cfs 0.250 af
Subcatchment4S:		0.00% Impervious Runoff Depth=0.54" 7 min CN=66 Runoff=0.50 cfs 0.064 af
Subcatchment 5S: F	Runoff Area=2,375 sf 1 low Length=15' Slope=0.0150 '/' Tc=5.5	00.00% Impervious Runoff Depth=2.77" 5 min CN=98 Runoff=0.16 cfs 0.013 af
Pond 1P: CP#1		Inflow=0.57 cfs 0.089 af Primary=0.57 cfs 0.089 af
Pond 8P: CP#2		Inflow=6.71 cfs 0.741 af Primary=6.71 cfs 0.741 af
Total Runoff A	rea = 16.668 ac Runoff Volume = 0.8	830 af Average Runoff Depth = 0.60"

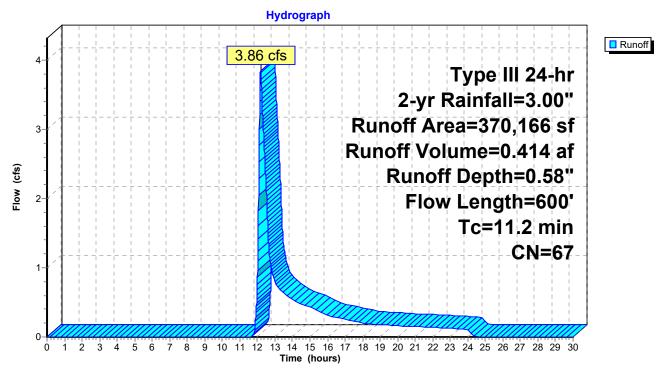
99.67% Pervious = 16.613 ac 0.33% Impervious = 0.055 ac

Summary for Subcatchment 1S:

Runoff = 0.57 cfs @ 12.17 hrs, Volume= 0.089 af, Depth= 0.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.00"

	<u>39,834</u> 39,834		Voods, Fai	r, HSG B ervious Are	22
	-				
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.7	50	0.0700	0.11	(013)	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.00"
				Subc	atchment 1S:
				Hydro	graph
-					
0.6		!		0.57 cfs	
0.55					Type III 24-hr
0.5					2-yr Rainfall=3.00"
0.45					Runoff Area=139,834 sf
0.4					Runoff Volume=0.089 af
(s) 0.35					Runoff Depth=0.33"
0.35 0.35					Flow Length=50'
L 0.25					Slope=0.0700 '/'
0.2					
0.15		$ \frac{1}{1} \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		Tc=7.7 min
0.1-		$\frac{1}{1}$ $-\frac{1}{1}$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		
0.05		$ \frac{1}{1} \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$	$-\frac{1}{1}\frac{1}{1}\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		
0.05					

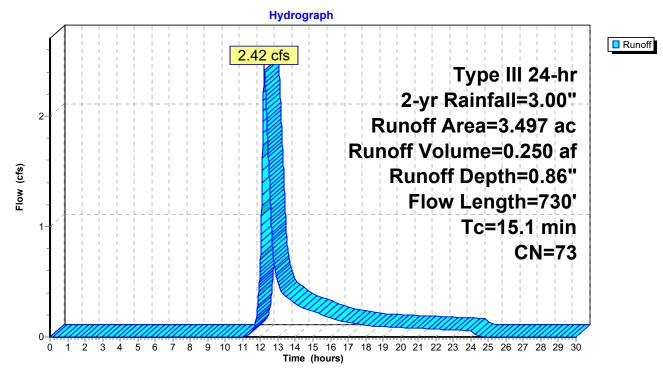

Summary for Subcatchment 2S:

Runoff = 3.86 cfs @ 12.18 hrs, Volume= 0.414 af, Depth= 0.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.00"

_	A	rea (sf)	CN	Description		
	1	96,710	60	Woods, Fai	r, HSG B	
	1	19,354	73	Woods, Fai	r, HSG C	
_		54,102	79	Woods, Fai	r, HSG D	
	3	70,166	67	Weighted A	verage	
	3	70,166		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.4	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	4.8	550	0.1480	1.92		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	11.2	600	Total			

Subcatchment 2S:

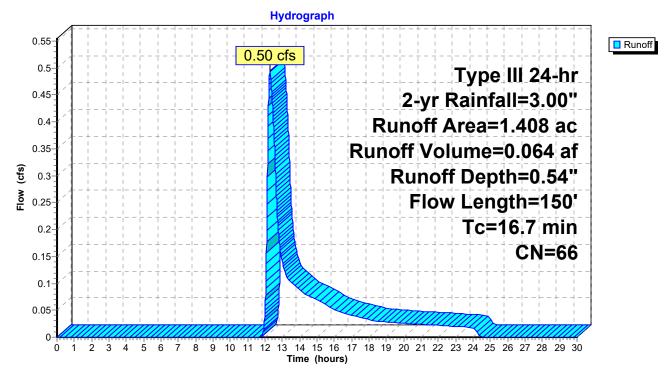

Summary for Subcatchment 3S:

Runoff = 2.42 cfs @ 12.23 hrs, Volume= 0.250 af, Depth= 0.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.00"

 Area	(ac) C	N Dese	cription		
0.	465 6	60 Woo	ds, Fair, H	SG B	
2.	171 7	'3 Woo	ds, Fair, H	SG C	
 0.	861 7	'9 Woo	ds, Fair, H	SG D	
3.	497 7	'3 Weig	ghted Aver	age	
3.	497	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
 7.0	50	0.0900	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
8.1	680	0.0780	1.40		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.1	730	Total			

Subcatchment 3S:


Summary for Subcatchment 4S:

Runoff = 0.50 cfs @ 12.29 hrs, Volume= 0.064 af, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.00"

Area	a (ac) (CN Des	cription		
			ds, Fair, H		
			ods, Fair, H		
	1.408		ghted Aver		
	1.408	100.	00% Pervi	ous Area	
To	Length	Slope	Velocity	Capacity	Description
(min)	5	(ft/ft)	(ft/sec)	(cfs)	Decemption
14.3	50	0.0150	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
2.4	100	0.0200	0.71		Shallow Concentrated Flow,
2.7	100	0.0200	0.71		
					Woodland Kv= 5.0 fps
16.7	150	Total			

Subcatchment 4S:

0.03 0.02 0.01

ο 1

2 3 4 5 6

7

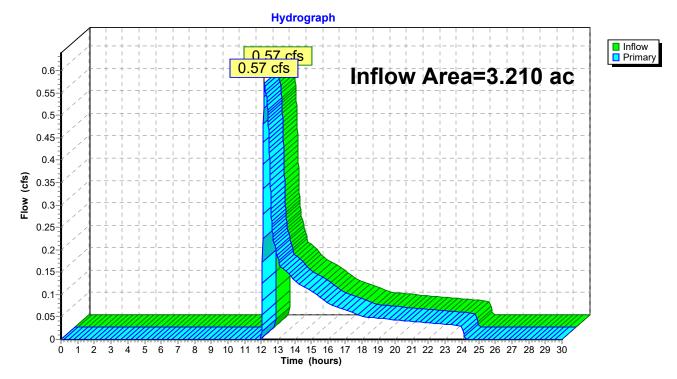
Summary for Subcatchment 5S:

Runoff = 0.16 cfs @ 12.08 hrs, Volume= 0.013 af, Depth= 2.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.00"

2,375 98 Paved parking & roofs	
2,375 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.5 15 0.0150 0.05 Sheet Flow, Woods: Light underbrush n= 0.400 P2=	3.00"
Subcatchment 5S:	
Hydrograph	
0.18 0.17 0.16 cfs 0.14 0.15 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.12 0.11 0.09 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.07 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.08 0.07 0.09 0.07 0.05 0.07 0.05 0.07 0.05 0.5 0.	Runoff
0.04 0.03	

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

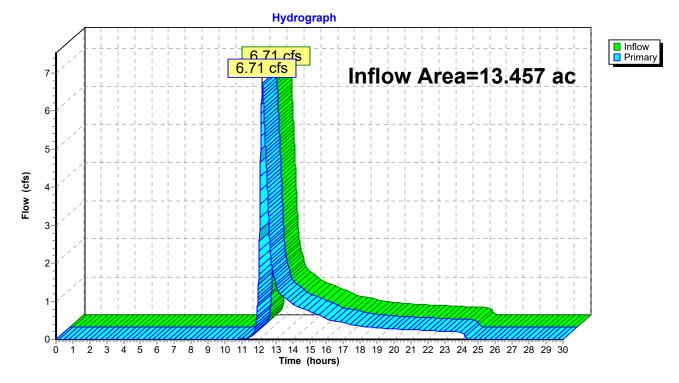

Time (hours)

Summary for Pond 1P: CP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.210 ac,	0.00% Impervious, Inflow D	epth = 0.33"	for 2-yr event
Inflow =	0.57 cfs @	12.17 hrs, Volume=	0.089 af	
Primary =	0.57 cfs @	12.17 hrs, Volume=	0.089 af, Atte	n= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

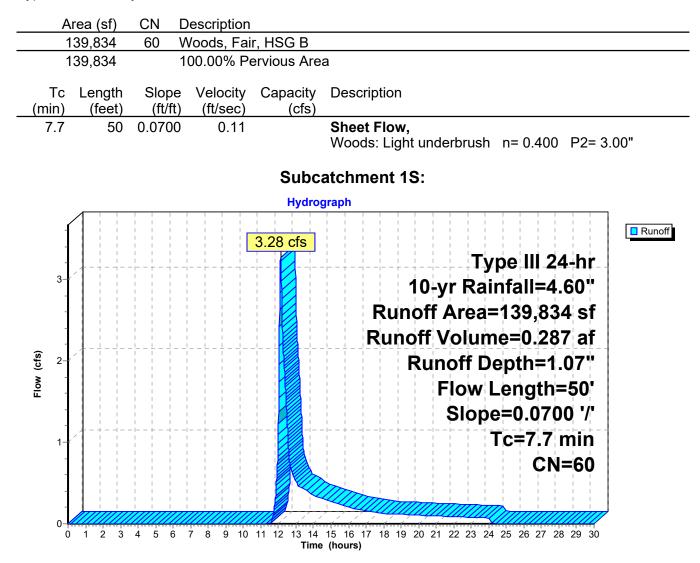

Pond 1P: CP#1

Summary for Pond 8P: CP#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	13.457 ac,	0.41% Impervious,	Inflow Depth = 0.6	66" for 2-yr event
Inflow =	=	6.71 cfs @	12.20 hrs, Volume	e= 0.741 af	
Primary =	=	6.71 cfs @	12.20 hrs, Volume	e= 0.741 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

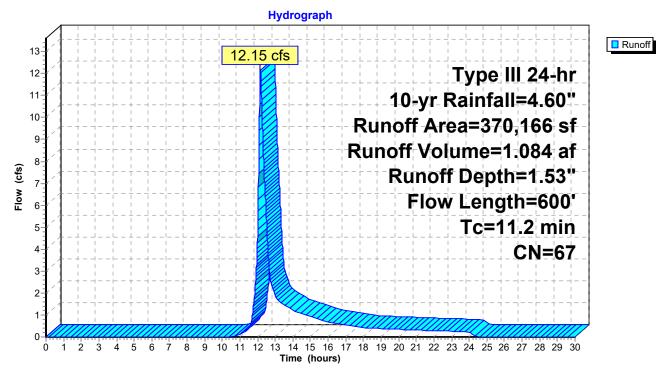

Pond 8P: CP#2

Pine Hill_Existing C Prepared by SCCM-01 HydroCAD® 10.00 s/n 038			Type III 24-hr	10-yr Rainfall=4.60" Printed 6/11/2018 Page 13
	Time span=0.00-3 Runoff by S0	0.00 hrs, dt=0.01 hrs, 30 CS TR-20 method, UH=3 ns method - Pond routi	scs	
Subcatchment1S:	Flow Length=50'	Runoff Area=139,834 sf Slope=0.0700 '/' Tc=7.7		
Subcatchment2S:	Flo	Runoff Area=370,166 sf w Length=600' Tc=11.2 r	•	•
Subcatchment3S:	Fl	Runoff Area=3.497 ac ow Length=730' Tc=15.1		us Runoff Depth=1.97" unoff=5.99 cfs 0.575 af
Subcatchment4S:	Fl	Runoff Area=1.408 ac ow Length=150' Tc=16.7	•	us Runoff Depth=1.46" unoff=1.64 cfs 0.171 af
Subcatchment5S:	Flow Length=15'	Runoff Area=2,375 sf 10 Slope=0.0150 '/' Tc=5.5		
Pond 1P: CP#1				nflow=3.28 cfs 0.287 af mary=3.28 cfs 0.287 af
Pond 8P: CP#2				flow=19.50 cfs 1.849 af nary=19.50 cfs 1.849 af
Total Run		Runoff Volume = 2.1 9.67% Pervious = 16.61		e Runoff Depth = 1.54" Impervious = 0.055 ac

Summary for Subcatchment 1S:

Runoff = 3.28 cfs @ 12.13 hrs, Volume= 0.287 af, Depth= 1.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.60"

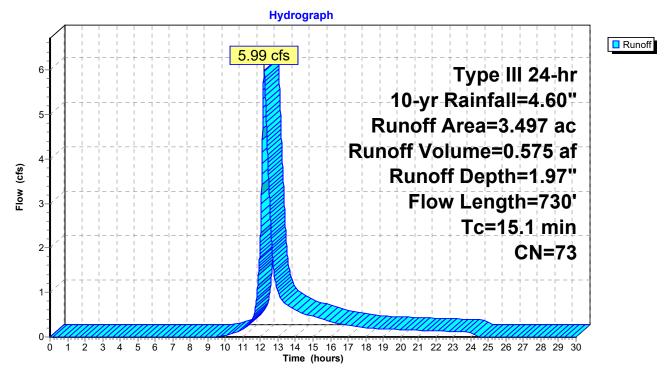

Summary for Subcatchment 2S:

Runoff = 12.15 cfs @ 12.16 hrs, Volume= 1.084 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.60"

_	A	rea (sf)	CN	Description		
	1	96,710	60	Woods, Fai	r, HSG B	
	1	19,354	73	Woods, Fai	r, HSG C	
_		54,102	79	Woods, Fai	r, HSG D	
	3	70,166	67	Weighted A	verage	
	3	70,166		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.4	50	0.1100	0.13		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	4.8	550	0.1480	1.92		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	11.2	600	Total			

Subcatchment 2S:

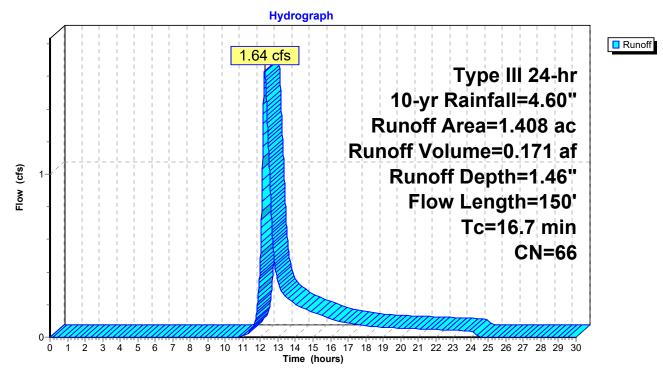

Summary for Subcatchment 3S:

Runoff = 5.99 cfs @ 12.21 hrs, Volume= 0.575 af, Depth= 1.97"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.60"

 Area	(ac) C	N Dese	cription		
0.	465 6	60 Woo	ds, Fair, H	SG B	
2.	171 7	'3 Woo	ds, Fair, H	SG C	
 0.	861 7	'9 Woo	ds, Fair, H	SG D	
3.	497 7	'3 Weig	ghted Aver	age	
3.	497	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
 7.0	50	0.0900	0.12		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
8.1	680	0.0780	1.40		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
15.1	730	Total			

Subcatchment 3S:


Summary for Subcatchment 4S:

Runoff = 1.64 cfs @ 12.25 hrs, Volume= 0.171 af, Depth= 1.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.60"

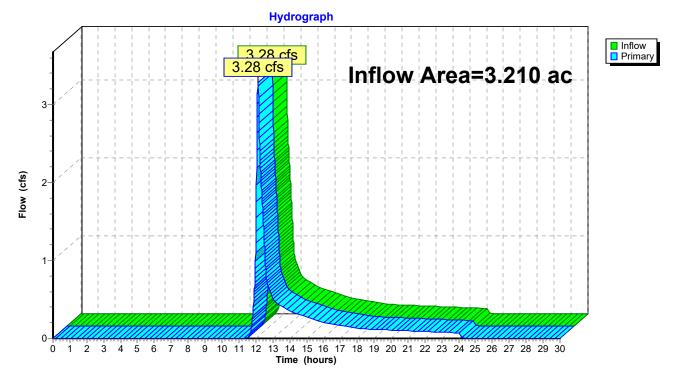
Area	(ac) C	N Dese	cription		
			ds, Fair, H		
0	.658	<u>73 Woo</u>	ds, Fair, H	ISG C	
1	.408 0	6 Weig	ghted Aver	age	
1	.408	100.	00% Pervi	ous Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
14.3	50	0.0150	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.00"
2.4	100	0.0200	0.71		Shallow Concentrated Flow,
			-		Woodland Kv= 5.0 fps
16.7	150	Total			· · ·

Subcatchment 4S:

Summary for Subcatchment 5S:

Runoff = 0.25 cfs @ 12.08 hrs, Volume= 0.020 af, Depth= 4.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.60"

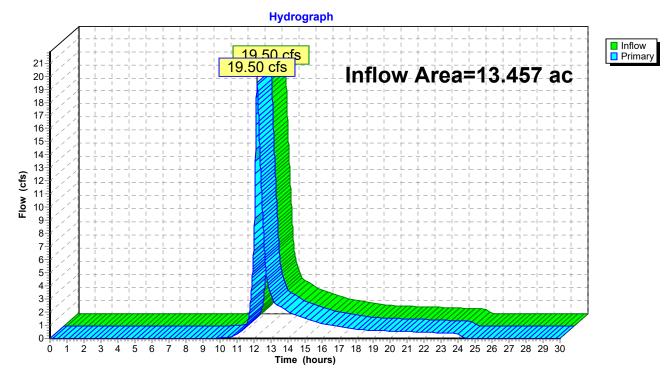

	2,375	1	00.00% In	npervious A	Area
Tc	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
<u>min)</u> 5.5	15	0.0150	0.05	(015)	Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.00"
				Subc	atchment 5S:
		1 1 1		Hydro	graph
0.26-				0.25 cfs	
0.24-	, , , , , , , , , , , , , , , , , , ,		-ll - + - + - + - + - + - + - + - +		Type III 24-hr
0.22-		+ - 		- 	10-yr Rainfall=4.60"
0.2-					Runoff Area=2,375 sf
0.18-					Runoff Volume=0.020 af
0.16					Runoff Depth=4.36"
0.16-					
0.12-					Flow Length=15'
0.1-					Slope=0.0150 '/'
0.08-					Tc=5.5 min
0.06					CN=98
0.04	,	IH-+-			
0.02					

Summary for Pond 1P: CP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	3.210 ac,	0.00% Impervious, Inflow	Depth = 1.07"	for 10-yr event
Inflow :	=	3.28 cfs @	12.13 hrs, Volume=	0.287 af	
Primary :	=	3.28 cfs @	12.13 hrs, Volume=	0.287 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs


Pond 1P: CP#1

Summary for Pond 8P: CP#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	13.457 ac,	0.41% Impervious,	Inflow Depth = 1.65'	for 10-yr event
Inflow	=	19.50 cfs @	12.18 hrs, Volume	= 1.849 af	
Primary	=	19.50 cfs @	12.18 hrs, Volume	= 1.849 af, A	tten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 8P: CP#2

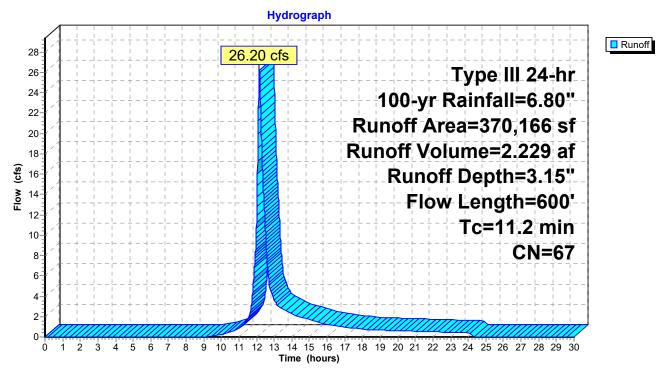
Pine Hill_Existing Prepared by SCCM-0 HydroCAD® 10.00 s/n 03			1 <i>00-yr Rainfall=6.80"</i> Printed 6/11/2018 Page 21
	Time span=0.00-30.00 hrs, dt=0 Runoff by SCS TR-20 me outing by Stor-Ind+Trans method).01 hrs, 3001 points thod, UH=SCS	
Subcatchment1S:	Runoff Area= Flow Length=50' Slope=0.0700	139,834 sf 0.00% Impervio) '/' Tc=7.7 min CN=60 I	
Subcatchment 2S:		370,166 sf 0.00% Impervio Tc=11.2 min CN=67 R	•
Subcatchment3S:		=3.497 ac 0.00% Impervio Tc=15.1 min CN=73 R	
Subcatchment4S:		=1.408 ac 0.00% Impervio 0' Tc=16.7 min CN=66 I	•
Subcatchment 5S:	Runoff Area= Flow Length=15' Slope=0.0150	2,375 sf 100.00% Impervio) '/' Tc=5.5 min CN=98 I	
Pond 1P: CP#1		Ρ	Inflow=8.43 cfs 0.659 af rimary=8.43 cfs 0.659 af
Pond 8P: CP#2			nflow=40.78 cfs 3.714 af mary=40.78 cfs 3.714 af
Total Ru	noff Area = 16.668 ac Runoff Vo 99.67% Pervio		ge Runoff Depth = 3.15" Impervious = 0.055 ac

Summary for Subcatchment 1S:

Runoff = 8.43 cfs @ 12.12 hrs, Volume= 0.659 af, Depth= 2.46"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=6.80"

		39,834		Voods, Fai		
	1	39,834	1	00.00% Pe	ervious Are	a
	Гç	Length	Slope	Velocity	Capacity	Description
(mi) 7	<u>n)</u> .7	(feet) 50	(ft/ft) 0.0700	<u>(ft/sec)</u> 0.11	(cfs)	Sheet Flow,
'	. /	50	0.0700	0.11		Woods: Light underbrush n= 0.400 P2= 3.00"
					0.1.	
						atchment 1S:
					Hydro	graph
	9				8.43 cfs	
		/		; ;		Type III 24-hr
	8					100-yr Rainfall=6.80"
	7-7					Runoff Area=139,834 sf
	6_					Runoff Volume=0.659 af
(crs)	5-	/+				Runoff Depth=2.46"
FIOW (CTS)						Flow Length=50'
-	4-* -			 !LL		Slope=0.0700 '/'
	3-					Tc=7.7 min
	2-7					CN=60
	1-					
	0					

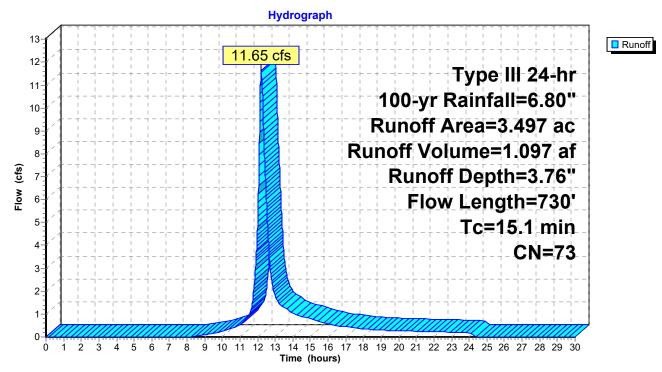

Summary for Subcatchment 2S:

Runoff = 26.20 cfs @ 12.16 hrs, Volume= 2.229 af, Depth= 3.15"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=6.80"

A	rea (sf)	CN [Description				
196,710		60 \	Noods, Fai	r, HSG B			
119,354		73 \	Noods, Fai	r, HSG C			
54,102		79 \	<u>Noods, Fai</u>				
3	370,166		Weighted Average				
3	370,166		100.00% Pervious Area				
Тс	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.4	50	0.1100	0.13		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.00"		
4.8	550	0.1480	1.92		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
11.2	600	Total					

Subcatchment 2S:

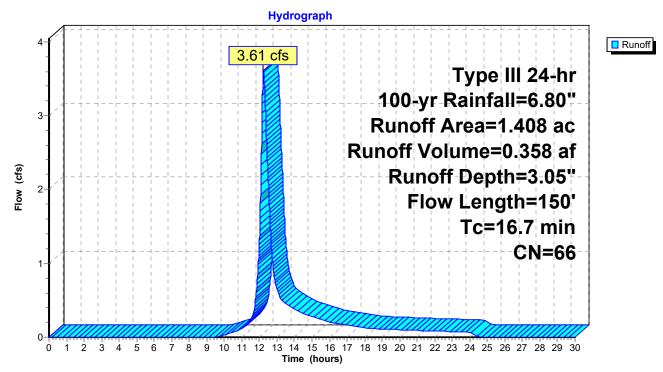

Summary for Subcatchment 3S:

Runoff = 11.65 cfs @ 12.20 hrs, Volume= 1.097 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=6.80"

Area	a (ac)	CN Des	cription					
(0.465	60 Wo	ods, Fair, H	ISG B				
	2.171	73 Wo	ods, Fair, F	ISG C				
	0.861	79 Wo	ods, Fair, F	ISG D				
3.497 73 Weighted Average								
3.497 100.00% Pervious Area								
To	: Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
7.0	50	0.0900	0.12		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.00"			
8.1	680	0.0780	1.40		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
15.1	730	Total						

Subcatchment 3S:


Summary for Subcatchment 4S:

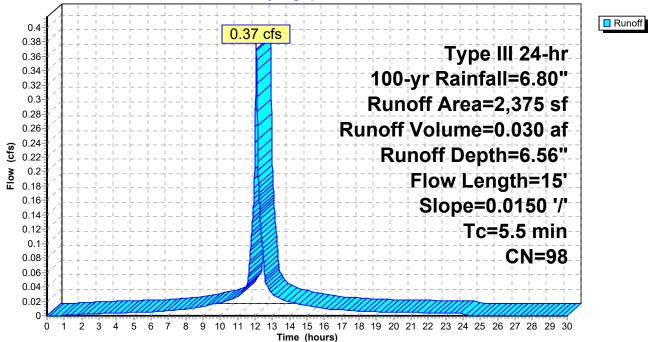
Runoff = 3.61 cfs @ 12.23 hrs, Volume= 0.358 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=6.80"

	Area	(ac) C	N Desc	cription				
	-			ds, Fair, H ds, Fair, H				
	0.							
1.408 66 Weighted Average								
	1.	408	100.	00% Pervi	ous Area			
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	14.3	50	0.0150	0.06		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.00"		
	2.4	100	0.0200	0.71		Shallow Concentrated Flow,		
				2		Woodland $Kv=5.0$ fps		
	16.7	150	Total					

Subcatchment 4S:

Summary for Subcatchment 5S:

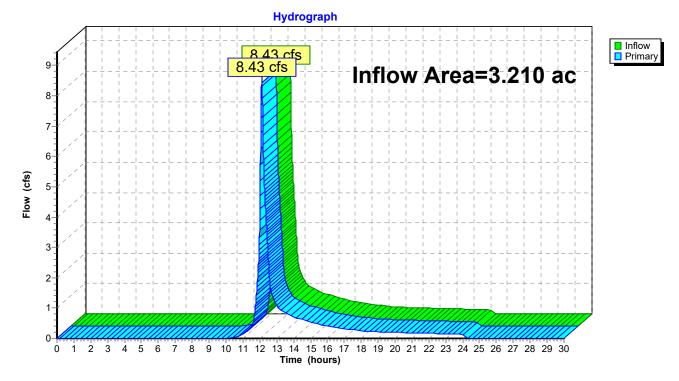

Runoff = 0.37 cfs @ 12.08 hrs, Volume= 0.030 af, Depth= 6.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=6.80"

A	rea (sf)	CN	Description								
	2,375	98	98 Paved parking & roofs								
	2,375	100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description						
5.5	15	0.0150	0.05		Sheet Flow, Woods: Light underbrush n=	0.400	P2= 3.00"				

Subcatchment 5S:

Hydrograph

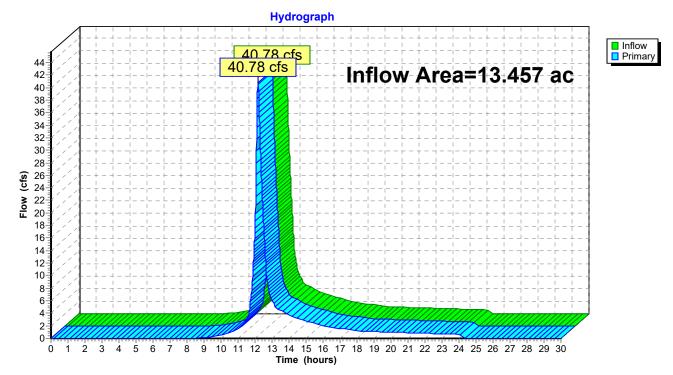


Summary for Pond 1P: CP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		3.210 ac,	0.00% Impervious, Infle	Dw Depth = 2.46"	for 100-yr event
Inflow	=	8.43 cfs @	12.12 hrs, Volume=	0.659 af	
Primary	=	8.43 cfs @	12.12 hrs, Volume=	0.659 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs


Pond 1P: CP#1

Summary for Pond 8P: CP#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		13.457 ac,	0.41% Impervious, Ir	flow Depth = 3.31"	for 100-yr event
Inflow	=	40.78 cfs @	12.17 hrs, Volume=	3.714 af	
Primary	=	40.78 cfs @	12.17 hrs, Volume=	3.714 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Pond 8P: CP#2

Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.534	98	(9S, 11S, 14S, 16S, CUL, S1, S10, S11, S12, S13, S14, S15, S19, S2, S21, S22,
		S23, S3, S4, S5, SBS)
3.396	61	>75% Grass cover, Good, HSG B (1S, P1, S1, S13, S19, S2, S4)
1.187	74	>75% Grass cover, Good, HSG C (2S, 4S, 10S, SBS)
1.491	61	>75% grass cover, good, HSG B (3S, 7S, 8S, 14S)
0.435	74	>75% grass cover, good, HSG C (12S, 13S, 15S)
2.166	61	G+RG: >75% Grass cover, Good, HSG B (11S, P2, S10, S11, S12, S14, S15, S20,
		S21, S3, S5)
0.153	74	G+RG: >75% Grass cover, Good, HSG C (S22, S23)
0.171	61	G+RG: >75% grass cover, good, HSG B (CUL)
0.289	98	Impervious (2S, 7S, 8S)
0.301	98	Paved parking & roofs (1S, 4S, 5S, 10S)
2.782	73	Woods, Fair, HSG C (2S, 3S, 4S)
0.114	98	impervious (P1)
0.016	60	woods, fair, HSG B (14S)
1.997	73	woods, fair, HSG C (13S, 15S)
0.717	79	woods, fair, HSG D (12S)
16.749	72	TOTAL AREA

Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
7.241	HSG B	1S, 3S, 7S, 8S, 11S, 14S, CUL, P1, P2, S1, S10, S11, S12, S13, S14, S15, S19,
		S2, S20, S21, S3, S4, S5
6.553	HSG C	2S, 3S, 4S, 10S, 12S, 13S, 15S, S22, S23, SBS
0.717	HSG D	12S
2.238	Other	1S, 2S, 4S, 5S, 7S, 8S, 9S, 10S, 11S, 14S, 16S, CUL, P1, S1, S10, S11, S12,
		S13, S14, S15, S19, S2, S21, S22, S23, S3, S4, S5, SBS
16.749		TOTAL AREA

Pine Hill Proposed Proposed Conditions_09102018							
Prepared by SCCM-01	Printed 9/10/2018						
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC	Page 4						

Ground Covers	(all nodes)
---------------	-------------

(acres) (acres) (acres) (acres) Cover 0.000 0.000 0.000 1.534 1.534	Numbers 9 S, 11 S, 14 S,
	S, 14 S,
	S,
	16 S,
	C U L, S 1, S 10 , S 11 , S 12 , S 12 , S 12 , S 12 , S 13 , S 14 , S 15 , S 19 , S 2, S 21 , S 22

,

Pine Hill Proposed Proposed Conditions_09102018						
Prepared by SCCM-01	Printed 9/10/2018					
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC	Page 5					

	Ground Covers (all nodes) (continued)										
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers				
0.000	3.396	1.187	0.000	0.000	4.583	>75% Grass cover, Good	1 S,				
							2 S,				

							S,
							2
							2 S,
							4 S,
							S,
							10
							S,
							θ,
							Р
							1, S 1, S
							1,
							S
							13
							, S
							3 19
							, S 2,
							2
							S.
							4,
							S
							B
							S
0.000	1.491	0.435	0.000	0.000	1.926	>75% grass cover, good	3
							S 3 S,
							7
							S,
							_
							8 S,
							S,
							12
							S,
							0,
							13
							S,
							14
							-

S,

Pine Hill Proposed Proposed Conditions_09102018	
Prepared by SCCM-01	Printed 9/10/2018
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC	Page 6

		Grou	ind Covers	s (all node	s) (contir	lued)	
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	2.166	0.153	0.000	0.000	2.319	G+RG: >75% Grass cover, Good	11
							S,
							Р
							2,
							S
							10
							,
							S
							11
							,
							S
							12
							,
							S
							14
							,

Ground Covers (all nodes) (continued)

							21
							, S 22
							, S 23
							, S
							3, S
							5
0.000	0.171	0.000	0.000	0.000	0.171	G+RG: >75% grass cover, good	С
							U
							L
0.000	0.000	0.000	0.000	0.289	0.289	Impervious	2
							S,

7 S,

S 15 , S 20 , S

Pine Hill Proposed Proposed Conditions_09102018	
Prepared by SCCM-01	Printed 9/10/2018
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC	Page 7

				01	.	0	
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.000	0.301	0.301	Paved parking & roofs	1
							S,
							4
							S,
							_
							5
							S,
							10
0.000		0 700			0 700		S
0.000	0.000	2.782	0.000	0.000	2.782	Woods, Fair	2
							S,
							0
							3 S,
							5,
							4
							4 S
0.000	0.000	0.000	0.000	0.114	0.114	impervious	P
0.000	0.000	0.000	0.000	0.114	0.114	Impervious	1
0.000	0.016	1.997	0.717	0.000	2.729	woods, fair	12
0.000	0.010	1.007	0.717	0.000	2.725	woods, iai	S,
							0,
							13
							S,
							-,
							14
							S,
							,
							15
							S
0.000	7.241	6.553	0.717	2.238	16.749	TOTAL AREA	

Ground Covers (all nodes) (continued)

Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Printed 9/10/2018 Page 8

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1R	261.00	260.10	72.0	0.0125	0.011	12.0	0.0	0.0
2	4R	315.00	313.50	22.0	0.0682	0.011	12.0	0.0	0.0
3	6R	304.20	302.23	197.0	0.0100	0.011	8.0	0.0	0.0
4	7R	310.50	303.50	88.0	0.0795	0.014	12.0	0.0	0.0
5	8R	306.75	302.23	128.0	0.0353	0.011	8.0	0.0	0.0
6	9R	298.00	297.90	7.0	0.0143	0.011	8.0	0.0	0.0
7	10R	301.30	297.94	84.0	0.0400	0.011	18.0	0.0	0.0
8	11R	298.00	297.90	7.0	0.0143	0.011	8.0	0.0	0.0
9	12R	297.30	297.10	18.0	0.0111	0.011	8.0	0.0	0.0
10	13R	301.30	301.10	18.0	0.0111	0.011	8.0	0.0	0.0
11	14R	290.30	289.73	33.0	0.0173	0.011	8.0	0.0	0.0
12	15R	302.30	302.00	18.0	0.0167	0.011	8.0	0.0	0.0
13	16R	302.00	301.30	36.0	0.0194	0.011	8.0	0.0	0.0
14	17R	298.00	295.80	67.0	0.0328	0.011	8.0	0.0	0.0
15	18R	301.30	300.98	16.0	0.0200	0.011	8.0	0.0	0.0
16	19R	287.00	283.33	47.0	0.0781	0.011	8.0	0.0	0.0
17	20R	257.75	257.25	22.0	0.0227	0.013	12.0	0.0	0.0
18	21R	254.00	253.75	50.0	0.0050	0.011	8.0	0.0	0.0
19	CB1	257.00	256.00	27.0	0.0370	0.011	12.0	0.0	0.0
20	1P	301.30	297.80	85.0	0.0412	0.011	18.0	0.0	0.0
21	2P	297.70	296.00	47.0	0.0362	0.011	18.0	0.0	0.0
22	3P	283.44	282.00	72.0	0.0200	0.011	24.0	0.0	0.0
23	4P	258.30	258.00	30.0	0.0100	0.013	30.0	0.0	0.0
24	5P	277.40	276.20	60.0	0.0200	0.011	24.0	0.0	0.0
25	20P	264.60	261.40	160.0	0.0200	0.011	24.0	0.0	0.0
26	CB2	262.00	261.90	10.0	0.0100	0.011	12.0	0.0	0.0
27	CB3	277.20	277.00	6.0	0.0333	0.011	12.0	0.0	0.0
28	CB4	293.70	293.50	7.0	0.0286	0.011	12.0	0.0	0.0
29	CB5	293.90	293.50	17.0	0.0235	0.011	12.0	0.0	0.0
30	MH1	261.30	260.95	35.0	0.0100	0.013	30.0	0.0	0.0
31	MH2	270.50	268.00	125.0	0.0200	0.011	24.0	0.0	0.0
32	MH3	289.06	288.40	33.0	0.0200	0.011	24.0	0.0	0.0
33	MH4	300.00	296.62	169.0	0.0200	0.011	18.0	0.0	0.0
34	MH5	301.10	300.50	56.0	0.0107	0.011	18.0	0.0	0.0
35	MH6	292.92	290.90	101.0	0.0200	0.011	24.0	0.0	0.0
36	RG19	292.63	292.23	39.5	0.0101	0.011	8.0	0.0	0.0

Pipe Listing (all nodes)

Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (ne	w Subcat)	Runoff Area=6,927 sf 11.13% Impervious Runoff Depth=0.55" Tc=6.0 min CN=65 Runoff=0.08 cfs 0.007 af
Subcatchment2S: Roa	ad	Runoff Area=12,547 sf 25.48% Impervious Runoff Depth=1.33" Tc=6.0 min CN=80 Runoff=0.44 cfs 0.032 af
Subcatchment3S: Uno		Runoff Area=81,012 sf 0.00% Impervious Runoff Depth=0.72" Flow Length=525' Tc=28.2 min CN=69 Runoff=0.79 cfs 0.112 af
Subcatchment4S:	F	Runoff Area=87,503 sf 2.36% Impervious Runoff Depth=0.97" Flow Length=525' Tc=14.9 min CN=74 Runoff=1.62 cfs 0.163 af
Subcatchment 5S:		Runoff Area=3,065 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af
Subcatchment7S: (ne	w Subcat)	Runoff Area=6,557 sf 79.05% Impervious Runoff Depth=2.08" Tc=6.0 min CN=90 Runoff=0.36 cfs 0.026 af
Subcatchment8S: (ne	w Subcat)	Runoff Area=17,230 sf 24.31% Impervious Runoff Depth=0.77" Tc=6.0 min CN=70 Runoff=0.32 cfs 0.025 af
Subcatchment9S:		Runoff Area=1,988 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.14 cfs 0.011 af
Subcatchment10S: (n	ew Subcat)	Runoff Area=25,265 sf 28.62% Impervious Runoff Depth=1.39" Flow Length=128' Tc=1.5 min CN=81 Runoff=1.10 cfs 0.067 af
Subcatchment11S:		Runoff Area=23,740 sf 22.38% Impervious Runoff Depth=0.72" Tc=6.0 min CN=69 Runoff=0.40 cfs 0.033 af
Subcatchment12S:	Flow Length=485	Runoff Area=36,401 sf 0.00% Impervious Runoff Depth=1.20" 5' Slope=0.0350 '/' Tc=8.6 min CN=78 Runoff=1.05 cfs 0.084 af
Subcatchment13S:	Flow Length=331'	Runoff Area=67,075 sf 0.00% Impervious Runoff Depth=0.92" Slope=0.0100 '/' Tc=22.1 min CN=73 Runoff=0.99 cfs 0.118 af
Subcatchment14S:		Runoff Area=34,193 sf 28.61% Impervious Runoff Depth=0.87" Flow Length=172' Tc=1.5 min CN=72 Runoff=0.86 cfs 0.057 af
Subcatchment15S:	Flow Length=1,115	Runoff Area=33,688 sf 0.00% Impervious Runoff Depth=0.92" Slope=0.0050 '/' Tc=105.1 min CN=73 Runoff=0.21 cfs 0.059 af
Subcatchment16S:		Runoff Area=4,678 sf 100.00% Impervious Runoff Depth=2.87" Tc=6.0 min CN=98 Runoff=0.32 cfs 0.026 af
SubcatchmentCUL: (r	new Subcat)	Runoff Area=10,593 sf 29.57% Impervious Runoff Depth=0.87" Tc=6.0 min CN=72 Runoff=0.23 cfs 0.018 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr 2-YR Rainfall=3.10"
Printed 9/10/2018
Printed 9/10/2018
Page 10Prepared by SCCM-01Printed 9/10/2018
Page 10HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 10Subcatchment P1:Runoff Area=98,881 sf 5.04% Impervious Runoff Depth=0.48"
Flow Length=650' Tc=12.2 min CN=63 Runoff=0.69 cfs 0.090 afSubcatchment P2:Runoff Area=10,702 sf 0.00% Impervious Runoff Depth=0.40"
Flow Length=344' Tc=8.6 min CN=61 Runoff=0.06 cfs 0.008 afSubcatchment S1:Runoff Area=1,539 sf 96.04% Impervious Runoff Depth=2.76"
Tc=6.0 min CN=97 Runoff=0.10 cfs 0.008 af

Subcatchment S10:Runoff Area=2,106 sf 30.86% Impervious Runoff Depth=0.87"Tc=6.0 min CN=72 Runoff=0.05 cfs 0.003 af

Subcatchment S11:Runoff Area=1,858 sf62.65% ImperviousRunoff Depth=1.60"Tc=6.0 minCN=84Runoff=0.08 cfs0.006 af

Subcatchment S12:Runoff Area=9,267 sf23.47% ImperviousRunoff Depth=0.77"Tc=6.0 minCN=70Runoff=0.17 cfs0.014 af

Subcatchment S13:Runoff Area=4,314 sf53.64% ImperviousRunoff Depth=1.39"Tc=6.0 minCN=81Runoff=0.16 cfs0.011 af

Subcatchment S14:Runoff Area=2,371 sf 64.02% Impervious Runoff Depth=1.67"
Tc=6.0 min CN=85 Runoff=0.11 cfs 0.008 af

Subcatchment S15:Runoff Area=44,214 sf19.57% ImperviousRunoff Depth=0.68"Tc=6.0 minCN=68Runoff=0.68 cfs0.057 af

Subcatchment S19:Runoff Area=31,232 sf23.42% ImperviousRunoff Depth=0.77"Tc=6.0 minCN=70Runoff=0.57 cfs0.046 af

Subcatchment S2:Runoff Area=0.550 ac12.73% ImperviousRunoff Depth=0.59"Tc=6.0 minCN=66Runoff=0.30 cfs0.027 af

Subcatchment S20:Runoff Area=11,551 sf0.00% ImperviousRunoff Depth=0.40"Tc=6.0 minCN=61Runoff=0.07 cfs0.009 af

Subcatchment S21:

SubcatchmentS3:

SubcatchmentS4:

Runoff Area=9,941 sf 67.95% Impervious Runoff Depth=1.75" Tc=6.0 min CN=86 Runoff=0.47 cfs 0.033 af

Subcatchment S22: Stow Road SouthRunoff Area=6,662 sf15.01% ImperviousRunoff Depth=1.20"Tc=6.0 minCN=78Runoff=0.21 cfs0.015 af

Subcatchment S23: Stow Road SouthRunoff Area=1,297 sf23.36% ImperviousRunoff Depth=1.33"Tc=6.0 minCN=80Runoff=0.05 cfs0.003 af

Runoff Area=6,554 sf 46.64% Impervious Runoff Depth=1.20" Flow Length=426' Tc=11.6 min CN=78 Runoff=0.17 cfs 0.015 af

> Runoff Area=1,550 sf 34.97% Impervious Runoff Depth=0.97" Tc=6.0 min CN=74 Runoff=0.04 cfs 0.003 af

Subcatchment S5:Runoff Area=2,245 sf40.18% ImperviousRunoff Depth=1.08"Tc=6.0 minCN=76Runoff=0.06 cfs0.005 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr2-YR Rainfall=3.10"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 11

SubcatchmentSBS:	Runoff Area=6,892 sf 15.19% Impervious Runoff Depth=1.20" Tc=6.0 min CN=78 Runoff=0.22 cfs 0.016 af
Reach 1R: (new Reach) 12.0" Round Pipe n=0.011	Avg. Flow Depth=0.28' Max Vel=4.47 fps Inflow=0.80 cfs 0.057 af L=72.0' S=0.0125 '/' Capacity=4.71 cfs Outflow=0.80 cfs 0.057 af
Reach 4R: 12.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.07' Max Vel=4.43 fps Inflow=0.10 cfs 0.008 af _=22.0' S=0.0682 '/' Capacity=10.99 cfs Outflow=0.10 cfs 0.008 af
Reach 5R: Intermittent Stream n=0.050 L:	Avg. Flow Depth=0.49' Max Vel=1.38 fps Inflow=2.86 cfs 0.359 af =845.0' S=0.0100 '/' Capacity=11.78 cfs Outflow=2.49 cfs 0.359 af
Reach 6R: new 8.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af _=197.0' S=0.0100 '/' Capacity=1.43 cfs Outflow=0.00 cfs 0.000 af
Reach 7R: 12.0" Round Pipe n=0.014	Avg. Flow Depth=0.07' Max Vel=3.95 fps Inflow=0.10 cfs 0.008 af L=88.0' S=0.0795 '/' Capacity=9.33 cfs Outflow=0.10 cfs 0.008 af
Reach 8R: new 8.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.11' Max Vel=4.29 fps Inflow=0.17 cfs 0.014 af _=128.0' S=0.0353 '/' Capacity=2.68 cfs Outflow=0.17 cfs 0.014 af
Reach 9R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.03' Max Vel=1.24 fps Inflow=0.01 cfs 0.003 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=0.01 cfs 0.003 af
Reach 10R: new 18.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.00' Max Vel=0.00 fps _=84.0' S=0.0400 '/' Capacity=24.83 cfs Outflow=0.00 cfs 0.000 af
Reach 11R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.24' Max Vel=4.15 fps Inflow=0.46 cfs 0.048 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=0.46 cfs 0.048 af
Reach 12R: (new Reach) 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 13R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 14R: (new Reach) 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=33.0' S=0.0173 '/' Capacity=1.88 cfs Outflow=0.00 cfs 0.000 af
Reach 15R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.01' Max Vel=0.76 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0167 '/' Capacity=1.84 cfs Outflow=0.00 cfs 0.000 af
Reach 16R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=36.0' S=0.0194 '/' Capacity=1.99 cfs Outflow=0.00 cfs 0.000 af
Reach 17R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.21' Max Vel=5.98 fps Inflow=0.58 cfs 0.086 af L=67.0' S=0.0328 '/' Capacity=2.59 cfs Outflow=0.58 cfs 0.086 af
Reach 18R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=16.0' S=0.0200 '/' Capacity=2.02 cfs Outflow=0.00 cfs 0.000 af

Prepared by SCCM-01	osed Conditions_09102018Type III 24-hr 2-YR Rainfall=3.10" Printed 9/10/20182012 HydroCAD Software Solutions LLCPage 12
	Avg. Flow Depth=0.10' Max Vel=5.87 fps Inflow=0.19 cfs 0.020 af be n=0.011 L=47.0' S=0.0781 '/' Capacity=3.99 cfs Outflow=0.19 cfs 0.020 af
Reach 20R: 12" RCP pipe 12.0" Round Pi	Avg. Flow Depth=0.19' Max Vel=4.12 fps Inflow=0.44 cfs 0.032 af pe n=0.013 L=22.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=0.44 cfs 0.032 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af be n=0.011 L=50.0' S=0.0050 '/' Capacity=1.01 cfs Outflow=0.00 cfs 0.000 af
Reach CB1: CB1 12.0" Round Pi	Avg. Flow Depth=0.20' Max Vel=6.44 fps Inflow=0.75 cfs 0.057 af be n=0.011 L=27.0' S=0.0370 '/' Capacity=8.10 cfs Outflow=0.75 cfs 0.057 af
Reach CP1:	Inflow=0.30 cfs 0.035 af Outflow=0.30 cfs 0.035 af
Reach CP2:	Inflow=3.74 cfs 0.996 af Outflow=3.74 cfs 0.996 af
Reach PS1:	Avg. Flow Depth=0.20' Max Vel=2.82 fps Inflow=0.69 cfs 0.090 af n=0.035 L=228.0' S=0.0658 '/' Capacity=20.22 cfs Outflow=0.69 cfs 0.090 af
Reach PS10A:	Avg. Flow Depth=0.06' Max Vel=1.53 fps Inflow=0.10 cfs 0.008 af n=0.035 L=18.0' S=0.0833 '/' Capacity=261.94 cfs Outflow=0.10 cfs 0.008 af
Reach PS10B:	Avg. Flow Depth=0.07' Max Vel=1.45 fps Inflow=0.10 cfs 0.008 af n=0.035 L=42.0' S=0.0714 '/' Capacity=242.51 cfs Outflow=0.10 cfs 0.008 af
Reach PS2:	Avg. Flow Depth=0.07' Max Vel=1.45 fps Inflow=0.08 cfs 0.007 af n=0.035 L=31.0' S=0.0645 '/' Capacity=20.02 cfs Outflow=0.08 cfs 0.007 af
Reach PS3:	Avg. Flow Depth=0.10' Max Vel=1.87 fps Inflow=0.17 cfs 0.014 af n=0.035 L=58.0' S=0.0690 '/' Capacity=20.70 cfs Outflow=0.17 cfs 0.014 af
Reach PS4:	Avg. Flow Depth=0.12' Max Vel=1.37 fps Inflow=0.16 cfs 0.011 af n=0.035 L=34.0' S=0.0294 '/' Capacity=13.52 cfs Outflow=0.16 cfs 0.011 af
Reach PS6: (new Reach)	Avg. Flow Depth=0.26' Max Vel=1.39 fps Inflow=0.57 cfs 0.046 af n=0.035 L=398.0' S=0.0118 '/' Capacity=8.56 cfs Outflow=0.49 cfs 0.046 af
Reach PS7: (new Reach)	Avg. Flow Depth=0.22' Max Vel=2.69 fps Inflow=0.86 cfs 0.057 af n=0.035 L=303.0' S=0.0528 '/' Capacity=81.69 cfs Outflow=0.80 cfs 0.057 af
Reach PS8: (new Reach)	Avg. Flow Depth=0.29' Max Vel=2.24 fps Inflow=1.30 cfs 0.274 af n=0.023 L=40.0' S=0.0112 '/' Capacity=80.78 cfs Outflow=1.29 cfs 0.274 af
Reach PS9: (new Reach)	Avg. Flow Depth=0.22' Max Vel=1.62 fps Inflow=0.44 cfs 0.032 af n=0.035 L=75.0' S=0.0200 '/' Capacity=11.15 cfs Outflow=0.44 cfs 0.032 af
Pond 1P: (new Pond)	Peak Elev=301.50' Inflow=0.17 cfs 0.016 af 18.0" Round Culvert n=0.011 L=85.0' S=0.0412 '/' Outflow=0.17 cfs 0.016 af
Pond 2P: (new Pond)	Peak Elev=298.08' Inflow=0.58 cfs 0.064 af 18.0" Round Culvert n=0.011 L=47.0' S=0.0362 '/' Outflow=0.58 cfs 0.064 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr2-YR Rainfall=3.10"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 13

Pond 3P: MH2B	Peak Elev=283.92' Inflow=1.09 cfs 0.226 af 24.0" Round Culvert n=0.011 L=72.0' S=0.0200 '/' Outflow=1.09 cfs 0.226 af
Pond 4P: Constructed Wetla Pri	Ind Peak Elev=259.41' Storage=14,577 cf Inflow=3.20 cfs 0.431 af imary=0.47 cfs 0.430 af Secondary=0.00 cfs 0.000 af Outflow=0.47 cfs 0.430 af
Pond 5P: MH2A	Peak Elev=277.91' Inflow=1.22 cfs 0.246 af 24.0" Round Culvert n=0.011 L=60.0' S=0.0200 '/' Outflow=1.22 cfs 0.246 af
Pond 20P: (new Pond)	Peak Elev=265.12' Inflow=1.25 cfs 0.257 af 24.0" Round Culvert n=0.011 L=160.0' S=0.0200 '/' Outflow=1.25 cfs 0.257 af
Pond BS: Bus Station RG	Peak Elev=257.34' Storage=1,917 cf Inflow=0.96 cfs 0.073 af Outflow=0.11 cfs 0.030 af
Pond CB2: (new Pond)	Peak Elev=262.25' Inflow=0.21 cfs 0.017 af 12.0" Round Culvert n=0.011 L=10.0' S=0.0100 '/' Outflow=0.21 cfs 0.017 af
Pond CB3: (new Pond)	Peak Elev=277.40' Inflow=0.14 cfs 0.011 af 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.14 cfs 0.011 af
Pond CB4: (new Pond)	Peak Elev=294.04' Inflow=0.36 cfs 0.026 af 12.0" Round Culvert n=0.011 L=7.0' S=0.0286 '/' Outflow=0.36 cfs 0.026 af
Pond CB5: (new Pond)	Peak Elev=294.21' Inflow=0.32 cfs 0.025 af 12.0" Round Culvert n=0.011 L=17.0' S=0.0235 '/' Outflow=0.32 cfs 0.025 af
Pond CULdeSAC: Cul-de-sa	c Peak Elev=298.82' Storage=766 cf Inflow=0.23 cfs 0.018 af Outflow=0.00 cfs 0.000 af
Pond MH1: (new Pond)	Peak Elev=261.77' Inflow=1.30 cfs 0.274 af 30.0" Round Culvert n=0.013 L=35.0' S=0.0100 '/' Outflow=1.30 cfs 0.274 af
Pond MH2: (new Pond)	Peak Elev=271.02' Inflow=1.25 cfs 0.257 af 24.0" Round Culvert n=0.011 L=125.0' S=0.0200 '/' Outflow=1.25 cfs 0.257 af
Pond MH3: (new Pond)	Peak Elev=289.54' Inflow=1.09 cfs 0.226 af 24.0" Round Culvert n=0.011 L=33.0' S=0.0200 '/' Outflow=1.09 cfs 0.226 af
Pond MH4:	Peak Elev=300.16' Inflow=0.10 cfs 0.008 af 18.0" Round Culvert n=0.011 L=169.0' S=0.0200 '/' Outflow=0.10 cfs 0.008 af
Pond MH5:	Peak Elev=301.26' Inflow=0.10 cfs 0.008 af 18.0" Round Culvert n=0.011 L=56.0' S=0.0107 '/' Outflow=0.10 cfs 0.008 af
Pond MH6: CB6	Peak Elev=293.36' Inflow=0.90 cfs 0.157 af 24.0" Round Culvert n=0.011 L=101.0' S=0.0200 '/' Outflow=0.90 cfs 0.157 af
Pond RG10:	Peak Elev=305.42' Storage=165 cf Inflow=0.05 cfs 0.004 af Outflow=0.00 cfs 0.000 af

Pine Hill Proposed Proposed Conditi Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD	Printed 9/10/2018
Pond RG11:	Peak Elev=306.85' Storage=235 cf Inflow=0.08 cfs 0.006 af Outflow=0.00 cfs 0.000 af
Pond RG12:	Peak Elev=310.27' Storage=0 cf Inflow=0.17 cfs 0.014 af Outflow=0.17 cfs 0.014 af
Pond RG13:	Peak Elev=307.70' Storage=500 cf Inflow=0.16 cfs 0.011 af Outflow=0.00 cfs 0.000 af
Pond RG14:	Peak Elev=304.96' Storage=222 cf Inflow=0.11 cfs 0.008 af Outflow=0.01 cfs 0.003 af
Pond RG15:	Peak Elev=300.85' Storage=467 cf Inflow=0.68 cfs 0.057 af Outflow=0.46 cfs 0.048 af
Pond RG16:	Peak Elev=300.86' Storage=933 cf Inflow=0.80 cfs 0.106 af Outflow=0.58 cfs 0.086 af
Pond RG19:	Peak Elev=295.78' Storage=1,267 cf Inflow=0.49 cfs 0.046 af Outflow=0.05 cfs 0.018 af
Pond RG20:	Peak Elev=294.23' Storage=389 cf Inflow=0.07 cfs 0.009 af Outflow=0.00 cfs 0.000 af
Pond RG21:	Peak Elev=291.62' Storage=631 cf Inflow=0.47 cfs 0.033 af Outflow=0.19 cfs 0.020 af
Pond RG22:	Peak Elev=258.52' Storage=667 cf Inflow=0.21 cfs 0.015 af Outflow=0.00 cfs 0.000 af
Pond RG23:	Peak Elev=256.42' Storage=143 cf Inflow=0.05 cfs 0.003 af Outflow=0.00 cfs 0.000 af
Pond RG3:	Peak Elev=310.93' Storage=307 cf Inflow=0.17 cfs 0.015 af Outflow=0.04 cfs 0.008 af
Pond RG4:	Peak Elev=303.49' Storage=126 cf Inflow=0.04 cfs 0.003 af Outflow=0.00 cfs 0.000 af
Pond RG5:	Peak Elev=305.20' Storage=203 cf Inflow=0.06 cfs 0.005 af Outflow=0.00 cfs 0.000 af

Total Runoff Area = 16.749 acRunoff Volume = 1.232 afAverage Runoff Depth = 0.88"86.64% Pervious = 14.511 ac13.36% Impervious = 2.238 ac

10 12 14 16 18 20

0.035-

0.03 0.025 0.02 0.02 0.015 0.015 0.015 0.015 0.005 0 0 0 0 0 2

4 6 8

CN=65

36 38 40 42 44 46 48

Summary for Subcatchment 1S: (new Subcat)

Runoff = 0.08 cfs @ 12.11 hrs, Volume= 0.007 af, Depth= 0.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

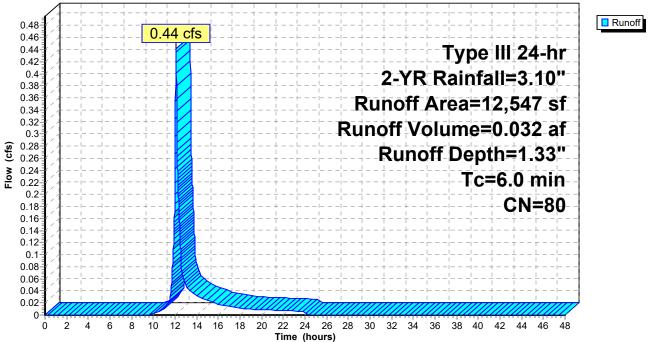
	Area (sf)	CN D	escription								
	771	98 P	aved parki	ing & roofs							
	6,156			•	od, HSG B						
	6,927	65 V	Veighted A	verage							
	6,156			vious Area							
	771	1	1.13% Imp	pervious Are	ea						
To (min)	0	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
<u>(min)</u> 6.0		(1011)		(015)	Direct Entry	,					
0.0					Direct Littiy	,					
			Sul	bcatchme	ent 1S: (nev	w Subc	at)				
				Hydrog	graph						
0.0	85			Hydrog	graph		+		 + 	+-	- Runoff
0.0			0.08 cfs	Hydrog	graph			 	 + +	+ + - 	- Runoff
0.	08		0.08 cfs	Hydrog	graph			ē 111	24	-hr	- - -
0. 0.0	08		D.08 cfs	Hydrog		2-YR	#				- Runoff -
0. 0.0	08		D.08 cfs	Hydrog		2-YR	Rain	fall=	:3.	10"	-
0. 0.0 0. 0.0	08		D.08 cfs	Hydrog		2-YR unoff	Rain	fall=	:3.	10"	-
0. 0.0 0. 0.0 0. 0.0			D.08 cfs	Hydrog		1 I I	Rain Area	fall= i=6,§	:3. 927	10'' 7 sf	
0. 0.0 0. 0.0 0.0			D.08 cfs	Hydrog	Runo	unoff off Vo	Rain Area Iume	fall= =6,9 =0.0	:3. 927 007	10" 7 sf 7 af	
.0 0.0 0.0 0.0 0.0 0.0 0.0			D.08 cfs	Hydrog	Runo	unoff	Rain Area Iume ff Dej	fall= =6,9 =0.0	=3. 927 007 =0.	10" 7 sf 7 af 55"	

22 24 26

Time (hours)

28 30 32 34

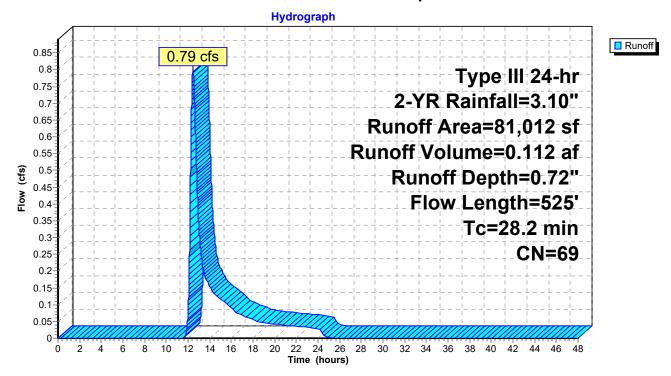
Summary for Subcatchment 2S: Road


Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN	Description									
*		4,975	74	>75% Gras	>75% Grass cover, Good, HSG C								
*		3,197	98	Impervious	mpervious								
*		4,375	73	Woods, Fai	r, HSG C								
		12,547	80	Weighted A	verage								
		9,350		74.52% Pervious Area									
		3,197		25.48% Imp	pervious Ar	rea							
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)								
	· /	(ieet)	(ועונ) (II/Sec)	(015)								
	6.0					Direct Entry,							

Subcatchment 2S: Road


Summary for Subcatchment 3S: Undeveloped Area

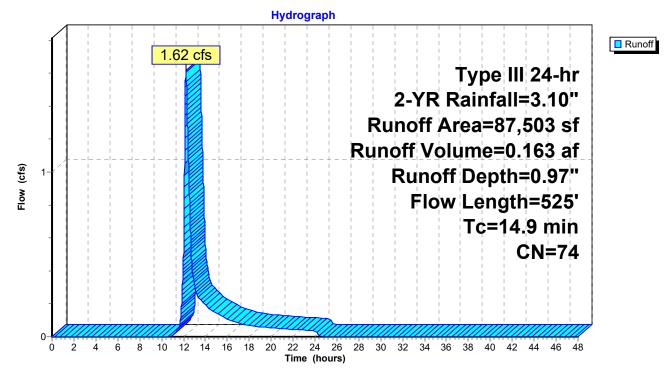
Runoff = 0.79 cfs @ 12.45 hrs, Volume= 0.112 af, Depth= 0.72"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN I	Description									
*		26,806	61 :	75% grass cover, good, HSG B									
_		54,206	73	Woods, Fair, HSG Č									
		81,012	69	Weighted A	verage								
		81,012		100.00% Pe	ervious Are	а							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
_	8.2	50	0.0605	. /	/	Sheet Flow,							
_	20.0	475	0.0250			Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps							
	28.2	525	Total										

Subcatchment 3S: Undeveloped Area

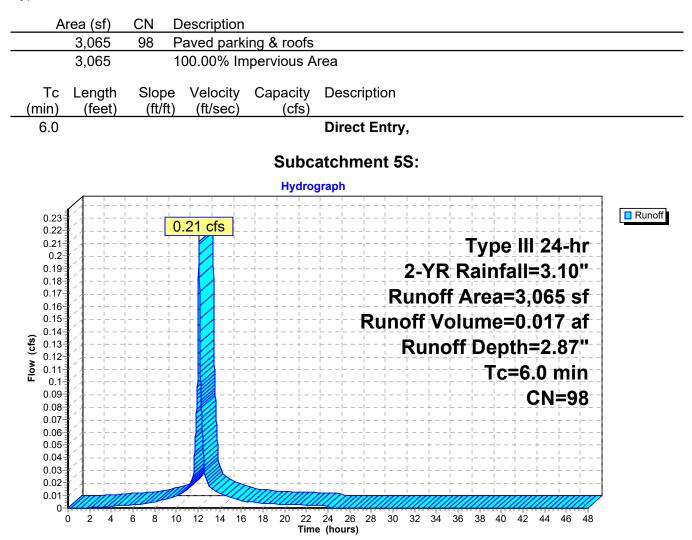
Summary for Subcatchment 4S:


Runoff = 1.62 cfs @ 12.22 hrs, Volume= 0.163 af, Depth= 0.97"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

_	A	rea (sf)	CN	Description										
*		62,598	73	Woods, Fai	r, HSG C									
		2,061	98	Paved park	ved parking & roofs									
_		22,844	74	>75% Ġras	75% Grass cover, Good, HSG C									
		87,503	74	Weighted A	verage									
		85,442		97.64% Pei	rvious Area									
		2,061		2.36% Impe	ervious Are	а								
	Тс	Length	Slope		Capacity	Description								
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
	4.9	50	0.0300	0.17		Sheet Flow,								
						Grass: Short n= 0.150 P2= 3.00"								
	10.0	475	0.0250	0.79		Shallow Concentrated Flow,								
_						Woodland Kv= 5.0 fps								
	110	EDE	Total											

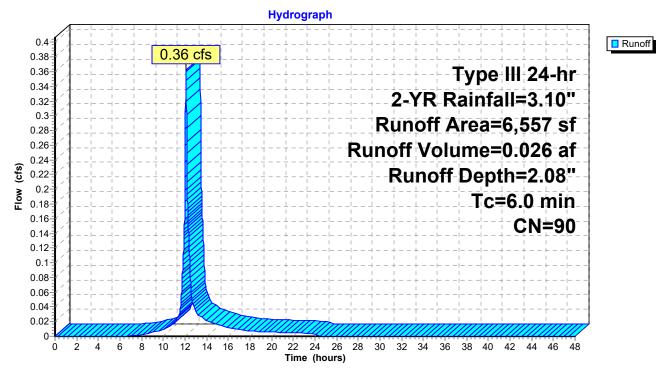
14.9 525 Total


Subcatchment 4S:

Summary for Subcatchment 5S:

Runoff = 0.21 cfs @ 12.08 hrs, Volume= 0.017 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

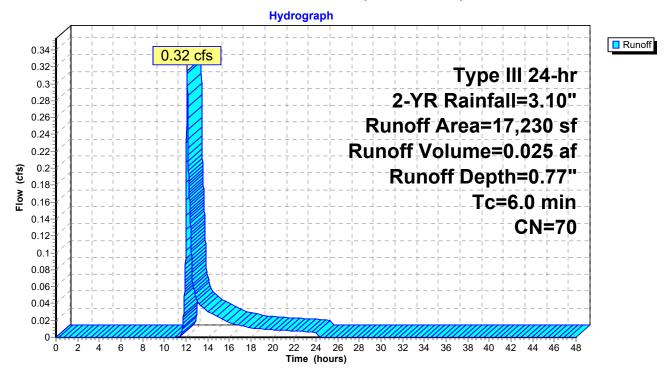

Summary for Subcatchment 7S: (new Subcat)

Runoff = 0.36 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN	Description							
*		5,183	98	Impervious							
*		1,374	61	>75% grass cover, good, HSG B							
		6,557	90	Weighted A	verage						
		1,374		20.95% Per	vious Area	3					
		5,183		79.05% Imp	pervious Ar	rea					
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
	6.0	(1001)	(1011	, ((0.0)	Direct Entry,					

Subcatchment 7S: (new Subcat)


Summary for Subcatchment 8S: (new Subcat)

Runoff = 0.32 cfs @ 12.10 hrs, Volume= 0.025 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

_	A	rea (sf)	CN	Description								
*		4,188	98	Impervious								
*		13,042	61	>75% grass cover, good, HSG B								
		17,230 13,042 4,188		Weighted A 75.69% Per 24.31% Imp	vious Area							
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description						
	6.0					Direct Entry,						

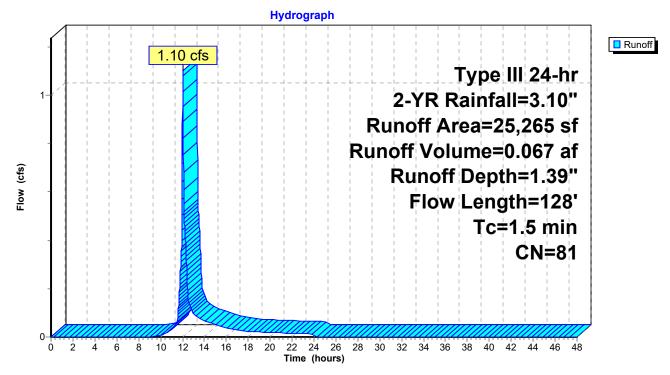
Subcatchment 8S: (new Subcat)

Summary for Subcatchment 9S:

Runoff = 0.14 cfs @ 12.08 hrs, Volume= 0.011 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

A	Area (sf)	CN	De	scrip	otio	n															
	1,988	98																			
	1,988		100	0.00	% I	mper	viou	ıs Ai	rea												
Tc min)	Length (feet)	Slop (ft/		Velo (ft/s	ocity sec)		pac (c	city fs)	Desc	ripti	on										
6.0									Dire	ct E	ntry	',									
							Su	bca	atchr	ner	it 9	S:									
							Ну	drog	raph												-
0.15	5		· + +				+	+ !		-¦		+ 	+ 	 			+ 	+ 		-¦	Runo
0.14			0.1	4 cf	S		1								F		- 		- L	 	
0.13		, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,		 	, , ,	 	 	, , , , LL_	 _	 	 	 								_
0.12							 	 +		 -	 	2-`	YR	R	aiı	nfa	all=	=3 .	10)'''	-
0.11		, , , , , , , , , , , , , , , , , , , ,	, L		 	J		, , , , , , , , , , , , , , , , , , , ,	, , , , L L _	_l	R	un	of	fΑ	re	a=	1,	98	8_€	sf₋	_
0.1					 -	 	 	 +		D.							:0 .	1			-
0.09					 						1	1	1		i.	i i	1	1	1		
0.08 ق	<u>,</u> }_						1	1			1	Ru	nc)ff	De	эp	th=	=2.	87		
0.03 0.08 0.07					 											C	=6 .	0	mi	'n	
0.06	j						1				1	1	 +	 	1		:	N	- 		
0.05							1	+ 			1	 	+ 	 	 	 		7 I N'	-3 	0	_
0.04							1	1			1	1	1	1	1	1	1	1	1	1	
0.03					- 		 	1											 		
0.02										1	 	T	T	 	1	1	T	T	Г — - 	- 	_
0.01					\square		+ 	+ 			 	+ 	+ 	 			+ 	+	+ 	 	-
0			· · · · · · · · ·	 		<u>////</u>			<u> </u>	////	///	///	////	///	///	///	////	////	Щ.	Щ	7
	0 2 4	6 8	10	12	14	16 18	20	22 Time	24 26 (hours		30	32	34	36	38	40	42	44	46	48	


Summary for Subcatchment 10S: (new Subcat)

Runoff = 1.10 cfs @ 12.03 hrs, Volume= 0.067 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

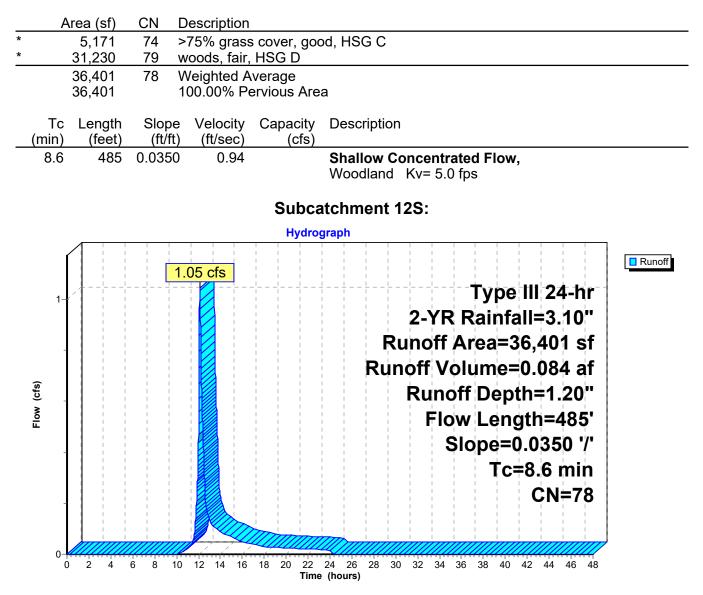
/	Area (sf)	CN E	Description									
	7,231	98 Paved parking & roofs										
18,034 74 >75% Grass cover, Good, HSG C												
25,265 81 Weighted Average												
	18,034 71.38% Pervious Area											
7,231 28.62% Impervious Area												
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
0.7	50	0.0200	1.16		Sheet Flow,							
0.8	78	0.0500	1.57		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps							
1.5	128	Total										


Subcatchment 10S: (new Subcat)

Summary for Subcatchment 11S:

Runoff = 0.40 cfs @ 12.10 hrs, Volume= 0.033 af, Depth= 0.72"

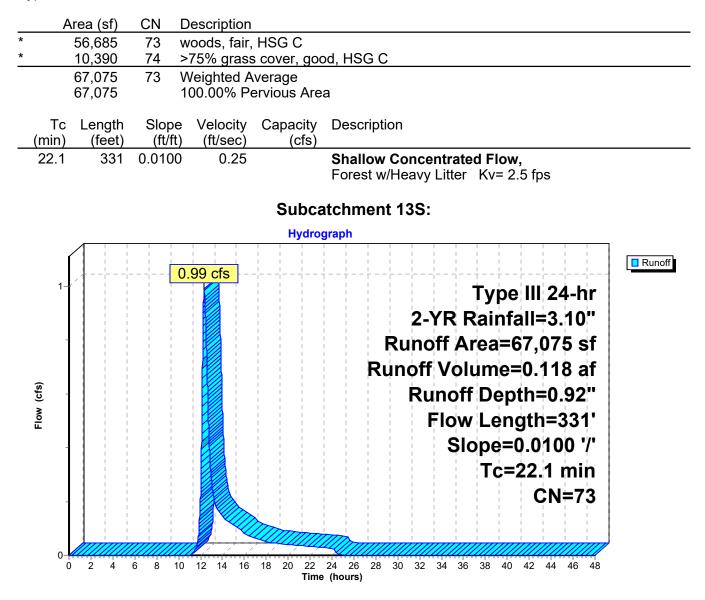
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"



Summary for Subcatchment 12S:

Page 25

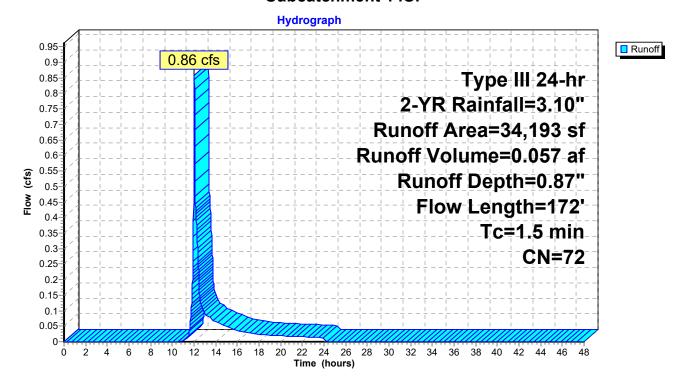
Runoff 1.05 cfs @ 12.13 hrs, Volume= 0.084 af, Depth= 1.20" =


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

Summary for Subcatchment 13S:

Runoff = 0.99 cfs @ 12.35 hrs, Volume= 0.118 af, Depth= 0.92"

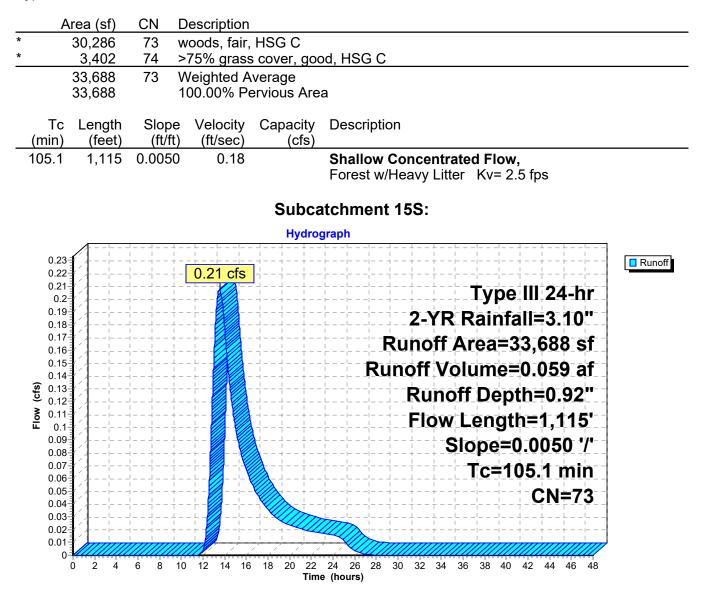
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"


Summary for Subcatchment 14S:

Runoff = 0.86 cfs @ 12.03 hrs, Volume= 0.057 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN [Description										
*		23,718	61 >	75% grass	75% grass cover, good, HSG B									
*		9,784	98	0										
*		691	60 v	voods, fair,	HSG B									
		34,193	72 V	Veighted A	verage									
		24,409	7	′1.39% Per	vious Area									
		9,784	2	8.61% Imp	pervious Ar	ea								
	Тс	Length	Slope	Velocity	Capacity	Description								
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
	0.4	47	0.1000	2.18		Sheet Flow,								
						Smooth surfaces n= 0.011 P2= 3.00"								
	1.1	125	0.0700	1.85		Shallow Concentrated Flow,								
						Short Grass Pasture Kv= 7.0 fps								
	1.5	172	Total											


Subcatchment 14S:

Summary for Subcatchment 15S:

0.21 cfs @ 13.54 hrs, Volume= Runoff 0.059 af, Depth= 0.92" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

Summary for Subcatchment 16S:

Runoff = 0.32 cfs @ 12.08 hrs, Volume= 0.026 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	<u>rea (sf)</u> 4,678	<u>CN</u> E 98	Description														
	4,678		00.00% In	nperviou	is A	rea											
т.				-													
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capac (c	fs)	Descr	iptio	on									
6.0	(1001)	(14.11)	(11,000)		,	Direc	t Er	ntry	,								
								•									
				Sul	oca	atchm	ent	16	S:								
				Ну	dro	graph											
0.36-		1 + - 1 1 1 1 <u>. + -</u>	<u> </u>		+	· ⊢ − − ⊢ − −	 	1 — — - 	+	+ +	 	 	-	+	+ +	 +	-
0.34-	/ /	· · · 0	.32 cfs	 	 	 	 	 	 +	∣ ↓	 	 	 _	 	∣ ↓	 	 _
0.32-	/ <u> </u>	 		 	 	 	!	! !	 	 		Ēvi	be	¦Η	24	4-ŀ	ir
0.3-	·					·		 			1			1	1		
0.28-	· /					·		 	Z-1	ſΚ	R	all	nta	311=	= 3.	.10);
0.26-		 +-			 +		 ·	R	un	of	fΑ	re	a=	4-(67	8-9	sf
0.24-	 /				 +	· ⊢ − − ⊢ − −	<u>.</u>	1	1	1		1	1		1	1	
0.22-	Í.+				+	· – – – – – –	πι	inc	211	¦⊻(PIU	III	e-	U .	ŲΖ	0	<u>a</u> I
0.2	/ /			- J J		·	.	F	Ru	nc)ff-	De	ae	th=	=2.	.87	7"
0.2- 0.18- 0.16-	Ì,∤⊦				$\frac{1}{1} = -$	· <mark> -</mark> <mark> -</mark>		<u> </u>	<u> </u>	<u>+</u>	i	1	1.	1	1	1	1
-	í,/				$\frac{1}{1}$	$\frac{1}{1}$ - $-\frac{1}{1}$			<u> </u> 	$\frac{1}{1}$			-C-	=6 .	<u>U</u>		
0.14-	/	1 + -			+			 	 	 	 	 		-6	3N	=9	8
0.12-	[/+	+-			+	·		' +	+ ·	+		 	-	+	+	+	-
0.1-	[/{				+	· – – – – – –	.i	- - 	+ I	+ 1	 	 	-i		+	÷ – •	-i
0.08-		+- 	- +		+	· ⊢ − − ⊢ − −	·	+	+	+	⊢ – – I	 	-	+	+	+	-
0.06-	[/{¦				1 – – !		. !		L 1	<u>+</u> – –	L	 		<u> </u>	1 – –	<u> </u>	
0.04- 0.02-	▋/┼╌┾╌╴	!!			+	· ¦= = = = = =		¦	<u> </u>	<u>+</u> – –					<u>+</u>	- <u> </u>	
																	·///
0-	0 2 4	6 8 10	12 14 16	18 20	22	24 26 e (hours)	28	30	32	34	36	38	40	42	44	46	48

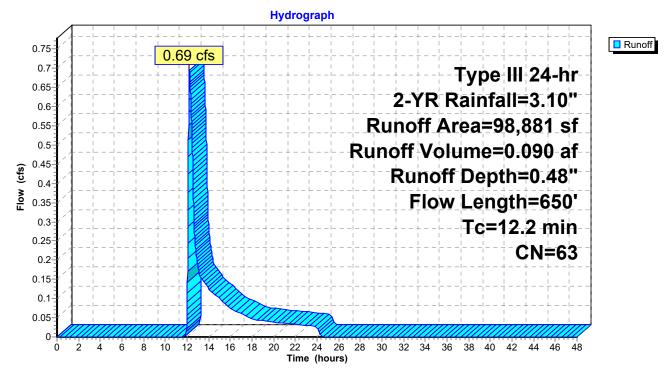

Summary for Subcatchment CUL: (new Subcat)

Runoff = 0.23 cfs @ 12.10 hrs, Volume= 0.018 af, Depth= 0.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN	Description		
*		3,132	98			
*		7,461	61	G+RG: >75	% grass co	over, good, HSG B
		10,593 7,461 3,132		Weighted A 70.43% Per 29.57% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment CUL: (new Subcat)

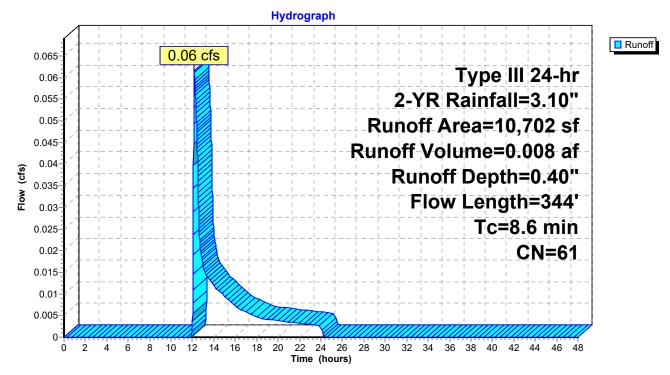

Summary for Subcatchment P1:

Runoff = 0.69 cfs @ 12.22 hrs, Volume= 0.090 af, Depth= 0.48"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

_	A	rea (sf)	CN E	Description										
		93,901	61 >	75% Gras	s cover, Go	bod, HSG B								
*		4,980	98 iı	npervious	ipervious									
		98,881	63 V	Veighted A	verage									
		93,901	ç	4.96% Per	vious Area									
		4,980	5	.04% Impe	ervious Area	a								
	_													
	Tc	Length	Slope	Velocity	Capacity	Description								
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
	7.7	50	0.0700	0.11		Sheet Flow,								
						Woods: Light underbrush n= 0.400 P2= 3.00"								
	4.5	600	0.1010	2.22		Shallow Concentrated Flow,								
_						Short Grass Pasture Kv= 7.0 fps								
	12.2	650	Total											

Subcatchment P1:

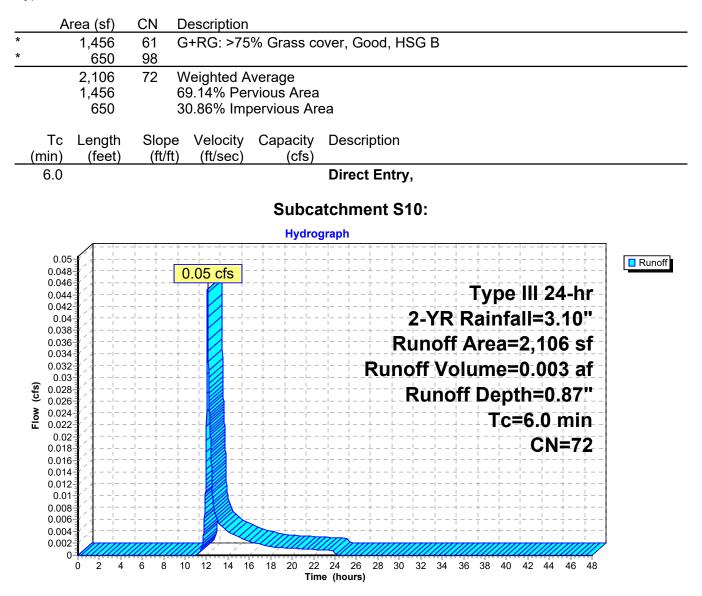

Summary for Subcatchment P2:

0.06 cfs @ 12.17 hrs, Volume= 0.008 af, Depth= 0.40" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

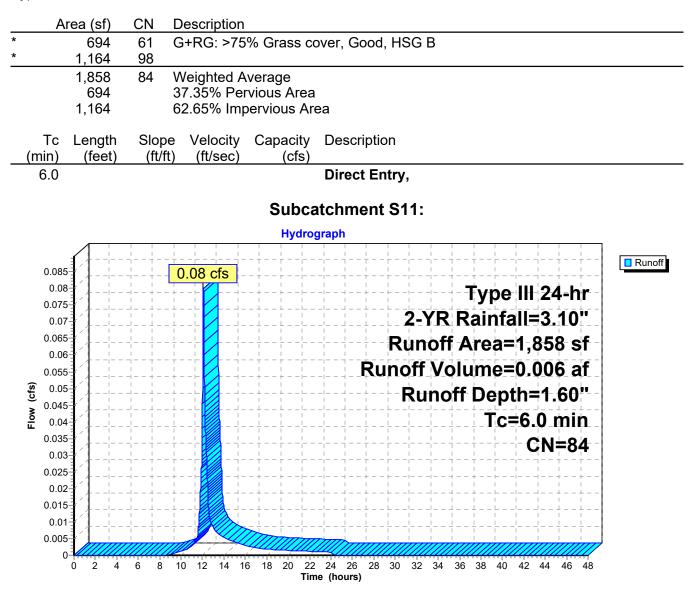
_	A	rea (sf)	CN [Description		
*		10,702	61 (G+RG: >75	% Grass co	over, Good, HSG B
		10,702	1	00.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	50	0.1000	0.12		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	1.0	138	0.2200	2.35		Shallow Concentrated Flow,
	~ ~	450	0 4700	0.00		Woodland Kv= 5.0 fps
	0.9	156	0.1700	2.89		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	8.6	344	Total			

Subcatchment P2:


Summary for Subcatchment S1:

0.10 cfs @ 12.08 hrs, Volume= Runoff 0.008 af, Depth= 2.76" =

A	rea (sf)	CN	Description														
	61		>75% Gras	s cover, G	iood, l	HSG E	3										
	<u>1,478</u> 1,539	98 97 \	Weighted A	verage													
	61		3.96% Perv														
	1,478	ę	96.04% Imp	pervious A	rea												
Тс	Length	Slope	Velocity	Capacity	, De	scripti	on										
(min)	(feet)	(ft/ft)		(cfs)		oonpa	011										
6.0	· · ·		, <i>i</i>		Dir	ect E	ntry	,									
				Cub	t - k		4 0	4.									
						nmen	τ	1:									
				Hydr	ograph				1	I	II		I	1	1		l
0.115						! 		 	 	 			i +	 +	 	 	Runoff
0.11 0.105			0.10 cfs	·			 	т — — ; ;	т — — 				 • • • •	т — — 		- 	
0.1		+-		· + + -	· - -		 	 +	 +		ſyŗ			i.	- i - i - i - i - i - i - i - i - i - i		
0.095 0.09				·		i	 	2-\	/ R	R	air	nfa	11=	=3.	10)"	
0.085		+ -	+ 	+ + -	 -⊢⊦		D			F − ∧	rea		- - -	52	 0-a	- -	
0.08 0.075	(·	·									1	1		
0.07		+-		· + + -		Rι	inc	off	Vo	plu	m	e=	0.0	00	8 6	af	
දි 0.065 0.06	(/+			+ - + -		¦		Ru	'nc	ff	De	pt	h=	=2 .	76	5	
0.055 8 0.055 1 0.05		+-		· + + -					 	 	I I		=6.	1	1	1	
	(/			· + - + -				+ +	 	 	¦ ∎ ¦	U -	T	T	Γ		
0.045 0.04				· J J	· _ L ' 			1 ·	1 +	L 	'' 		<u></u>	2N	=9	7	
0.035	(/	++		+ - + -				 	 	 			 	+ +	 	- <mark> </mark>	
0.03 0.025				·		'	_ 	1 +	1 1 +	L 	 		1 +	1 +		- -	
0.02				+ - + -		¦			<u> </u> 					$\frac{1}{T} = -$	 	-¦	
0.015 0.01				·			 	1 ·	⊥ +		 '		<u> </u>	⊥ +		-	
0.005		mm						////									
0-	0 2 4	6 8 1	/	18 20 2	2 24	26 28	30	32	34	36	38	40	42	44	46	48	
	'				me (hou												


Summary for Subcatchment S10:

Runoff = 0.05 cfs @ 12.10 hrs, Volume= 0.003 af, Depth= 0.87"

Summary for Subcatchment S11:

Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 1.60"

Summary for Subcatchment S12:

Runoff = 0.17 cfs @ 12.10 hrs, Volume= 0.014 af, Depth= 0.77"

	Area (sf)	CN	Descri	ption														
	2,175	98																
	7,092	61	G+RG				over,	Good	I, H	SG	B							
	9,267	70	Weight															
	7,092		76.53%															
	2,175		23.47%	% Imp	ervio	ous Ar	ea											
Т	0	Slop			Cap	pacity	Des	cripti	on									
(min		(ft/f	t) (ft/s	sec)		(cfs)												
6.0	0						Dire	ct E	ntry	,								
					S	Subca	atchr	nen	t S′	12:								
						Hydro	graph											
0.1	19-									T	T				 			
0.1	18		0.17 ct	fs		, , , , , , , , , , , , , , , , , , , ,			, , ,	, , +	 +	 				, 		Runoff
0.1	17	i i <mark>-</mark>	+ + -		i 	i i i +		i	i +	i +	i +		yp	⊳∔H	1 ⁻ 27	4_ł	hr-	
0.1	16	 	 + + -			 +	·		 	 +	+				+			
0.1	a 20 - 1	 	+ + +		· -	 +	·	!		2-`	YR	R	aint	all	=3	.10)	
0.1	= 1 / 1 · · ·					+		!	R	İm	of	fΔ	rea	=9	26	7-9	sf	
0. ² 0.2		 	+ +			+		i D-		+	+			- + - •	+	· +		
•	= = _ 1 =	4 – – – – – – 1 – – – – –			· _		·	- KI	ING	ЭTT	+ V -(эн	me	=0.	U1	4 -a	ат	
2	.1	/ 						! ! !		Ru	nc)ff	Dep	oth	=0	.77	7""	
8 0.0										 			. .	;=6	1	1	1	
ت 0.0	08	 		 		 	 -	 !	 	 	 				· <u>+</u>	· 上		
0.0	07	, , , , , , , , , , , , , , , , , , ,				 	. L L.	!						(ÇN	=7	<u>'0 </u>	
0.0	3 21 1			¦		<u> </u>	·	¦		- 			¦-		· <u> </u>	· <u> </u>		
0.0	3 21 1	¦!		¦		$\frac{1}{1} \frac{1}{1}$	$\frac{1}{1} = -\frac{1}{1}$			<u> </u> – –	$\frac{1}{1}$			$-\frac{1}{1}$	+ +	<u> </u>	-¦	
0.0	- 1 I I		$\frac{1}{1} = -\frac{1}{1}$			$\frac{1}{1} = -\frac{1}{1} = -$				<u> </u> 	$\frac{1}{1} = -$			$-\frac{1}{1}$	- <u> </u>	<u> </u>		
0.0 0.0	I 21					<u> </u> 		¦		+	<u>+</u>				· <u>+</u>	· 		
0.0	E 21 I			Ŵ	TT			¦		<u>+</u> – –	<u>-</u> 				- <u>+</u>	· 		
0.0										////								
	0 2 4	6 8	10 12	14 16	18	20 22	24 2	6 28	30	32	34	36	38 4	3 42	44	46	48	

Summary for Subcatchment S13:

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 1.39"

A	rea (sf)	C	N	De	escr	ipti	on																	
	2,314		98	_		~				~			~ -											
	2,000		<u>51</u>					CO		Go	od,	HS	GE	3										
	4,314 2,000		31					/era /iou		rea														
	2,000							ervi			a													
	_,																							
Tc	Lengt		Slop		Vel			Ca			De	scr	iptio	on										
(min)	(feet	t)	(ft/f	t)	(ft	/se	c)		(C	is)	<u> </u>													
6.0											Di	rect	t Er	ntry	,									
								ç	Suk	oca	tch	m	ntء	S	13.									
													5110		10.									
			1	1	1	1	1	1	Hy	drog	rapi	1	1	1	1	1	1	1	1	1	1	1		
0.47	<u>ſ</u> ∤⊦			+					+ +	+ +	 	 	 		+ +	+ +	 	· ·		+	+	+	-	Runoff
0.17- 0.16-		 	-i I	0.	16 d			-i	+ 	+ 	 	 	i I	- 	+ 	+ 	 -	i	-i		÷	 	-	
0.15				+			-!		+	+	⊢ – – I I	 	 	4 1 1 1	+	+ 1 1				÷	24	÷		
0.14-			1	 					1	1 <u>1</u>	 	 	 	 	2-`	YR	R	aiı	nfa	all=	=3.	.10)''	
0.13-	(/		- 	 					$\frac{1}{1}$	 	 	 	 	R	un	of	FΑ	re	a=	4	31	4-9	sf	
0.12-	Í /			+	÷				+	+	 		D.		off						1			
0.11- <u> </u> 0.1-	[+					+	+	' ⊢ – – I	 	RU	i.	i.	i.		i i	i.	i i	i i	i -		
0.1- 0.09- 0.08-	[/{⊦		- 	+			-1		+	+	⊢ – – I	 	 	+ 	Ru	nc)ff	De	эp	th:	=1	.39) <u>"</u>	
8 0.08				i 								·			i 				Гс	=6	.0	mi	n	
0.07-			 	 		<u>_</u>			 	 		 	 	 	 	 	 				ŚN		24	
0.06-	/		- 	- - 					- - 	i +	 	 		1	- - -	i T	 							
0.05	 -			+			- 		 	+	 ⊢ – – 	 	 		+	+	 	· ·	-	+	+	+	-	
0.04- 0.03-	Į/⊢			+			-1		+	+	⊢ – – !	 !	 !	+ ·	+	+	⊢ – – !	·	-!	+	+	+	- !	
0.03-			 	⊥ 			_! 	 	1 	⊥ 	L 	I I I	! ! !	 	1 	⊥ 	L 	.! 	_! ! !	 	1 – – 	- <u>L</u> 	- !	
0.01-			 	 			\square			1			 		 	 	 	 	 	 	 		 	
0-				1111	10	 /			- 1711	<u>-</u>										40				
	0 2 4	46	8	10	12	14	16	18	20	22 Time	24 (ho	26 urs)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S14:

Page 38

Runoff 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Depth= 1.67" =

		CN	Description													
	1,518	98														
	853	61	G+RG: >75	% Grass c	over, G	ood,	HS	<u>G B</u>								
	2,371		Weighted A													
	853		35.98% Per													
	1,518		64.02% Imp	ervious A	rea											
Tc	Length	Slope		Capacity	Desci	iptic	n									
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)												
6.0					Direc	t En	try,									
				Subc	atchm	ent	S14	4:								
				Hydro	ograph											
	<u></u>					-	± .			-	_	 	 		Ru	noff
0.115 ⁻ 0.11-	= /		0.11 cfs			-ii	+ ·	+ ·	i	-i	-i	+ 1	+ 1	+ i- i i		non
0.105		+					+		L _	Τv	ne	- []]	24	1-hr	 	
0.1							+				- ,	T	T	F I-		
0.095- 0.09-						-'		- Y	K I	kai	nta	311= +	= 3.	10"		
0.085				$\frac{1}{1} \frac{1}{1} \frac{1}{1} - $			Ru	no)ff 7	4re	a=	2,	37	1-sf		
0.08- 0.075-						Ru	no	ff \	/ol	um	ie=	:0.	00	8 af		
0.07- (s) 0.065-				-iii		-ii	R	un	of	F D	en	th=	=1-	67"	 	
0.06 0.055	 ∕			+-			- + ·					Τ Τ	Τ	F I-		
<u> </u>						-1	+	+ ·			I C:	= b.	U	min		
0.045				$\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ -				+ -				C	ÌN	=85		
0.04- 0.035-												1 	122			
0.03-								<u> </u> .								
0.025	- / 1					-ii	+-	+ -		-i	-!		÷	i		
0.02- 0.015-	= / 1			лтт- Ј			+ : 	— т L .				т — — 	т — — ⊥	т і- L L		
0.01	= /			 +-+-	- <u> </u> - <u> </u>	-	+	+ -		-	 -	 +	 +	 + − − −		
0.005	= /////////////////////////////////////								////		-	-	-			
0-	0 2 4	6 8 1	10 12 14 16	18 20 22	24 26	28	30 3	32 3	4 36	38	40	42	44	46 4	f 8	

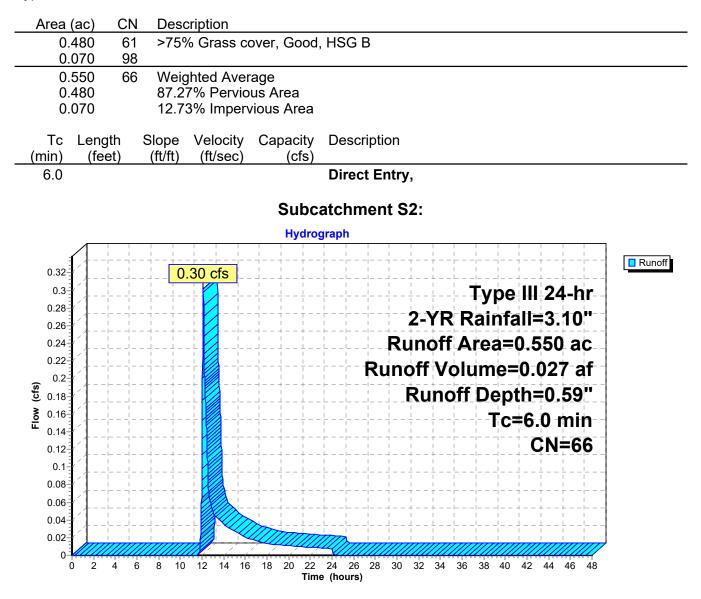
Summary for Subcatchment S15:

Page 39

Runoff 0.68 cfs @ 12.10 hrs, Volume= 0.057 af, Depth= 0.68" =

	Area (sf)	CN I	Description															
*	8,653	98				_				_								
*	35,561		G+RG: >75		s co	ver, Go	bod	, HS	SG	B								
	44,214		Weighted A															
	35,561		80.43% Pei			-												
	8,653		19.57% Imp	ervious	Are	a												
Т	0	Slope		Capac		Descr	iptic	on										
(min	, <u>, , , , , , , , , , , , , , , , , , </u>	(ft/ft)	(ft/sec)	(C	fs)													
6.0)					Direc	t Er	ntry	,									
				Sub	oca	tchm	ent	S 1	5:									
				Ну	drog	raph		-	-									
0.7	75-1					L l 	 	! ! !	1 	⊥ 	L 	 		 	⊥ 	L	- 	Runoff
	.7	(0.68 cfs		+		- !	+ — — - !	+	+	 	 	— — ·	+	+	+	-	
0.6					$\frac{1}{1} = -$		' '	! 	<u> </u>	<u> </u> 		Γyï	pe	İĦ	24	4-r	∖r⁻	-
	.6-4	+-			+	⊢ – – – – – 	- 	+ 	2-`	ΥR	R	air	hfa	3 =	=3.	10)''	-
0.5	55-			· -ii	<u>+</u> – –		; ! E	i	T T	T		ea		T	T	Γ		
0	.5			·	+												-	-
a 0.4	15			·	T		Ru		1	i.		Im	1	1	1	1	i i	
0 (cfs	.4						 		Ru	nc)ff	De	ept	th=	=0 .	68	8"	
0 (cfs)	35									т — — I L		T	C=	=6 .	0	mi	n	
_	.3				 +		 	 +	 +	 +	 	 	 	1	ÌN	1	1	
0.2	25			; ; 				 		: 		i 			/ \ 		.	-
0	.2	 ++-		 	 +	 	 	 	 +	 +	 	 	 	 	 +	 +	 -	-
0.1	5			·	i <u>i</u>	. i 		 	 	 - 	 			<u> </u> <u> </u>	 			-
0	.14	 		, , , , , , , , , , , , , , , , , , , ,	 +	 	 	 	। ↓	: : +		 	 	 	 +	 	 -	-
0.0	05						-				 ////						-	ļ
	$0 \frac{1}{2}$	6 8 1	0 12 14 16	18 20	ŕ 22	24 26	28	30	32	34	36	38	40	42	44	46	48	
	т. С. т.			10 20		(hours)	20	50	52	0.			10				10	

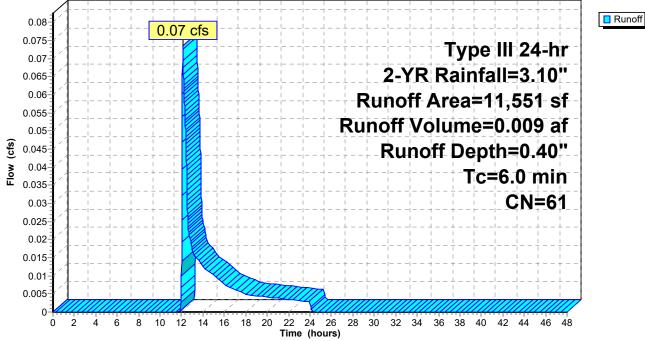
Summary for Subcatchment S19:


Page 40

Runoff 0.57 cfs @ 12.10 hrs, Volume= 0.046 af, Depth= 0.77" =

А	rea (sf)	CN	Descri	ption																
	7,316	98																		
	23,916		>75%				iood,	HS	G E	}										
	31,232		Weigh 76.58%				_													
	23,916 7,316		23.42%																	
	7,010		20.72/	/0 IIII			ica													
Тс	Length	Slope		ocity	Ca	pacity	De	escr	iptic	on										
(min)	(feet)	(ft/ft) (ft/:	sec)		(cfs)														
6.0							Di	rect	t Er	ntry	,									
					ę	Subo	atc	nme	ent	S1	9:									
						Hydr	ograp	h												
				I	 	 	 L	 	 	 	 	 	 	 	 	 	 	 	 	Runof
0.6-		i i L	0.57 c	<mark>fs</mark>				1	L L	 	1	1	 _	 	1	 		1		
0.55-				1	1		I	1	1	1	1	1		ГУІ	pe		24	4-r	nr	
0.5-				' 			· _ L I	· !	·' 		2-`	ΥR	R	air	nfa	all=	=3.	10)''''	
0.45-				 			· _ L I	.	: F	Ru	no	ff	Ar	ea	=3	1.	23	2 9	sf	
0.4-		- $ +$ $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$!		<u>+</u> <u>+</u> _	L I	 	(<u></u>	!	<u>+</u>	<u>+</u> – –	blu			<u>+</u>	÷	+		
						$\frac{1}{1} \frac{1}{1} - \frac{1}{1}$	- <u> </u>		Nu		<u>+</u>	<u>+</u>				<u>+</u>	÷	+		
(S) 0.35- MOL 0.3-	1 /			· ¦			L	.	 	I	КU	nc)ff	De	ep i	[n=	ŦU.			
6 0.3-				¦		1 1 	L		! 	 	 	 - 	 	T	C=	=6 .	0	mi	n	
0.25-		· · ·					i 		i I						<u>.</u>	C	N	=7	0	
0.2-					1		1		I I I	 	 	1	 	 	1					
0.15-									1		 !	T		 			 !	T		
0.1-	: _/					$\frac{1}{1} = -\frac{1}{1} =$	· - ·	·	 1	 I		+ I		 		 	+ - -		 I	
0.05-],}			\bigcirc		+ + -	· - ·	- 	 	 	 	 		 	¦		+ 	$\frac{1}{1} = -$	- 	
					Щ				-	-	-	_	_		-	-	-			I
0-	0 2 4	6 8	10 12	14 16	5 18	20 2	2 24	26	28	30	32	24	36	38	40	42	44	46	48	

Summary for Subcatchment S2:


Runoff = 0.30 cfs @ 12.11 hrs, Volume= 0.027 af, Depth= 0.59"

Summary for Subcatchment S20:

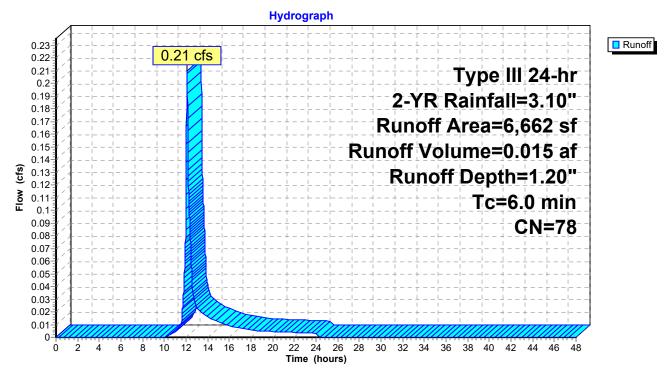
Runoff = 0.07 cfs @ 12.13 hrs, Volume= 0.009 af, Depth= 0.40"

	Area (sf)	CN De	escription								
*	11,551	61 G+	-RG: >75	% Grass co	cover, Good, HSG B						
	11,551	10	0.00% Pe	ervious Are	ea						
	Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)							
	6.0				Direct Entry,						
	Subcatchment S20:										
	0.08	++		-++							

Summary for Subcatchment S21:

Runoff 0.47 cfs @ 12.09 hrs, Volume= 0.033 af, Depth= 1.75" =

	A	rea (sf)	CN	Description	l												
*		6,755 3,186	98 61	G+RG: >75	5% Gras	s coʻ	ver, Go	ood,	HSG	в							
		9,941 3,186 6,755		Weighted A 32.05% Pe 67.95% Im	rvious A		а										
(r	Tc nin)	Length (feet)	Slope (ft/ft		Capac (c	ity fs)	Descr	iptior	า								
	6.0						Direct	t Ent	ry,								
					Su	ocat	tchme	ent \$	S21:								
					Ну	drog	raph										
	0.52 0.5 0.48			0.47 cfs	+ 			 	- + +	+ +		 	+	+	+		Runoff
	0.46- 0.44-						 <mark> </mark>		+ <u>-</u>	+ <u>+</u>		ype		T	T		
	0.42- 0.4- 0.38-		+-+ +			+ $ +$ $ +$ $+$ $ +$	 	 		ī — —	Ra	,		T = -			
	0.36- 0.34- 0.32-				¦¦ +				Run noff						-		
(cfs)	0.3- 0.28-						 	\ 	+	+	off E		+	+	+		
Flow	0.26 0.24 0.22					+ +	 	 	+ <u> </u> +	+ <u> </u> +			=6	+	+		
	0.2- 0.18-	/ L _ J / /						! 	<u>+</u> +	 	 		<u> </u>	CN	=8	6	
	0.16 0.14 0.12						 	' 	± †			! !				· •	
	0.1- 0.08-						 I	 	+ +	$\frac{1}{T} = -$ $\frac{1}{T} = -$		 		$\frac{1}{T}$ $\frac{1}{T}$		- 	
	0.06- 0.04- 0.02-					т — - г + н			- + I	∓ ↓ I		 	т — — + — — I	⊤ + 	⊢ – – ↓ I	- 	
	0-	0 2 4	6 8	10 12 14 16	5 18 20		24 26 (hours)	28 3	30 32	34	36 3	8 40	42	44	46	48	

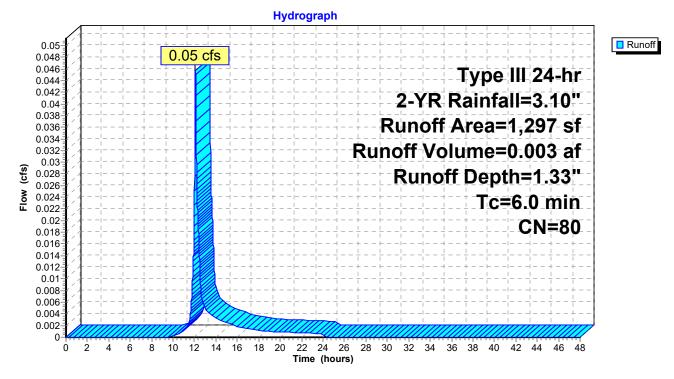

Summary for Subcatchment S22: Stow Road South

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

	A	rea (sf)	CN	Description		
*		5,662	74	G+RG: >75	% Grass co	over, Good, HSG C
*		1,000	98			
		6,662 5,662 1,000		Weighted A 34.99% Pei 15.01% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S22: Stow Road South

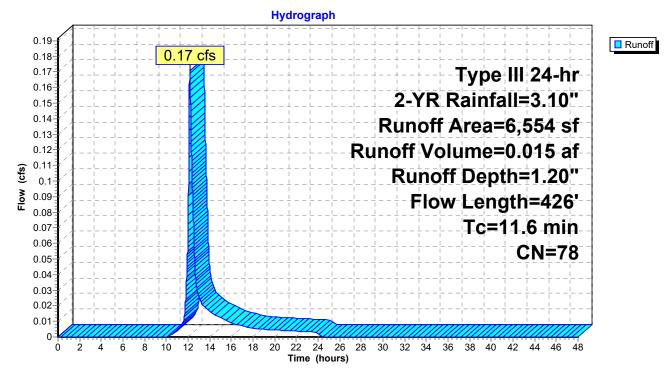

Summary for Subcatchment S23: Stow Road South

Runoff = 0.05 cfs @ 12.09 hrs, Volume= 0.003 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"

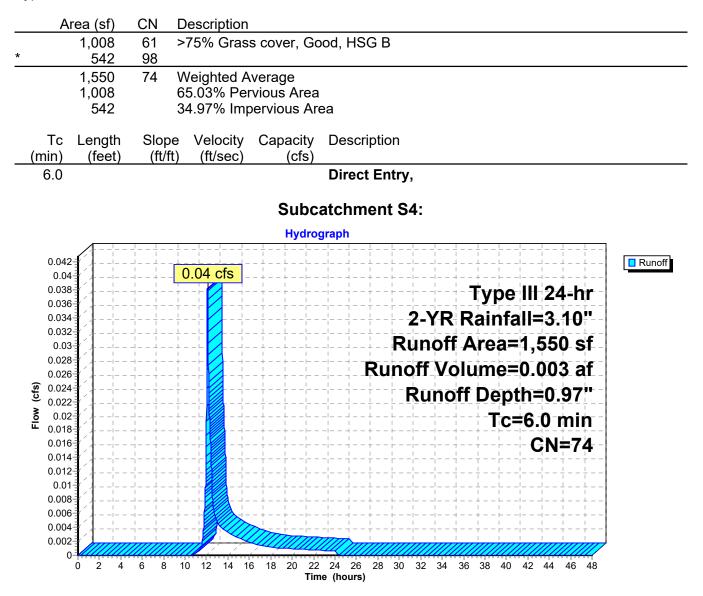
	A	rea (sf)	CN	Description		
*		994	74	G+RG: >75	% Grass co	cover, Good, HSG C
*		303	98			
		1,297 994 303		Weighted A 76.64% Pei 23.36% Imp	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S23: Stow Road South

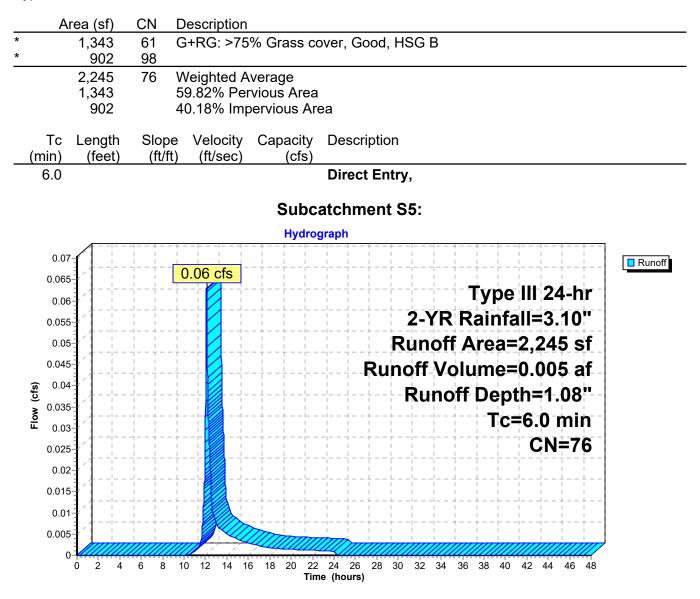

Summary for Subcatchment S3:

Runoff = 0.17 cfs @ 12.17 hrs, Volume= 0.015 af, Depth= 1.20"

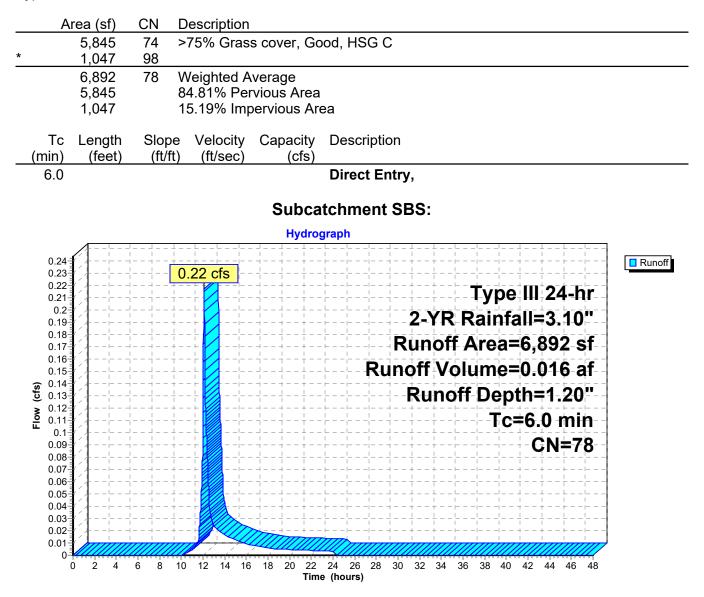
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 2-YR Rainfall=3.10"


	A	rea (sf)	CN E	escription		
*		3,497	61 0	G+RG: >75	% Grass co	over, Good, HSG B
*		3,057	98			
		6,554	78 V	Veighted A	verage	
		3,497	5	3.36% Per	vious Area	
		3,057	4	6.64% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	50	0.0600	0.22		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.00"
	7.9	376	0.0130	0.80		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	11.6	426	Total			

Subcatchment S3:


Summary for Subcatchment S4:

Runoff = 0.04 cfs @ 12.10 hrs, Volume= 0.003 af, Depth= 0.97"


Summary for Subcatchment S5:

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 0.005 af, Depth= 1.08"

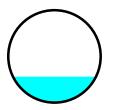
Summary for Subcatchment SBS:

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.016 af, Depth= 1.20"

Summary for Reach 1R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS7 OUTLET depth by 0.07' @ 12.12 hrs

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 0.87" for 2-YR event


 Inflow =
 0.80 cfs @
 12.08 hrs, Volume=
 0.057 af

 Outflow =
 0.80 cfs @
 12.09 hrs, Volume=
 0.057 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.47 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.70 fps, Avg. Travel Time= 0.7 min

Peak Storage= 13 cf @ 12.09 hrs Average Depth at Peak Storage= 0.28' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.71 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0125 '/' Inlet Invert= 261.00', Outlet Invert= 260.10'

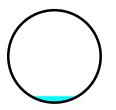
Hydrograph Inflow
Outflow 0.80.cfs 0.80 cfs 0.85 Inflow Area=0.785 ac 0.8 Avg. Flow Depth=0.28' 0.75 0.7 Max Vel=4.47 fps 0.65 12.0" 0.6 0.55 **Round Pipe** Flow (cfs) 0.5 n=0.011 0.45 0.4 L=72.0' 0.35 S=0.0125 '/' 0.3 0.25 Capacity=4.71 cfs 0.2 0.15 0.1 0.05 0-2 10 12 14 16 18 20 6 8 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 4 Time (hours)

Reach 1R: (new Reach)

Summary for Reach 4R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10A OUTLET depth by 0.01' @ 18.68 hrs

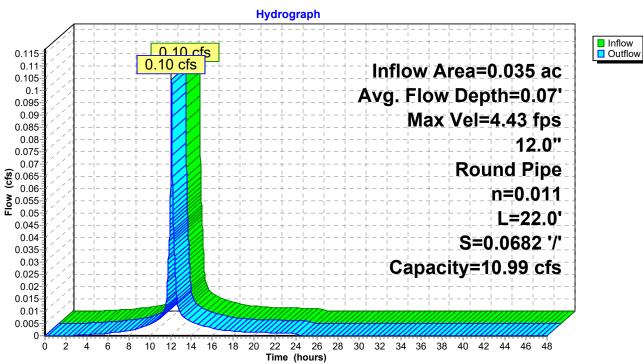
 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 2.76" for 2-YR event


 Inflow =
 0.10 cfs @ 12.09 hrs, Volume=
 0.008 af

 Outflow =
 0.10 cfs @ 12.09 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.43 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.55 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.99 cfs


12.0" Round Pipe n= 0.011 Length= 22.0' Slope= 0.0682 '/' Inlet Invert= 315.00', Outlet Invert= 313.50'

Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01

Type III 24-hr 2-YR Rainfall=3.10" Printed 9/10/2018 Page 53

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Reach 4R:

Summary for Reach 5R: Intermittent Stream

1.01% Impervious, Inflow Depth = 0.91" for 2-YR event

Inflow Area =

=

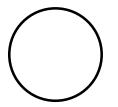
4.704 ac.

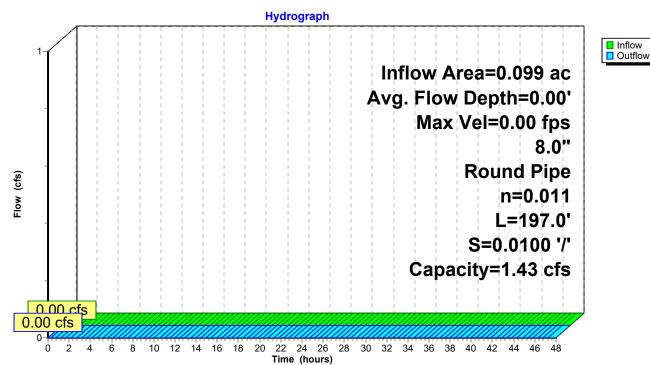
Inflow 2.86 cfs @ 12.21 hrs, Volume= 0.359 af 2.49 cfs @ 12.55 hrs, Volume= Outflow = 0.359 af, Atten= 13%, Lag= 20.8 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.38 fps, Min. Travel Time= 10.2 min Avg. Velocity = 0.39 fps, Avg. Travel Time= 35.7 min Peak Storage= 1,524 cf @ 12.38 hrs Average Depth at Peak Storage= 0.49' Bank-Full Depth= 1.00' Flow Area= 5.3 sf, Capacity= 11.78 cfs 8.00' x 1.00' deep Parabolic Channel, n= 0.050 High grass Length= 845.0' Slope= 0.0100 '/' Inlet Invert= 260.00', Outlet Invert= 251.55' ‡ Reach 5R: Intermittent Stream Hydrograph Inflow 2.86 cfs Outflow 3 Inflow Area=4.704 ac Avg. Flow Depth=0.49' 2.49 cfs Max Vel=1.38 fps n=0.050 2 Flow (cfs) L=845.0' S=0.0100 '/' Capacity=11.78 cfs 0 2 Ó 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Reach 6R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.099 ac, 53.64% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.43 cfs

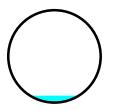
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 197.0' Slope= 0.0100 '/' Inlet Invert= 304.20', Outlet Invert= 302.23'

Reach 6R: new

Summary for Reach 7R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10B OUTLET depth by 0.01' @ 12.15 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 2.76" for 2-YR event


 Inflow =
 0.10 cfs @
 12.11 hrs, Volume=
 0.008 af

 Outflow =
 0.10 cfs @
 12.12 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.95 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 1.1 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 9.33 cfs

12.0" Round Pipe n= 0.014 Concrete pipe, finished Length= 88.0' Slope= 0.0795 '/' Inlet Invert= 310.50', Outlet Invert= 303.50'

Pine Hill Proposed Proposed Conditions_09102018TypePrepared by SCCM-01HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

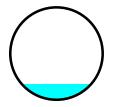
Hydrograph Inflow
Outflow 0 10 cfs 0.10 cfs 0.115 0.11 Inflow Area=0.035 ac 0.105 0.1 Avg. Flow Depth=0.07' 0.095 0.09 Max Vel=3.95 fps 0.085 0.08 12.0" 0.075 0.07 **Round Pipe දි** 0.065 0.06 n=0.014 **8** 0.055 ■ 0.05 L=88.0' 0.045 0.04 S=0.0795 '/' 0.035 0.03 Capacity=9.33 cfs 0.025 0.02-0.015 0.01 0.005 0-2 10 12 14 16 18 Ó 20 24 26 28 40 42 44 46 48 4 6 8 22 30 32 34 36 38 Time (hours)

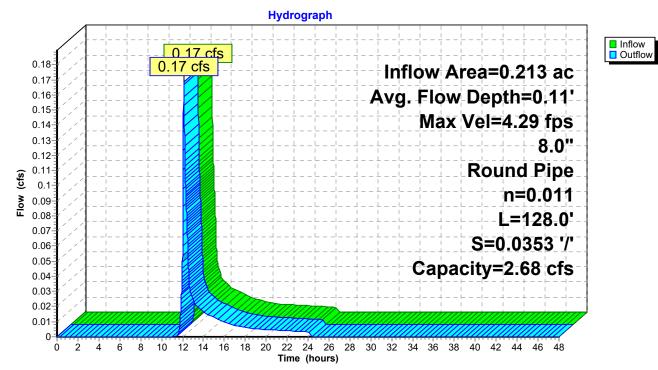
Reach 7R:

Summary for Reach 8R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 0.77" for 2-YR event


 Inflow =
 0.17 cfs @
 12.12 hrs, Volume=
 0.014 af


 Outflow =
 0.17 cfs @
 12.13 hrs, Volume=
 0.014 af, Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.29 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.75 fps, Avg. Travel Time= 1.2 min

Peak Storage= 5 cf @ 12.12 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.68 cfs

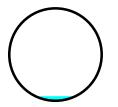
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 128.0' Slope= 0.0353 '/' Inlet Invert= 306.75', Outlet Invert= 302.23'

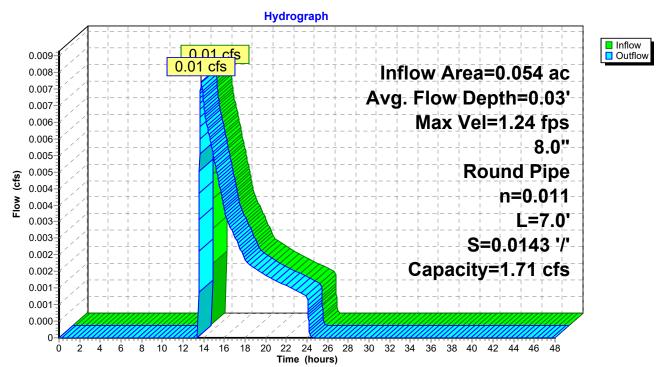
Reach 8R: new

Summary for Reach 9R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.054 ac, 64.02% Impervious, Inflow Depth =
 0.56" for 2-YR event


 Inflow =
 0.01 cfs @
 13.75 hrs, Volume=
 0.003 af


 Outflow =
 0.01 cfs @
 13.75 hrs, Volume=
 0.003 af, Atten= 0%, Lag= 0.2 min

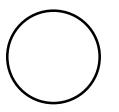
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.89 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 13.75 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

Reach 9R: new

Summary for Reach 10R: new


[43] Hint: Has no inflow (Outflow=Zero)

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 24.83 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 84.0' Slope= 0.0400 '/' Inlet Invert= 301.30', Outlet Invert= 297.94'

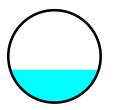
Hydrograph Outflow Avg. Flow Depth=0.00' Max Vel=0.00 fps 18.0" **Round Pipe** Flow (cfs) n=0.011 L=84.0' S=0.0400 '/' Capacity=24.83 cfs 0.00 cfs 0-4 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 Time (hours)

Reach 10R: new

Summary for Reach 11R: new

[52] Hint: Inlet/Outlet conditions not evaluated [88] Warning: Qout>Qin may require Finer Routing>1

 Inflow Area =
 1.015 ac, 19.57% Impervious, Inflow Depth =
 0.56" for 2-YR event


 Inflow =
 0.46 cfs @
 12.22 hrs, Volume=
 0.048 af

 Outflow =
 0.46 cfs @
 12.22 hrs, Volume=
 0.048 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.15 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.94 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.22 hrs Average Depth at Peak Storage= 0.24' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

Pine Hill Proposed Proposed Conditions_09102018TyPrepared by SCCM-01HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCTy

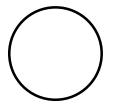
Hydrograph Inflow
Outflow 0.46 cfs 0.46 cfs 0.5 Inflow Area=1.015 ac 0.45 Avg. Flow Depth=0.24' 0.4 Max Vel=4.15 fps 0.35 **8.0**" **Round Pipe** 0.3 Flow (cfs) n=0.011 0.25 L=7.0' 0.2 S=0.0143 '/' 0.15 Capacity=1.71 cfs 0.1 0.05 0-10 12 14 16 18 20 Ó 2 6 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 8 Time (hours)

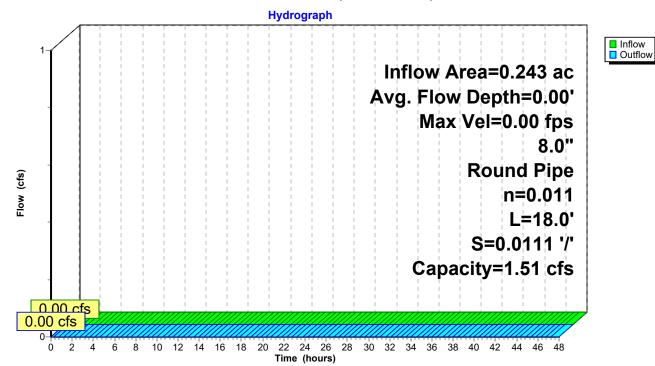
Reach 11R: new

Summary for Reach 12R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.243 ac, 29.57% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

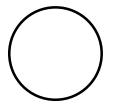
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 297.30', Outlet Invert= 297.10'

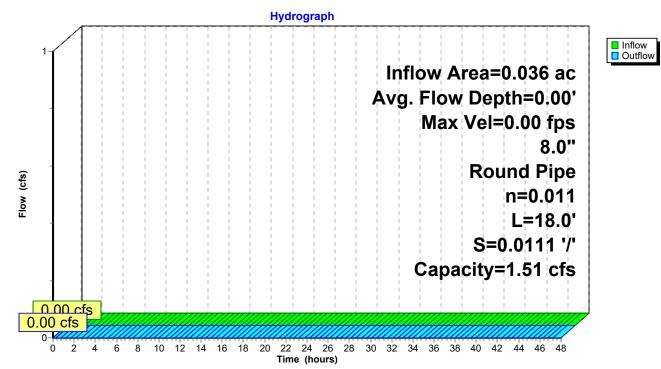
Reach 12R: (new Reach)

Summary for Reach 13R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.036 ac, 34.97% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

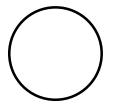
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 301.30', Outlet Invert= 301.10'

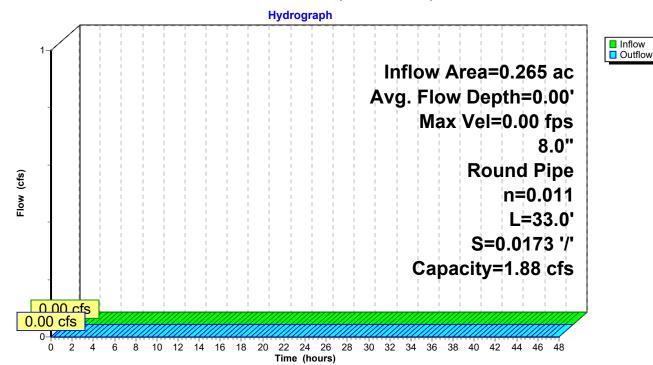
Reach 13R: New

Summary for Reach 14R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.265 ac,
 0.00% Impervious,
 Inflow Depth =
 0.00"
 for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs,
 Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs,
 Volume=
 0.000 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.88 cfs

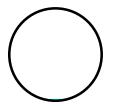
8.0" Round Pipe n= 0.011 Length= 33.0' Slope= 0.0173 '/' Inlet Invert= 290.30', Outlet Invert= 289.73'

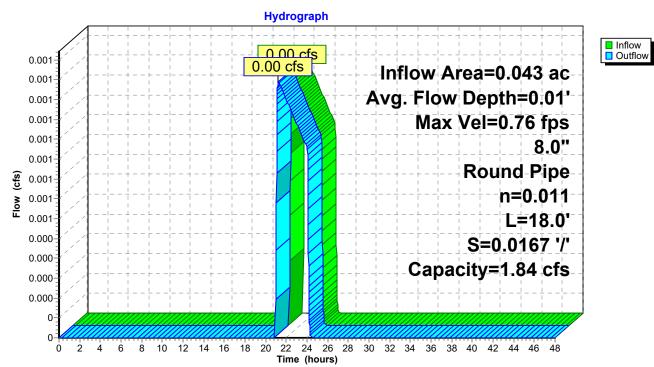
Reach 14R: (new Reach)

Summary for Reach 15R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.043 ac, 62.65% Impervious, Inflow Depth =
 0.08" for 2-YR event


 Inflow =
 0.00 cfs @
 21.22 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 21.23 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.76 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 0.4 min

Peak Storage= 0 cf @ 21.22 hrs Average Depth at Peak Storage= 0.01' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.84 cfs

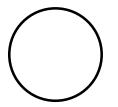
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 18.0' Slope= 0.0167 '/' Inlet Invert= 302.30', Outlet Invert= 302.00'

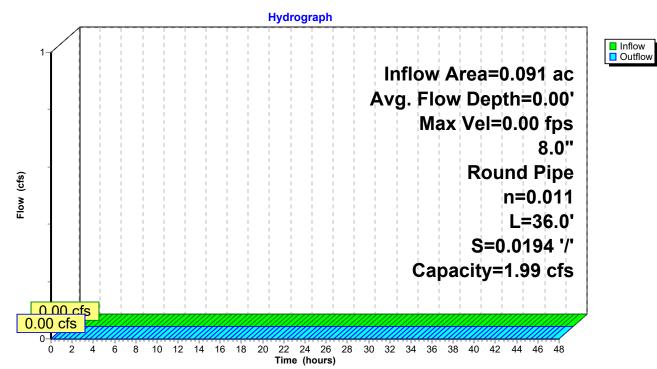
Reach 15R: New

Summary for Reach 16R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.091 ac, 45.76% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.99 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 36.0' Slope= 0.0194 '/' Inlet Invert= 302.00', Outlet Invert= 301.30'

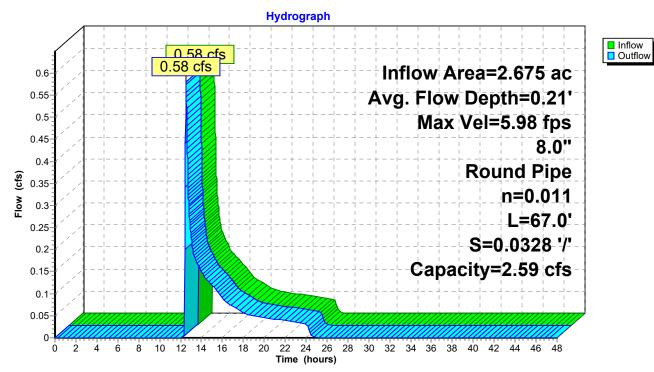
Reach 16R: New

Summary for Reach 17R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.675 ac, 4.94% Impervious, Inflow Depth = 0.38" for 2-YR event

 Inflow =
 0.58 cfs @
 12.51 hrs, Volume=
 0.086 af


 Outflow =
 0.58 cfs @
 12.52 hrs, Volume=
 0.086 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.98 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.09 fps, Avg. Travel Time= 0.4 min

Peak Storage= 7 cf @ 12.51 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.59 cfs

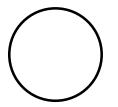
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 67.0' Slope= 0.0328 '/' Inlet Invert= 298.00', Outlet Invert= 295.80'

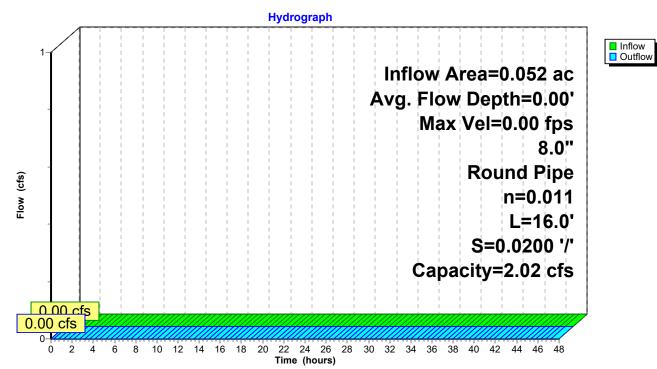
Reach 17R: New

Summary for Reach 18R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.052 ac, 40.18% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.02 cfs

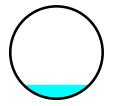
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 16.0' Slope= 0.0200 '/' Inlet Invert= 301.30', Outlet Invert= 300.98'

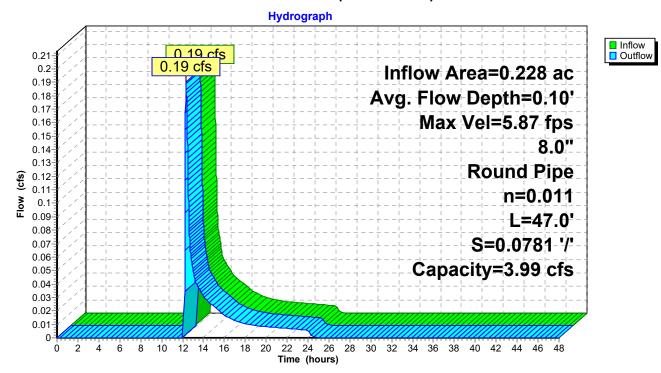
Reach 18R: New

Summary for Reach 19R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.228 ac, 67.95% Impervious, Inflow Depth =
 1.04" for 2-YR event


 Inflow =
 0.19 cfs @
 12.33 hrs, Volume=
 0.020 af


 Outflow =
 0.19 cfs @
 12.33 hrs, Volume=
 0.020 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.87 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.64 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.33 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.99 cfs

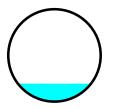
8.0" Round Pipe n= 0.011 Length= 47.0' Slope= 0.0781 '/' Inlet Invert= 287.00', Outlet Invert= 283.33'

Reach 19R: (new Reach)

Summary for Reach 20R: 12" RCP pipe

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach PS9 outlet invert by 0.19' @ 12.12 hrs

 Inflow Area =
 0.288 ac, 25.48% Impervious, Inflow Depth =
 1.33" for 2-YR event


 Inflow =
 0.44 cfs @
 12.11 hrs, Volume=
 0.032 af

 Outflow =
 0.44 cfs @
 12.12 hrs, Volume=
 0.032 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.12 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

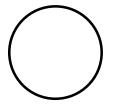
12.0" Round Pipe n= 0.013 Length= 22.0' Slope= 0.0227 '/' Inlet Invert= 257.75', Outlet Invert= 257.25'

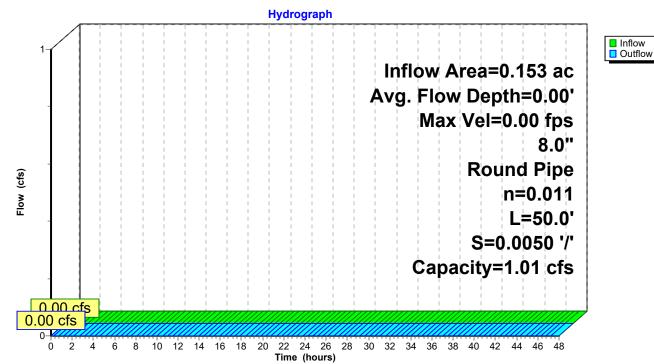
Reach 20R: 12" RCP pipe

Summary for Reach 21R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.153 ac, 15.01% Impervious, Inflow Depth =
 0.00" for 2-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.01 cfs

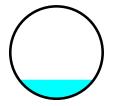
8.0" Round Pipe n= 0.011 Length= 50.0' Slope= 0.0050 '/' Inlet Invert= 254.00', Outlet Invert= 253.75'

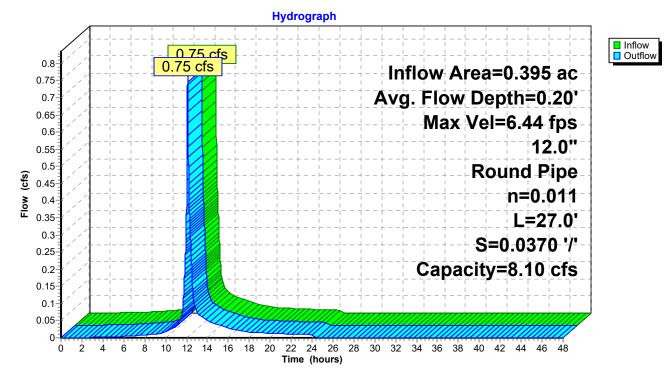
Reach 21R: (new Reach)

Summary for Reach CB1: CB1

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.395 ac, 45.72% Impervious, Inflow Depth =
 1.74" for 2-YR event

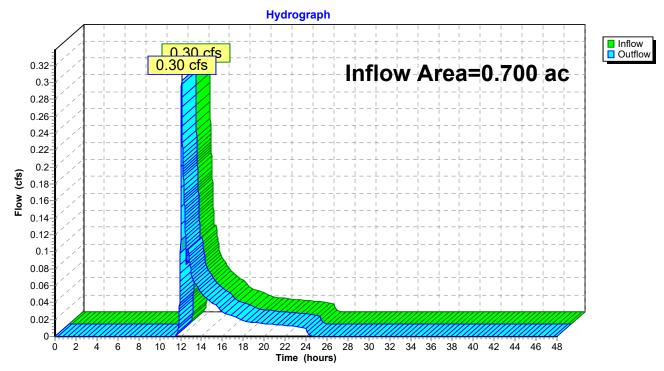

 Inflow =
 0.75 cfs @
 12.10 hrs, Volume=
 0.057 af


 Outflow =
 0.75 cfs @
 12.11 hrs, Volume=
 0.057 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.44 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 0.2 min

Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.10 cfs

12.0" Round Pipe n= 0.011 Length= 27.0' Slope= 0.0370 '/' Inlet Invert= 257.00', Outlet Invert= 256.00'

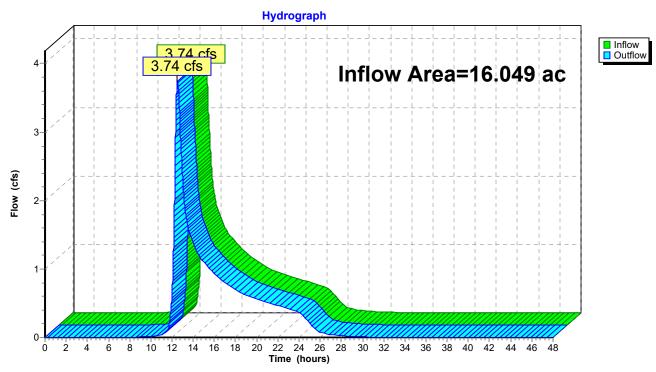

Reach CB1: CB1

Summary for Reach CP1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	0.700 ac, 20.01%	Impervious, Inflow D	epth = 0.61"	for 2-YR event
Inflow =	=	0.30 cfs @ 12.11	hrs, Volume=	0.035 af	
Outflow =	=	0.30 cfs @ 12.11	hrs, Volume=	0.035 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach CP1:

Summary for Reach CP2:

[40] Hint: Not Described (Outflow=Inflow)

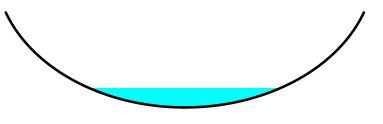
Inflow Area	a =	6.049 ac, 13.07% Impervious, Inflow Depth > 0.74" for 2-YR event	
Inflow	=	3.74 cfs @ 12.52 hrs, Volume= 0.996 af	
Outflow	=	3.74 cfs @ 12.52 hrs, Volume= 0.996 af, Atten= 0%, Lag= 0.0	0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

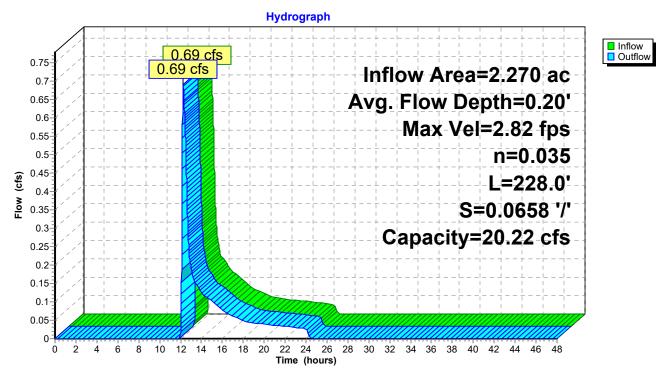
Reach CP2:

Summary for Reach PS1:

 Inflow Area =
 2.270 ac,
 5.04% Impervious, Inflow Depth =
 0.48" for 2-YR event


 Inflow =
 0.69 cfs @
 12.22 hrs, Volume=
 0.090 af

 Outflow =
 0.69 cfs @
 12.26 hrs, Volume=
 0.090 af, Atten= 1%, Lag= 2.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.82 fps, Min. Travel Time= 1.3 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 2.9 min

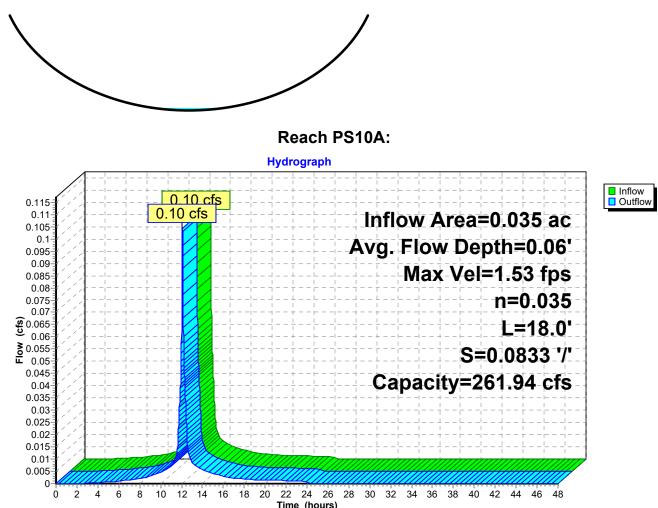
Peak Storage= 56 cf @ 12.24 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.22 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 228.0' Slope= 0.0658 '/' Inlet Invert= 316.00', Outlet Invert= 301.00'

Reach PS1:

Summary for Reach PS10A:

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 2.76" for 2-YR event


 Inflow =
 0.10 cfs @
 12.08 hrs, Volume=
 0.008 af

 Outflow =
 0.10 cfs @
 12.09 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.53 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.81 fps, Avg. Travel Time= 0.4 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 261.94 cfs

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 18.0' Slope= 0.0833 '/' Inlet Invert= 316.50', Outlet Invert= 315.00'

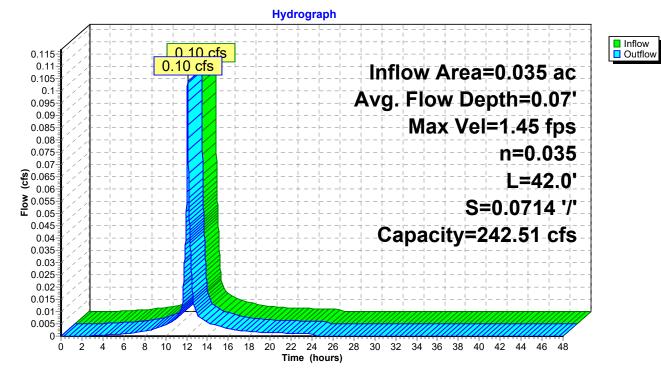
Summary for Reach PS10B:

[61] Hint: Exceeded Reach 4R outlet invert by 0.07' @ 12.10 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 2.76" for 2-YR event


 Inflow =
 0.10 cfs @
 12.09 hrs, Volume=
 0.008 af

 Outflow =
 0.10 cfs @
 12.11 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.8 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.45 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.76 fps, Avg. Travel Time= 0.9 min

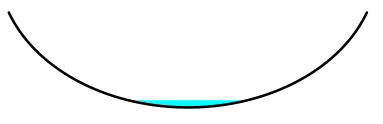
Peak Storage= 3 cf @ 12.10 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 242.51 cfs

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 42.0' Slope= 0.0714 '/' Inlet Invert= 313.50', Outlet Invert= 310.50'

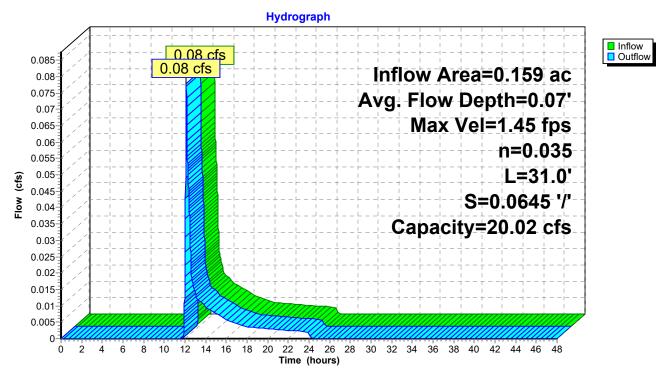
Reach PS10B:

Summary for Reach PS2:

 Inflow Area =
 0.159 ac, 11.13% Impervious, Inflow Depth = 0.55" for 2-YR event


 Inflow =
 0.08 cfs @ 12.11 hrs, Volume=
 0.007 af

 Outflow =
 0.08 cfs @ 12.12 hrs, Volume=
 0.007 af, Atten= 0%, Lag= 0.6 min

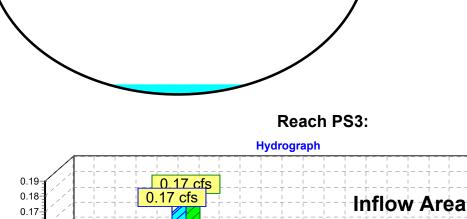

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.45 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.65 fps, Avg. Travel Time= 0.8 min

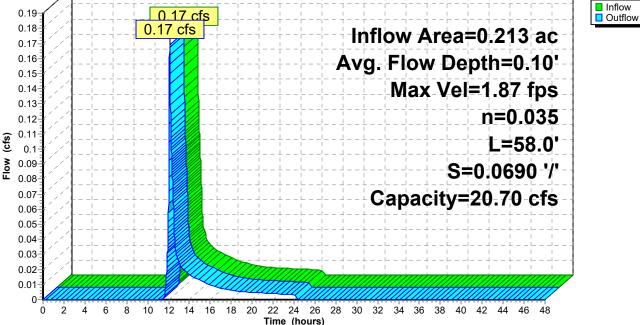
Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.02 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 31.0' Slope= 0.0645 '/' Inlet Invert= 303.00', Outlet Invert= 301.00'

Summary for Reach PS3:

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 0.77" for 2-YR event


 Inflow =
 0.17 cfs @
 12.10 hrs, Volume=
 0.014 af


 Outflow =
 0.17 cfs @
 12.12 hrs, Volume=
 0.014 af, Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.87 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.76 fps, Avg. Travel Time= 1.3 min

Peak Storage= 5 cf @ 12.11 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.70 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 58.0' Slope= 0.0690 '/' Inlet Invert= 313.00', Outlet Invert= 309.00'

Summary for Reach PS4:

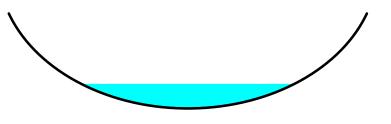
0.099 ac, 53.64% Impervious, Inflow Depth = 1.39" for 2-YR event

Inflow Area =

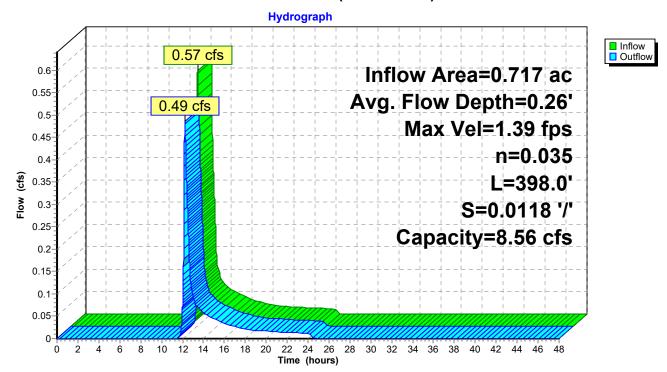
Inflow 0.16 cfs @ 12.09 hrs, Volume= 0.011 af = Outflow 0.16 cfs @ 12.10 hrs, Volume= = 0.011 af, Atten= 0%, Lag= 0.7 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.37 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.50 fps, Avg. Travel Time= 1.1 min Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 13.52 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 34.0' Slope= 0.0294 '/' Inlet Invert= 307.00', Outlet Invert= 306.00' Reach PS4: Hydrograph Inflow 0 16 cfs Outflow 0.17 0.16 cfs Inflow Area=0.099 ac 0.16 Avg. Flow Depth=0.12' 0 15 0.14 Max Vel=1.37 fps 0.13 0.12 n=0.035 0.11 (cfs) 0.1 L=34.0' 0.09 Flow S=0.0294 '/' 0.08 0.07 Capacity=13.52 cfs 0.06 0.05 0.04 0.03 0.02 0.01 0-Ó ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Reach PS6: (new Reach)

 Inflow Area =
 0.717 ac, 23.42% Impervious, Inflow Depth =
 0.77" for 2-YR event


 Inflow =
 0.57 cfs @
 12.10 hrs, Volume=
 0.046 af

 Outflow =
 0.49 cfs @
 12.23 hrs, Volume=
 0.046 af, Atten= 15%, Lag= 7.9 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.39 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 12.8 min

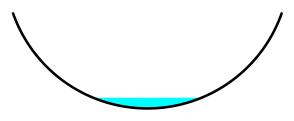
Peak Storage= 139 cf @ 12.15 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 8.56 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 398.0' Slope= 0.0118 '/' Inlet Invert= 300.00', Outlet Invert= 295.30'

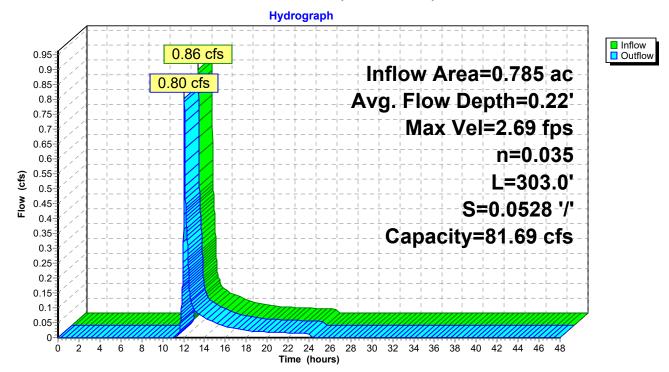
Reach PS6: (new Reach)

Summary for Reach PS7: (new Reach)

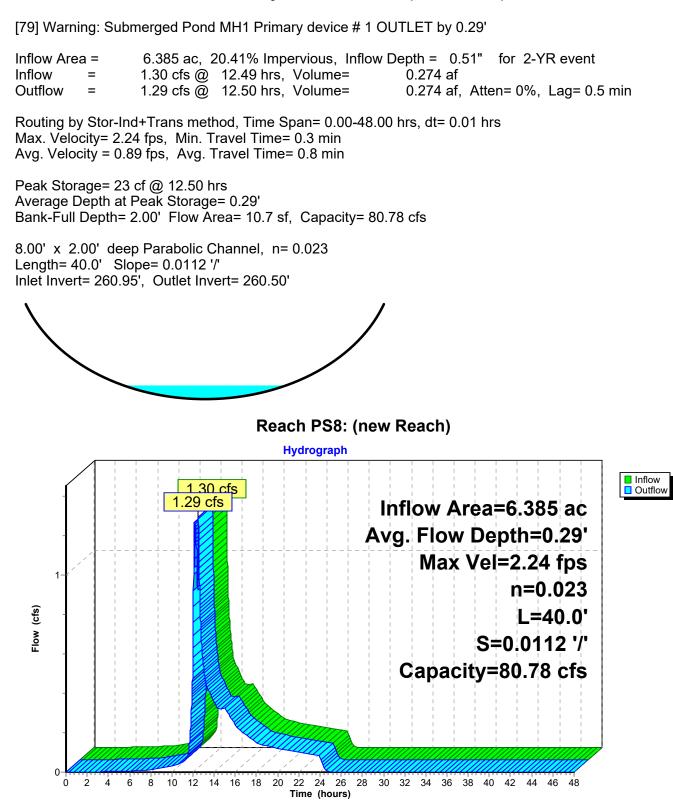
 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 0.87" for 2-YR event


 Inflow =
 0.86 cfs @
 12.03 hrs, Volume=
 0.057 af

 Outflow =
 0.80 cfs @
 12.08 hrs, Volume=
 0.057 af, Atten= 7%, Lag= 3.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.69 fps, Min. Travel Time= 1.9 min Avg. Velocity = 1.02 fps, Avg. Travel Time= 4.9 min

Peak Storage= 91 cf @ 12.05 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 81.69 cfs


6.00' x 2.00' deep Parabolic Channel, n= 0.035 Length= 303.0' Slope= 0.0528 '/' Inlet Invert= 277.00', Outlet Invert= 261.00'

Reach PS7: (new Reach)

Summary for Reach PS8: (new Reach)

Summary for Reach PS9: (new Reach)

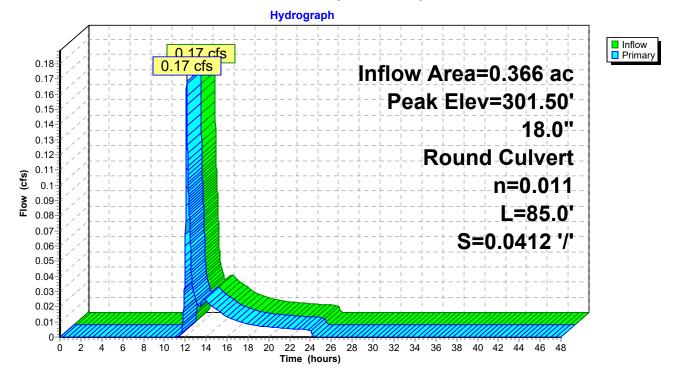
0.288 ac, 25.48% Impervious, Inflow Depth = 1.33" for 2-YR event

Inflow Area =

Inflow 0.44 cfs @ 12.09 hrs, Volume= 0.032 af = 0.44 cfs @ 12.11 hrs, Volume= Outflow = 0.032 af, Atten= 1%, Lag= 1.3 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.62 fps, Min. Travel Time= 0.8 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 2.1 min Peak Storage= 20 cf @ 12.10 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 11.15 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 75.0' Slope= 0.0200 '/' Inlet Invert= 259.25', Outlet Invert= 257.75' Reach PS9: (new Reach) Hydrograph Inflow 0.44 cfs Outflow 0.48 0.44 cfs 0.46 Inflow Area=0.288 ac 0.44 0.42 Avg. Flow Depth=0.22' 0.4 0.38 Max Vel=1.62 fps 0.36 0.34 n=0.035 0.32-0.3 (**c**) 0.28 0.26 0.28 L=75.0' Flow 0.24 S=0.0200 '/' 0.22 0.2 Capacity=11.15 cfs 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Pond 1P: (new Pond)

[57] Hint: Peaked at 301.50' (Flood elevation advised)[63] Warning: Exceeded Reach 9R INLET depth by 3.50' @ 12.13 hrs


Inflow Area =	0.366 ac, 37.66% Impervious, Inflow D	Depth = 0.53" for 2-YR event
Inflow =	0.17 cfs @ 12.13 hrs, Volume=	0.016 af
Outflow =	0.17 cfs @ 12.13 hrs, Volume=	0.016 af, Atten= 0%, Lag= 0.0 min
Primary =	0.17 cfs @ 12.13 hrs, Volume=	0.016 af

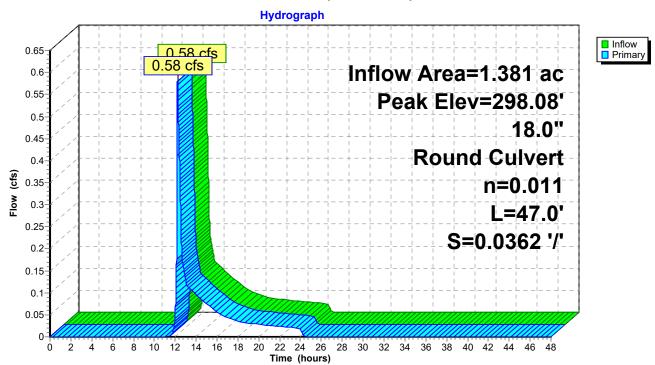
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.50' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.30'	18.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.30' / 297.80' S= 0.0412 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.17 cfs @ 12.13 hrs HW=301.50' (Free Discharge) **1=Culvert** (Inlet Controls 0.17 cfs @ 1.20 fps)

Pond 1P: (new Pond)

Summary for Pond 2P: (new Pond)


[57] Hint: Peaked at 298.08' (Flood elevation advised)
[61] Hint: Exceeded Reach 11R outlet invert by 0.18' @ 12.22 hrs
[79] Warning: Submerged Pond 1P Primary device # 1 OUTLET by 0.28'

Inflow Area =	1.381 ac, 24.37% Impervious, Inflow	Depth = 0.55" for 2-YR event
Inflow =	0.58 cfs @ 12.22 hrs, Volume=	0.064 af
Outflow =	0.58 cfs @ 12.22 hrs, Volume=	0.064 af, Atten= 0%, Lag= 0.0 min
Primary =	0.58 cfs @ 12.22 hrs, Volume=	0.064 af

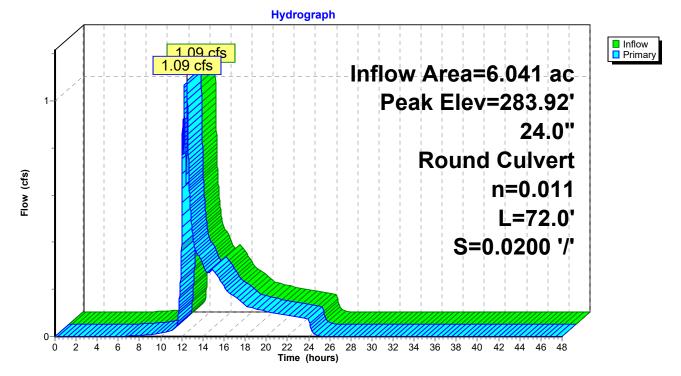
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 298.08' @ 12.22 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	297.70'	18.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 297.70' / 296.00' S= 0.0362 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.58 cfs @ 12.22 hrs HW=298.08' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.58 cfs @ 1.65 fps)

Pond 2P: (new Pond)

Summary for Pond 3P: MH2B


[57] Hint: Peaked at 283.92' (Flood elevation advised)

Inflow Area =	6.041 ac, 17.09% Impervious, Inflow D	Depth = 0.45" for 2-YR event
Inflow =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af
Outflow =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af, Atten= 0%, Lag= 0.0 min
Primary =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 283.92' @ 12.50 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	283.44'	24.0" Round 2B L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.44' / 282.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=1.08 cfs @ 12.50 hrs HW=283.92' (Free Discharge) **1=2B** (Inlet Controls 1.08 cfs @ 1.86 fps)

Pond 3P: MH2B

Summary for Pond 4P: Constructed Wetland

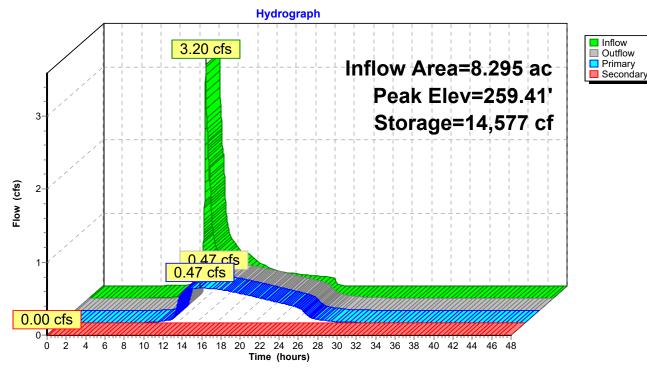
Inflow Area =	8.295 ac, 21.89% Impervious, Inflow De	epth = 0.62" for 2-YR event
Inflow =	3.20 cfs @ 12.08 hrs, Volume=	0.431 af
Outflow =	0.47 cfs @ 14.36 hrs, Volume=	0.430 af, Atten= 85%, Lag= 136.5 min
Primary =	0.47 cfs @ 14.36 hrs, Volume=	0.430 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 258.30' Surf.Area= 5,072 sf Storage= 7,845 cf Peak Elev= 259.41' @ 14.36 hrs Surf.Area= 6,889 sf Storage= 14,577 cf (6,732 cf above start)

Plug-Flow detention time= 497.8 min calculated for 0.250 af (58% of inflow) Center-of-Mass det. time= 190.7 min (1,082.0 - 891.3)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	254.00'		<u> </u>		rismatic)Listed below (Recalc)
- 1				
Elevatio		Irf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
254.0	-	729	0	0	
255.0	-	972	851	851	
256.0	-	1,244	1,108	1,959	
257.0		1,541	1,393	3,351	
258.0		4,558	3,050	6,401	
258.3	-	5,072	1,445	7,845	
259.0		6,345	3,996	11,841	
260.0		7,660	7,003	18,843	
261.0	-	9,072	8,366	27,209	
262.0	00	10,584	9,828	37,037	
. .					
Device	Routing	Invert			
#1	Primary	258.30'	30.0" Round		
				/	nform to fill, Ke= 0.700
					258.00' S= 0.0100 '/' Cc= 0.900
					ooth interior, Flow Area= 4.91 sf
#2	Device 1	260.30'			Grate C= 0.600
				flow at low hea	
#3	Device 1	258.30'		fice/Grate X 2.0	
				5.0" cc spacing	
#4	Device 1	258.30'		rifice/Grate C=	
				flow at low hea	
#5	Secondary	260.90'			road-Crested Rectangular Weir
			· · ·		0.80 1.00 1.20 1.40 1.60
			Coet. (English) 2.57 2.62 2.	70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=0.47 cfs @ 14.36 hrs HW=259.41' (Free Discharge)


-1=Culvert (Passes 0.47 cfs of 6.04 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Orifice Controls 0.03 cfs @ 3.81 fps)

4=Orifice/Grate (Orifice Controls 0.44 cfs @ 5.08 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=258.30' (Free Discharge) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: Constructed Wetland

Summary for Pond 5P: MH2A

[57] Hint: Peaked at 277.91' (Flood elevation advised)

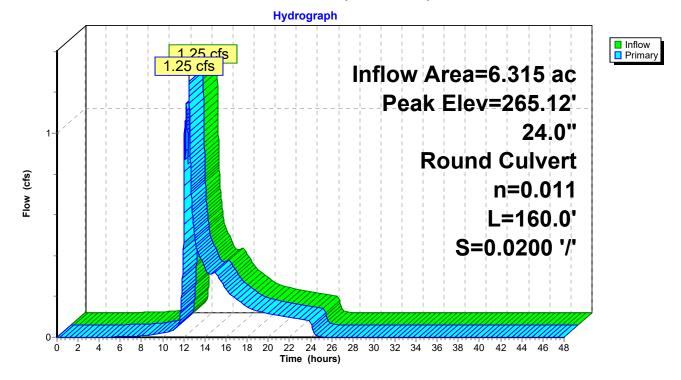
Inflow Area =	6.269 ac, 18.94% Impervious, Inflow I	Depth = 0.47" for 2-YR event
Inflow =	1.22 cfs @ 12.49 hrs, Volume=	0.246 af
Outflow =	1.22 cfs @ 12.49 hrs, Volume=	0.246 af, Atten= 0%, Lag= 0.0 min
Primary =	1.22 cfs @ 12.49 hrs, Volume=	0.246 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 277.91' @ 12.49 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.40'	24.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.40' / 276.20' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=1.22 cfs @ 12.49 hrs HW=277.91' (Free Discharge) **1=Culvert** (Inlet Controls 1.22 cfs @ 1.92 fps)

Summary for Pond 20P: (new Pond)


[57] Hint: Peaked at 265.12' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 0.49" for 2-YR event
Inflow =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af
Outflow =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af, Atten= 0%, Lag= 0.0 min
Primary =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 265.12' @ 12.49 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	264.60'	24.0" Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 264.60' / 261.40' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=1.25 cfs @ 12.49 hrs HW=265.12' (Free Discharge) **1=Culvert** (Inlet Controls 1.25 cfs @ 1.93 fps)

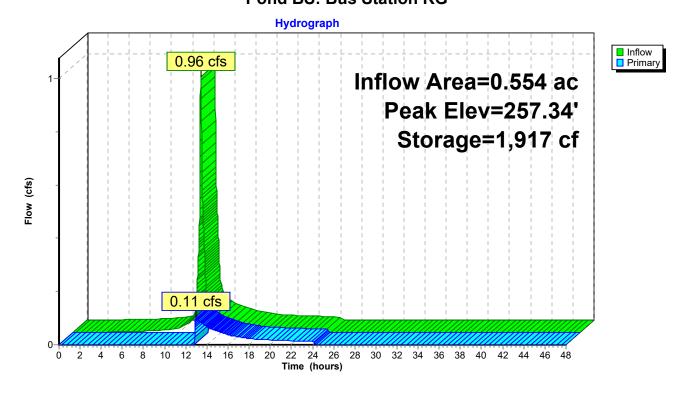
Pond 20P: (new Pond)

Summary for Pond BS: Bus Station RG

[63] Warning: Exceeded Reach CB1 INLET depth by 0.30' @ 24.69 hrs

Inflow Area =	0.554 ac, 36.99% Impervious, Inflow Depth = 1.59" for 2-YR event
Inflow =	0.96 cfs @ 12.10 hrs, Volume= 0.073 af
Outflow =	0.11 cfs @ 12.97 hrs, Volume= 0.030 af, Atten= 89%, Lag= 52.3 min
Primary =	0.11 cfs @ 12.97 hrs, Volume= 0.030 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.34' @ 12.97 hrs Surf.Area= 0 sf Storage= 1,917 cf


Plug-Flow detention time= 308.8 min calculated for 0.030 af (41% of inflow) Center-of-Mass det. time= 172.6 min (989.1 - 816.5)

Volume	In	vert Ava	il.Storage	Storage Description
#1	254	.47'	2,201 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et)	(cubic-feet)	(cubi	ic-feet)
254.4	17	0		0
254.8	30	122		122
255.0)5	92		214
256.0)5	367		581
256.3	30	92		673
257.3	30	1,222		1,895
257.8	30	306		2,201
Device	Routing	g In	vert Outl	let Devices
#1	Primary	/ 257	.30' 18.0)" Horiz. Orifice/Grate C= 0.600
	-		Limi	ited to weir flow at low heads
D .		14 0.40	· · · · ·	

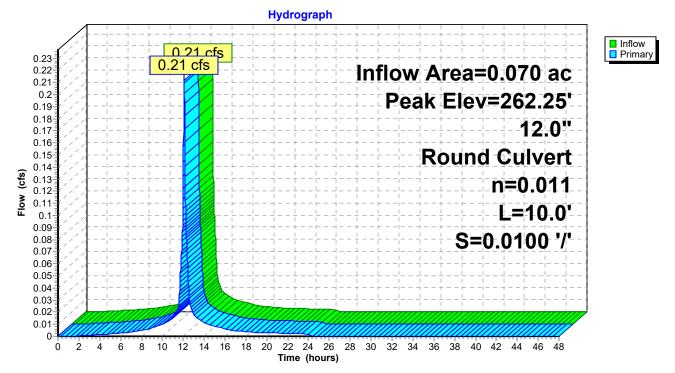
Primary OutFlow Max=0.10 cfs @ 12.97 hrs HW=257.34' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.10 cfs @ 0.62 fps)

Printed 9/10/2018 Page 95

Pond BS: Bus Station RG

Summary for Pond CB2: (new Pond)

[57] Hint: Peaked at 262.25' (Flood elevation advised)


Inflow Area =	0.070 ac,100.00% Impervious, Inflow	Depth = 2.87" for 2-YR event
Inflow =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af
Outflow =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af, Atten= 0%, Lag= 0.0 min
Primary =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af

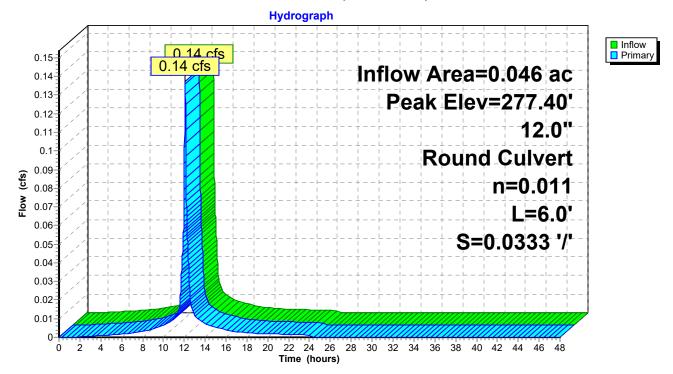
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.25' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	262.00'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 262.00' / 261.90' S= 0.0100 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.21 cfs @ 12.08 hrs HW=262.25' (Free Discharge) ←1=Culvert (Inlet Controls 0.21 cfs @ 1.35 fps)

Pond CB2: (new Pond)

Summary for Pond CB3: (new Pond)


[57] Hint: Peaked at 277.40' (Flood elevation advised)

Inflow Area =	0.046 ac,100.00% Impervious, Inflow I	Depth = 2.87" for 2-YR event
Inflow =	0.14 cfs @ 12.08 hrs, Volume=	0.011 af
Outflow =	0.14 cfs @ 12.08 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min
Primary =	0.14 cfs @ 12.08 hrs, Volume=	0.011 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 277.40' @ 12.08 hrs

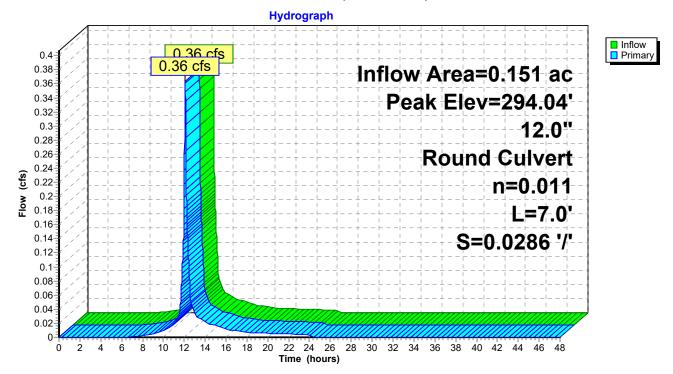
Device	Routing	Invert	Outlet Devices
#1	Primary	277.20'	12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.20' / 277.00' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.14 cfs @ 12.08 hrs HW=277.40' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.14 cfs @ 1.21 fps)

Pond CB3: (new Pond)

Summary for Pond CB4: (new Pond)

[57] Hint: Peaked at 294.04' (Flood elevation advised)


Inflow Area =	0.151 ac, 79.05% Impervious, Inflow	Depth = 2.08" for 2-YR event
Inflow =	0.36 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.36 cfs @ 12.09 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min
Primary =	0.36 cfs @ 12.09 hrs, Volume=	0.026 af

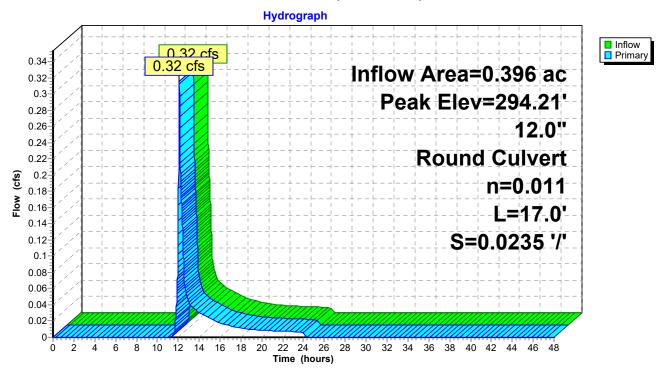
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.04' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	293.70'	12.0" Round Culvert L= 7.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.70' / 293.50' S= 0.0286 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.36 cfs @ 12.09 hrs HW=294.04' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.36 cfs @ 1.56 fps)

Pond CB4: (new Pond)

Summary for Pond CB5: (new Pond)


[57] Hint: Peaked at 294.21' (Flood elevation advised)

Inflow Area =	0.396 ac, 24.31% Impervious, Inflow [Depth = 0.77" for 2-YR event
Inflow =	0.32 cfs @ 12.10 hrs, Volume=	0.025 af
Outflow =	0.32 cfs @ 12.10 hrs, Volume=	0.025 af, Atten= 0%, Lag= 0.0 min
Primary =	0.32 cfs @ 12.10 hrs, Volume=	0.025 af

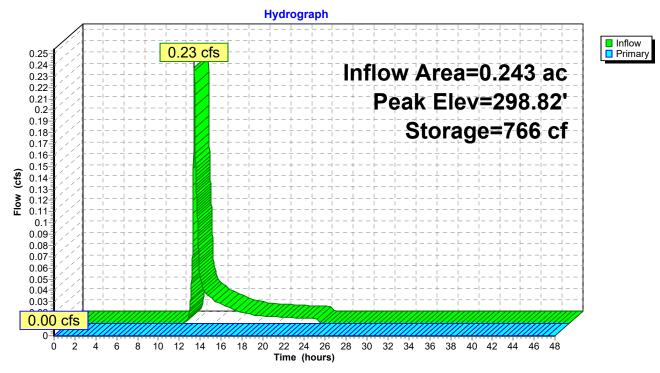
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.21' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	293.90'	12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.90' / 293.50' S= 0.0235 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.32 cfs @ 12.10 hrs HW=294.21' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.32 cfs @ 1.50 fps)

Pond CB5: (new Pond)

Summary for Pond CULdeSAC: Cul-de-sac


Inflow Area	a =	0.243 ac, 29.57% Impervious, Inflow Depth = 0.87" for 2-YR event	
Inflow	=	0.23 cfs @ 12.10 hrs, Volume= 0.018 af	
Outflow	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 mii	n
Primary	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af	

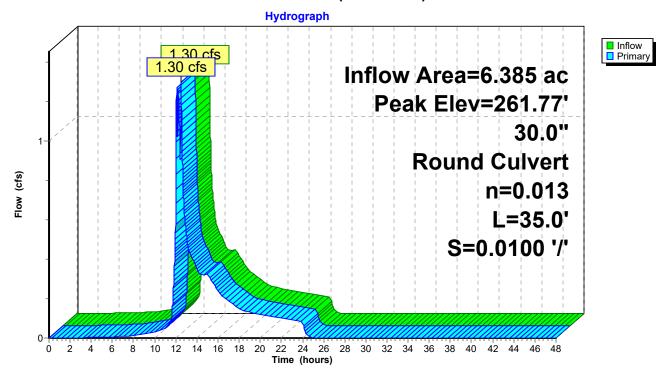
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 298.82' @ 24.34 hrs Surf.Area= 0 sf Storage= 766 cf Flood Elev= 300.00' Surf.Area= 0 sf Storage= 2,622 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Ir	nvert Ava	il.Storage	Storage Description
#1	297	7.92'	4,394 cf	Custom Stage DataListed below
Flavesti			0	a Chang
Elevatio		Inc.Store	-	n.Store
(fee	et)	(cubic-feet)	(cub	ic-feet)
297.9	92	0		0
298.2	25	283		283
298.5	50	213		496
299.5	50	850		1,346
299.7	75	213		1,559
300.2	25	2,126		3,685
300.5	50	709		4,394
Device	Routin	g In	vert Out	let Devices
#1	Primar	y 300).25' 12.(0" Horiz. Orifice/Grate C= 0.600
		-	Lim	ited to weir flow at low heads
D ·				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=297.92' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs) Pond CULdeSAC: Cul-de-sac

Summary for Pond MH1: (new Pond)


[57] Hint: Peaked at 261.77' (Flood elevation advised)[79] Warning: Submerged Pond 20P Primary device # 1 OUTLET by 0.37'

Inflow Area =	6.385 ac, 20.41% Impervious, Inflow I	Depth = 0.51" for 2-YR event
Inflow =	1.30 cfs @ 12.49 hrs, Volume=	0.274 af
Outflow =	1.30 cfs @ 12.49 hrs, Volume=	0.274 af, Atten= 0%, Lag= 0.0 min
Primary =	1.30 cfs @ 12.49 hrs, Volume=	0.274 af

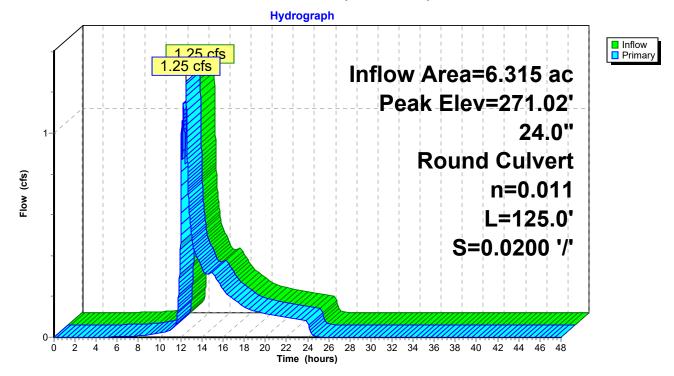
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 261.77' @ 12.49 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	261.30'	30.0" Round Culvert L= 35.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 261.30' / 260.95' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=1.29 cfs @ 12.49 hrs HW=261.77' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.29 cfs @ 2.05 fps)

Pond MH1: (new Pond)

Summary for Pond MH2: (new Pond)


[57] Hint: Peaked at 271.02' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 0.49" for 2-YR event
Inflow =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af
Outflow =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af, Atten= 0%, Lag= 0.0 min
Primary =	1.25 cfs @ 12.49 hrs, Volume=	0.257 af

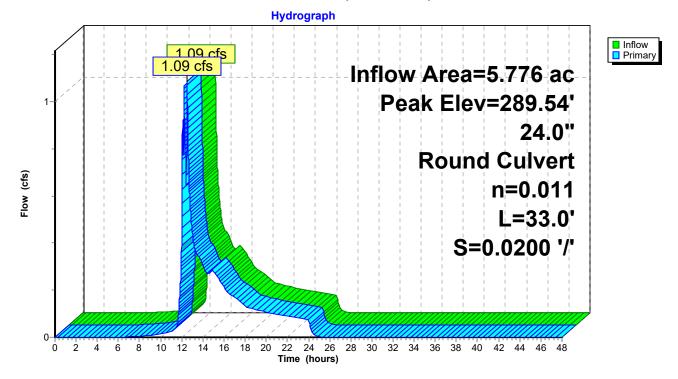
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 271.02' @ 12.49 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	270.50'	24.0" Round Culvert L= 125.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.50' / 268.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=1.25 cfs @ 12.49 hrs HW=271.02' (Free Discharge) **1=Culvert** (Inlet Controls 1.25 cfs @ 1.93 fps)

Pond MH2: (new Pond)

Summary for Pond MH3: (new Pond)


[57] Hint: Peaked at 289.54' (Flood elevation advised)

Inflow Area =	5.776 ac, 17.87% Impervious, Inflow	Depth = 0.47" for 2-YR event
Inflow =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af
Outflow =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af, Atten= 0%, Lag= 0.0 min
Primary =	1.09 cfs @ 12.50 hrs, Volume=	0.226 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 289.54' @ 12.50 hrs

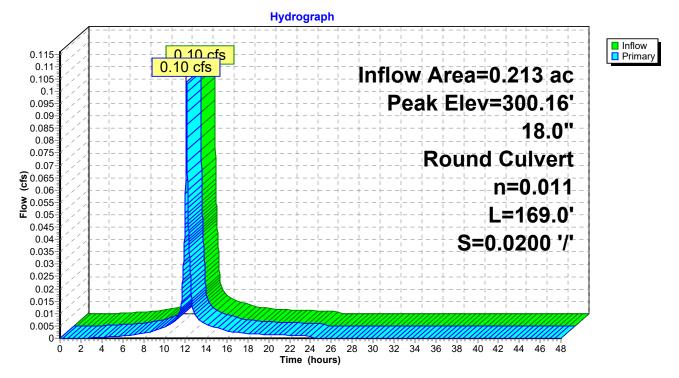
Device	Routing	Invert	Outlet Devices
#1	Primary	289.06'	24.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 289.06' / 288.40' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 3.14 sf

Primary OutFlow Max=1.08 cfs @ 12.50 hrs HW=289.54' (Free Discharge) **1=Culvert** (Inlet Controls 1.08 cfs @ 1.86 fps)

Pond MH3: (new Pond)

Summary for Pond MH4:

[57] Hint: Peaked at 300.16' (Flood elevation advised)


Inflow Area =	0.213 ac, 50.94% Impervious, Inflow	Depth = 0.46" for 2-YR event
Inflow =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af
Outflow =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af, Atten= 0%, Lag= 0.0 min
Primary =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.16' @ 12.12 hrs

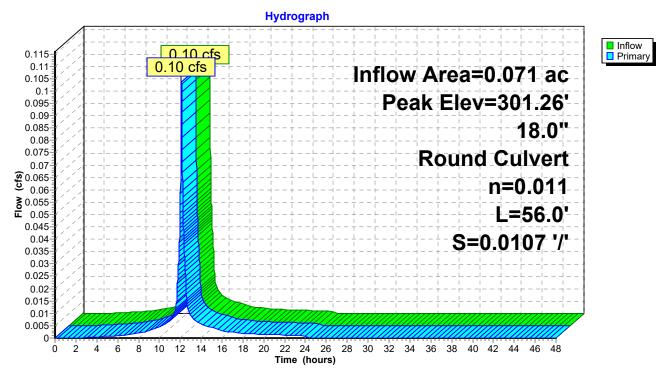
Device	Routing	Invert	Outlet Devices
#1	Primary	300.00'	18.0" Round Culvert L= 169.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 296.62' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.10 cfs @ 12.12 hrs HW=300.16' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.10 cfs @ 1.06 fps)

Pond MH4:

Summary for Pond MH5:

[57] Hint: Peaked at 301.26' (Flood elevation advised)[62] Hint: Exceeded Reach 13R OUTLET depth by 0.16' @ 12.12 hrs


Inflow Area =	0.071 ac, 65.39% Impervious, Inflow De	epth = 1.37" for 2-YR event
Inflow =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af
Outflow =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af, Atten= 0%, Lag= 0.0 min
Primary =	0.10 cfs @ 12.12 hrs, Volume=	0.008 af

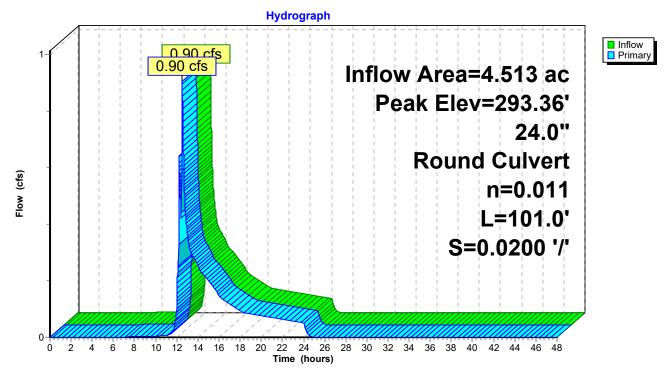
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.26' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.10'	18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.10' / 300.50' S= 0.0107 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.10 cfs @ 12.12 hrs HW=301.26' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.10 cfs @ 1.06 fps)

Pond MH5:

Summary for Pond MH6: CB6


[57] Hint: Peaked at 293.36' (Flood elevation advised)

Inflow Area =	4.513 ac, 14.39% Impervious, Inflow	Depth = 0.42" for 2-YR event
Inflow =	0.90 cfs @ 12.50 hrs, Volume=	0.157 af
Outflow =	0.90 cfs @ 12.50 hrs, Volume=	0.157 af, Atten= 0%, Lag= 0.0 min
Primary =	0.90 cfs @ 12.50 hrs, Volume=	0.157 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 293.36' @ 12.50 hrs

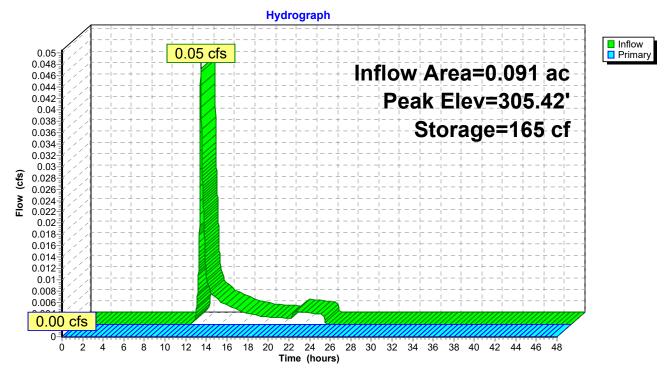
Device	Routing	Invert	Outlet Devices
#1	Primary	292.92'	24.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 292.92' / 290.90' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=0.90 cfs @ 12.50 hrs HW=293.36' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.90 cfs @ 1.78 fps)

Pond MH6: CB6

Summary for Pond RG10:

[63] Warning: Exceeded Reach 15R INLET depth by 3.12' @ 47.88 hrs


Inflow Area =	0.091 ac, 45.76% Impervious, Inflow I	Depth = 0.50" for 2-YR event
Inflow =	0.05 cfs @ 12.10 hrs, Volume=	0.004 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

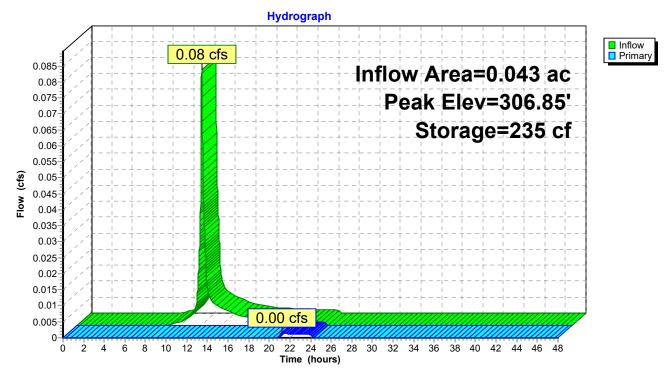
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.42' @ 47.88 hrs Surf.Area= 0 sf Storage= 165 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	vert Avai	il.Storage	Storage Description
#1	303.	77'	509 cf	Custom Stage DataListed below
_				
Elevatio		Inc.Store	-	n.Store
(fee	t) (cubic-feet)	(cubi	<u>c-feet)</u>
303.7	7	0		0
303.8	5	8		8
304.1	0	25		33
306.1	0	200		233
306.3	5	25		258
306.8	5	167		425
307.1	0	84		509
Device	Routing	In	vert Outle	et Devices
#1	Primary	306		" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=303.77' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs) Pond RG10:

Summary for Pond RG11:


Inflow Area =	0.043 ac, 62.65% Impervious, Inflow De	epth = 1.60" for 2-YR event
Inflow =	0.08 cfs @ 12.09 hrs, Volume=	0.006 af
Outflow =	0.00 cfs @21.22 hrs, Volume=	0.000 af, Atten= 98%, Lag= 547.6 min
Primary =	0.00 cfs @ 21.22 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.85' @ 21.22 hrs Surf.Area= 0 sf Storage= 235 cf

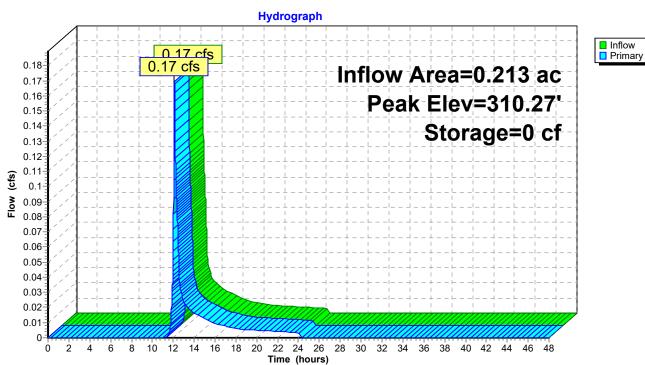
Plug-Flow detention time= 720.6 min calculated for 0.000 af (5% of inflow) Center-of-Mass det. time= 518.9 min (1,349.9 - 831.0)

Volume	In	vert A	vail.Stor	age	Storage Des	criptio	n			
#1	303	.77'	28	1 cf	Custom Sta	ige Da	ta Listed	below		
				_	_					
Elevatio	on	Inc.Stor	е	Cum.	Store					
(fee	et)	(cubic-fee	t)	(cubic	<u>-feet)</u>					
303.7	77		0		0					
303.8	35		5		5					
304.1	10	1	4		19					
306.1	10	11	0		129					
306.3	35	1	4		143					
306.8	35	9	2		235					
307.2	10	4	6		281					
Device	Routing	1	Invert	Outle	t Devices					
#1	Primary	ı 3	06.85'	12.0'	Horiz. Orifi	ce/Gra	te C= 0	.600		
				Limit	ed to weir flow	w at lo	w heads			
Drimary		Max=0	n cfs 6	0212) hrs HW=3(06 85'	(Free D	ischarge		

Primary OutFlow Max=0.00 cfs @ 21.22 hrs HW=306.85' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.00 cfs @ 0.10 fps) Pond RG11:

Summary for Pond RG12:

[62] Hint: Exceeded Reach PS3 OUTLET depth by 1.27' @ 0.00 hrs


Inflow Area =	0.213 ac, 23	.47% Impervious, Inflow D	epth = 0.77" for 2-YR event
Inflow =	0.17 cfs @ 1	12.12 hrs, Volume=	0.014 af
Outflow =	0.17 cfs @ 1	12.12 hrs, Volume=	0.014 af, Atten= 0%, Lag= 0.0 min
Primary =	0.17 cfs @ 1	12.12 hrs, Volume=	0.014 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.27' @ 12.12 hrs Surf.Area= 0 sf Storage= 0 cf

Plug-Flow detention time= 0.0 min calculated for 0.014 af (100% of inflow) Center-of-Mass det. time= 0.0 min (879.7 - 879.7)

Volume	Inv	vert Avail.	Storage	Storage Description
#1	310.	27'	760 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et) (cubic-feet)	(cubi	<u>ic-feet)</u>
310.2	27	0		0
310.6	50	15		15
310.8	35	44		59
312.1	10	219		278
312.3	35	44		322
312.8	35	292		614
313.1	10	146		760
Device	Routing	Inve	ert Outl	et Devices
#1	Primary	309.7)" Horiz. Orifice/Grate X 0.50 C= 0.600 ited to weir flow at low heads
Primary		v Max=1 37 cf	ະ @ 12 [.]	12 brs HW=310.27' (Free Discharge)

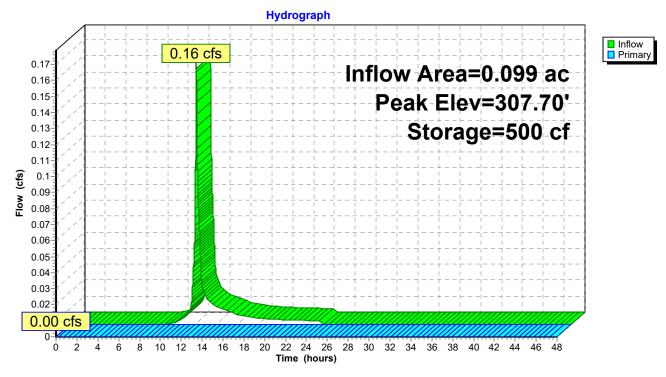
Primary OutFlow Max=1.37 cfs @ 12.12 hrs HW=310.27' (Free Discharge) —1=Orifice/Grate (Orifice Controls 1.37 cfs @ 1.74 fps) DIS 10.00 S/103093 S 2012 Hydrocad Soliware Solutions L

Pond RG12:

Summary for Pond RG13:

[63] Warning: Exceeded Reach PS4 INLET depth by 0.70' @ 25.15 hrs

Inflow Area =	0.099 ac, 53.64% Impervious, Inflow I	Depth = 1.39" for 2-YR event
Inflow =	0.16 cfs @ 12.10 hrs, Volume=	0.011 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 307.70' @ 25.03 hrs Surf.Area= 0 sf Storage= 500 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

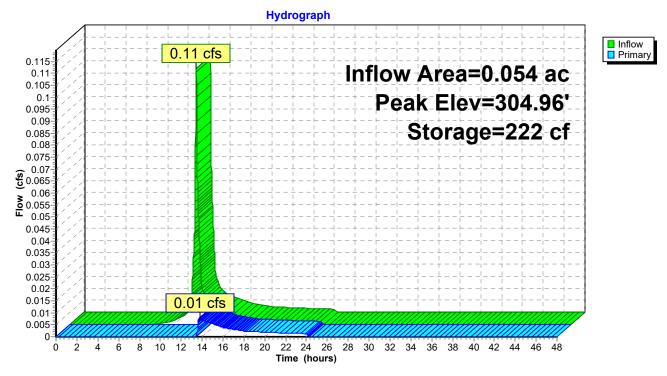
Volume	Invei	rt Avail.Sto	rage St	torage Description
#1	304.29)' 70	06 cf C	ustom Stage DataListed below
Elevation		Inc.Store	Cum.St	ore
(feet)	(CL	ubic-feet)	(cubic-fe	eet)
304.29		0		0
304.62		42		42
304.87		31		73
307.20		290	3	363
307.45		31	3	394
307.95		208	6	602
308.20		104	7	706
Device R	outing	Invert	Outlet [Devices
#1 P	rimary	307.95'	12.0" H	loriz. Orifice/Grate C= 0.600
	•		Limited	to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=304.29' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs) HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Summary for Pond RG14:

Inflow Area =	0.054 ac, 64.02% Impervious, Inflow D	epth = 1.67" for 2-YR event
Inflow =	0.11 cfs @ 12.09 hrs, Volume=	0.008 af
Outflow =	0.01 cfs @ 13.75 hrs, Volume=	0.003 af, Atten= 93%, Lag= 99.7 min
Primary =	0.01 cfs $\overline{@}$ 13.75 hrs, Volume=	0.003 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 304.96' @ 13.75 hrs Surf.Area= 0 sf Storage= 222 cf


Plug-Flow detention time= 333.8 min calculated for 0.003 af (33% of inflow) Center-of-Mass det. time= 205.6 min (1,033.1 - 827.5)

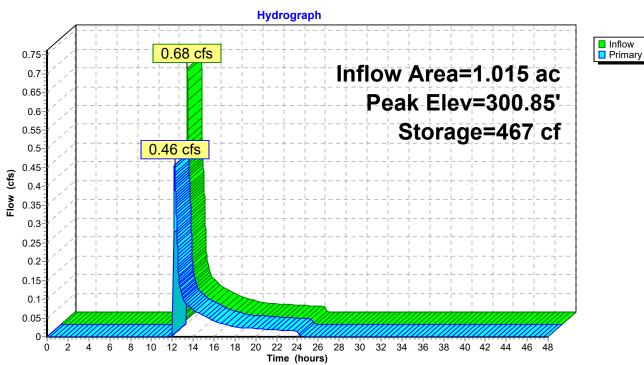
Volume	Inv	ert Avail.	Storage	Storage Description		
#1	302.	54'	272 cf	Custom Stage DataListed below		
			•			
Elevatio		Inc.Store		Store		
(fee	et) (cubic-feet)	(cubi	c-feet)		
302.5	54	0		0		
302.6	62	5		5		
302.8	37	15		20		
304.2	20	82		102		
304.4	15	15		117		
304.9	95	103		220		
305.2	20	52		272		
Device	Routing	Inve	ert Outle	et Devices		
#1	Primary	304.9	-	" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads		
Primary	Primary OutFlow Max=0.01 cfs @ 13.75 hrs. HW=304.96' (Free Discharge)					

Primary OutFlow Max=0.01 cfs @ 13.75 hrs HW=304.96' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.01 cfs @ 0.28 fps) Pine Hill Proposed Proposed Conditions_09102018 Type Prepared by SCCM-01

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Summary for Pond RG15:

[61] Hint: Exceeded Reach 10R outlet invert by 2.91' @ 12.22 hrs


Inflow Area =	1.015 ac, 19.57% Impervious, Inflow De	epth = 0.68" for 2-YR event
Inflow =	0.68 cfs @ 12.10 hrs, Volume=	0.057 af
Outflow =	0.46 cfs @ 12.22 hrs, Volume=	0.048 af, Atten= 33%, Lag= 6.8 min
Primary =	0.46 cfs @ 12.22 hrs, Volume=	0.048 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.85' @ 12.22 hrs Surf.Area= 0 sf Storage= 467 cf

Plug-Flow detention time= 111.5 min calculated for 0.048 af (83% of inflow) Center-of-Mass det. time= 36.4 min (922.2 - 885.8)

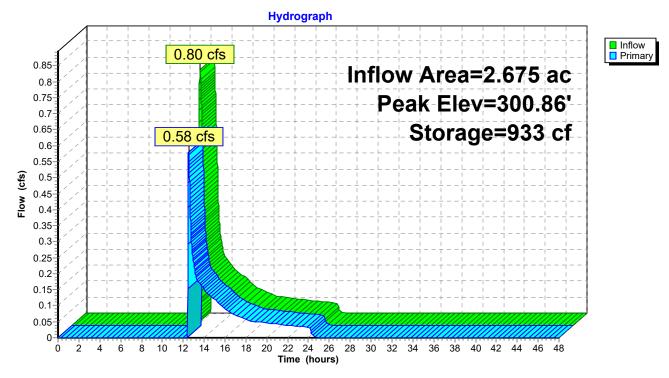
Volume	Inv	ert Avail.	Storage	Storage Description
#1	298.0)0'	524 cf	Custom Stage DataListed below
			0	
Elevation		Inc.Store	-	Store
(feet)	(0	cubic-feet)	(cubi	c-feet)
298.00		0		0
299.00		110		110
300.00		110		220
300.25		28		248
300.75		184		432
301.00		92		524
Device F	Routing	Inve	ert Outl	et Devices
#1 F	Primary	300.7	5' 18.0	"Horiz. Orifice/Grate C= 0.600
			Limi	ted to weir flow at low heads

Primary OutFlow Max=0.45 cfs @ 12.22 hrs HW=300.85' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.45 cfs @ 1.01 fps) HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG15:

Summary for Pond RG16:

Inflow Area =	2.675 ac,	4.94% Impervious, Inflow D	epth = 0.47" for 2-YR event
Inflow =	0.80 cfs @	12.26 hrs, Volume=	0.106 af
Outflow =	0.58 cfs @	12.51 hrs, Volume=	0.086 af, Atten= 27%, Lag= 15.2 min
Primary =	0.58 cfs @	12.51 hrs, Volume=	0.086 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.86' @ 12.51 hrs Surf.Area= 0 sf Storage= 933 cf

Plug-Flow detention time= 126.1 min calculated for 0.086 af (81% of inflow) Center-of-Mass det. time= 45.3 min (961.9 - 916.6)

Volume	Inv	/ert Avail	.Storage	Storage Description		
#1	298	00'	1,017 cf	Custom Stage DataListed below		
-			0			
Elevatio		Inc.Store		n.Store		
(fee	et)	(cubic-feet)	(cubi	c-feet)		
298.0	00	0		0		
299.0	00	182		182		
300.0	00	182		364		
300.2	25	46		410		
300.7	75	455		865		
301.0	00	152		1,017		
Device	Routing	Inv	vert Outl	et Devices		
#1	Primary	300.		" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads		
Primary	Primary OutFlow Max=0.58 cfs @ 12.51 brs HW =300.86' (Free Discharge)					

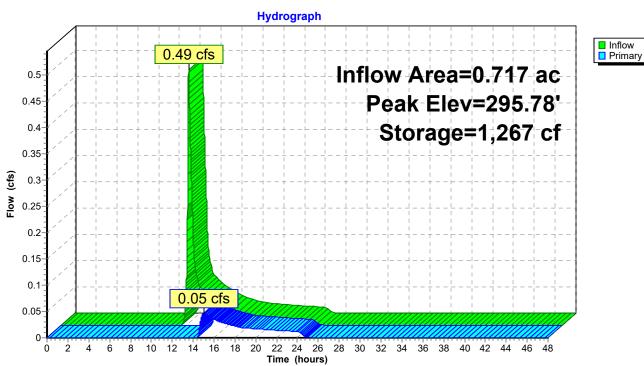
Primary OutFlow Max=0.58 cfs @ 12.51 hrs HW=300.86' (Free Discharge)

Pond RG16:

Summary for Pond RG19:

[62] Hint: Exceeded Reach PS6 OUTLET depth by 0.45' @ 43.03 hrs

Inflow Area =	0.717 ac, 23.42% Impervious, Inflow D	epth = 0.77" for 2-YR event
Inflow =	0.49 cfs @ 12.23 hrs, Volume=	0.046 af
Outflow =	0.05 cfs @ 15.03 hrs, Volume=	0.018 af, Atten= 91%, Lag= 167.8 min
Primary =	0.05 cfs @ 15.03 hrs, Volume=	0.018 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 295.78' @ 15.03 hrs Surf.Area= 0 sf Storage= 1,267 cf

Plug-Flow detention time= 364.6 min calculated for 0.018 af (38% of inflow) Center-of-Mass det. time= 213.0 min (1,104.7 - 891.7)

Volume	Invert	Avail.Sto	rage Storage	Description
#1	293.50'	1,48	34 cf Custom	Stage DataListed below
_		e /		
Elevatio		nc.Store	Cum.Store	
(fee	et) (cub	pic-feet)	(cubic-feet)	
293.5	50	0	0	
293.7	'5	73	73	
295.0	00	365	438	
295.2	25	73	511	
295.7	' 5	730	1,241	
296.0	00	243	1,484	
Device	Routing	Invert	Outlet Device	S
#1	Primary	292.63'	8.0" Round	Culvert
#2	Device 1	295.75'	Inlet / Outlet I n= 0.011, Flo	P, projecting, no headwall, Ke= 0.900 nvert= 292.63' / 292.23' S= 0.0101 '/' Cc= 0.900 w Area= 0.35 sf Drifice/Grate C= 0.600
112	201.001	200.10		ir flow at low heads

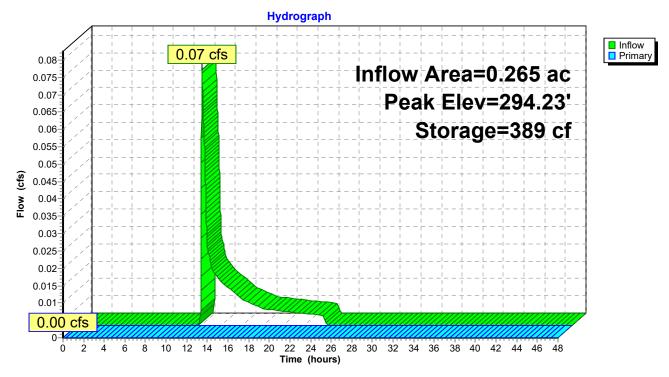
Primary OutFlow Max=0.04 cfs @ 15.03 hrs HW=295.78' (Free Discharge) 1=Culvert (Passes 0.04 cfs of 2.23 cfs potential flow) 2=Orifice/Grate (Weir Controls 0.04 cfs @ 0.53 fps)

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG19:

Summary for Pond RG20:

Inflow Area =	0.265 ac,	0.00% Impervious, Inflow De	epth = 0.40" for 2-YR event
Inflow =	0.07 cfs @	12.13 hrs, Volume=	0.009 af
Outflow =	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.23' @ 24.34 hrs Surf.Area= 0 sf Storage= 389 cf

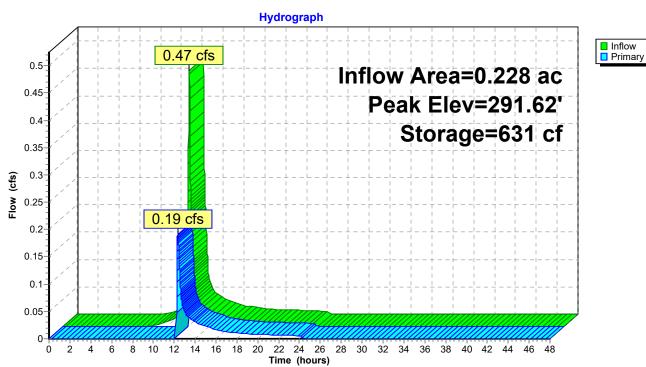
Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	In	vert Avai	il.Storage	Storage Description
#1	292	.47'	1,191 cf	Custom Stage DataListed below
Elevatio		Inc.Store	-	n.Store
(fee	et)	(cubic-feet)	(CUDI	ic-feet)
292.4	17	0		0
292.5	55	18		18
292.8	30	55		73
294.3	30	330		403
294.5	55	55		458
295.0)5	550		1,008
295.3	30	183		1,191
Device	Routing	j In	<u>vert Outl</u>	let Devices
#1	Primary	295)" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads
Drimony	OutElo	• Max=0.00	ofo @ 0.00	0 brs = HW - 202.47' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=292.47' (Free Discharge)

Pond RG20:

Summary for Pond RG21:


Inflow Area =	0.228 ac, 67.95% Impervious, Inflow D	epth = 1.75" for 2-YR event
Inflow =	0.47 cfs @ 12.09 hrs, Volume=	0.033 af
Outflow =	0.19 cfs @ 12.33 hrs, Volume=	0.020 af, Atten= 59%, Lag= 14.4 min
Primary =	0.19 cfs $\overline{@}$ 12.33 hrs, Volume=	0.020 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 291.62' @ 12.33 hrs Surf.Area= 0 sf Storage= 631 cf

Plug-Flow detention time= 198.6 min calculated for 0.020 af (60% of inflow) Center-of-Mass det. time= 90.2 min (914.1 - 823.9)

Volume	In	vert Avail	.Storage	Storage Description	
#1	289	.62'	749 cf	Custom Stage DataListed below	
Elevatio	n	Inc.Store	Cum	n.Store	
(fee		(cubic-feet)	-	c-feet)	
289.6	62	0		0	
289.9	95	65		65	
290.2	20	49		114	
291.2	20	195		309	
291.4	15	49		358	
291.5	55	228		586	
291.8	30	163		749	
Device	Routing	j Inv	vert Outl	et Devices	
#1	Primary	y 291.		" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads	
Primary	Primary OutFlow Max=0 19 cfs @ 12 33 hrs HW=291 62' (Free Discharge)				

Primary OutFlow Max=0.19 cfs @ 12.33 hrs HW=291.62' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.19 cfs @ 0.86 fps) HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

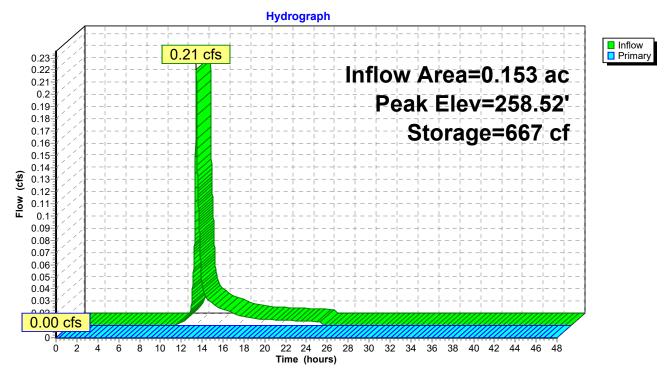
Pond RG21:

Summary for Pond RG22:

Inflow Area =	0.153 ac, 15.01% Impervious, Inflow E	Depth = 1.20" for 2-YR event
Inflow =	0.21 cfs @ 12.09 hrs, Volume=	0.015 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 258.52' @ 24.34 hrs Surf.Area= 0 sf Storage= 667 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)


Volume	Inv	/ert Avai	il.Storage	Storage Description	
#1	256	22'	853 cf	Custom Stage DataListed below	
			~		
Elevatio		Inc.Store	-	n.Store	
(fee	et)	(cubic-feet)	(cubi	ic-feet)	
256.2	22	0		0	
256.5	55	66		66	
256.8	30	49		115	
257.8	30	197		312	
258.0)5	49		361	
258.5	55	328		689	
258.8	30	164		853	
Device	Routing	In	vert Outl	let Devices	
#1	Primary	258	.55' 12.0)" Horiz. Orifice/Grate C= 0.600	
			Limi	ited to weir flow at low heads	
	Drimony OutFlow Moved 00 of @ 0.00 hrs. UN/=256.22' (Free Discharge)				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=256.22' (Free Discharge)

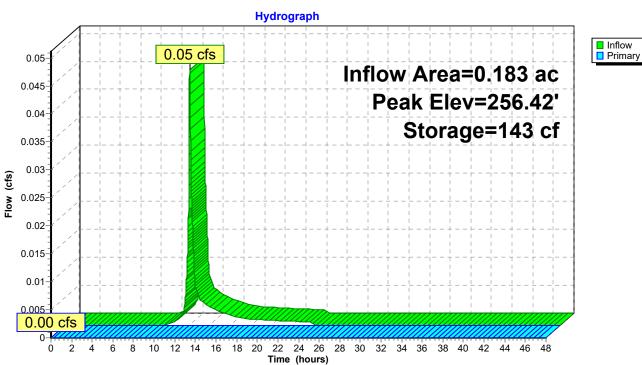
Pine Hill Proposed Proposed Conditions_09102018TypePrepared by SCCM-01HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCFile

Type III 24-hr 2-YR Rainfall=3.10" Printed 9/10/2018 Page 129

Pond RG22:

Summary for Pond RG23:

[63] Warning: Exceeded Reach 21R INLET depth by 2.42' @ 24.34 hrs


Inflow Area =	0.183 ac, 16.37% Impervious, Inflow De	epth = 0.22" for 2-YR event
Inflow =	0.05 cfs @ 12.09 hrs, Volume=	0.003 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 256.42' @ 24.34 hrs Surf.Area= 0 sf Storage= 143 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	In	vert /	Avail.Sto	rage	Storage D	Description				
#1	255	5.27'	56	68 cf	Custom S	Stage DataLi	sted below	/		
Elevatio	on	Inc.Sto	ore	Cum.	Store					
(fee	et)	(cubic-fe	et)	(cubic	:-feet)					
255.2	27		0		0					
255.6	60		41		41					
255.8	35		31		72					
257.1	10	1	55		227					
257.3	35		31		258					
257.8	35	2	07		465					
258.1	10	1	03		568					
Device	Routing	g	Invert	Outle	et Devices					
#1	Primar	У	257.85'	-		rifice/Grate				
				Limit	ea lo weir	flow at low he	eaus			
						~				

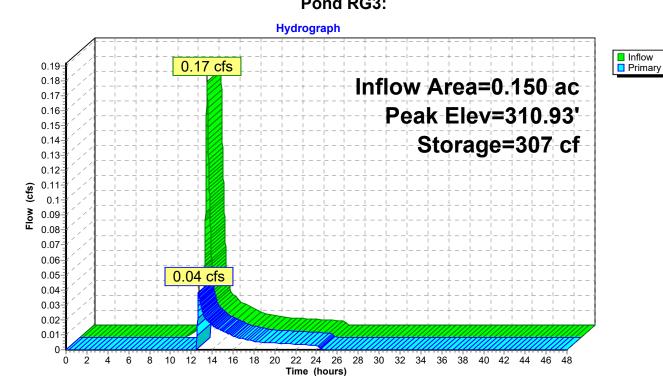
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=255.27' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs) HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG23:

Summary for Pond RG3:

Inflow Area =	0.150 ac, 46.64% Impervious, Inflow D	epth = 1.20" for 2-YR event
Inflow =	0.17 cfs @ 12.17 hrs, Volume=	0.015 af
Outflow =	0.04 cfs @ 12.70 hrs, Volume=	0.008 af, Atten= 77%, Lag= 31.7 min
Primary =	0.04 cfs @ 12.70 hrs, Volume=	0.008 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.93' @ 12.70 hrs Surf.Area= 0 sf Storage= 307 cf


Plug-Flow detention time= 234.5 min calculated for 0.008 af (55% of inflow) Center-of-Mass det. time= 112.7 min (968.8 - 856.1)

Volume	Invert	Avail.Sto	rage S	Storage Description
#1	309.50'	33	39 cf 🕻	Custom Stage DataListed below
Elevation (feet)	Inc. cubic)	Store -feet)	Cum.S (cubic-l	
309.50		0		0
309.75		32		32
310.25		63		95
310.50		32		127
311.00		212		339
Device Ro	outing	Invert	Outlet	Devices
#1 Pr	imary	310.90'	4.0' lo	ng x 4.0' breadth Broad-Crested Rectangular Weir
	5			(feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3	3.00 3.50 4.00 4.50 5.00 5.50
			Coef.	(English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66
			2.68 2	2.72 2.73 2.76 2.79 2.88 3.07 3.32
Primary Ou	ItElow Mox	-0.04 cfc (ଇ <u>1</u> 2 70	hrs HW=310.93' (Free Discharge)

Primary OutFlow Max=0.04 cfs @ 12.70 hrs HW=310.93' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.04 cfs @ 0.38 fps) Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01

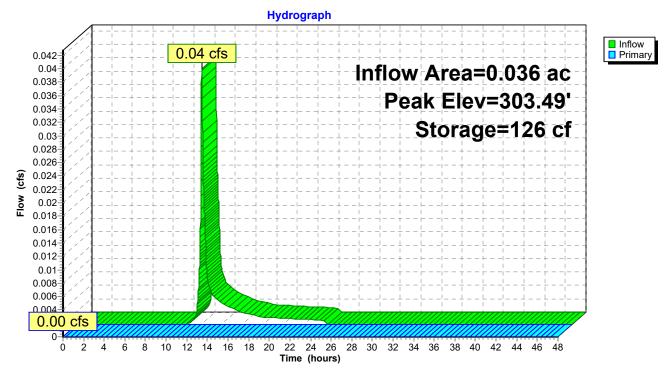
Type III 24-hr 2-YR Rainfall=3.10" Printed 9/10/2018 Page 133

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG3:

Summary for Pond RG4:

Inflow Area =	0.036 ac, 34.97% Impervious, Inflow E	Depth = 0.97" for 2-YR event
Inflow =	0.04 cfs @ 12.10 hrs, Volume=	0.003 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 303.49' @ 24.34 hrs Surf.Area= 0 sf Storage= 126 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

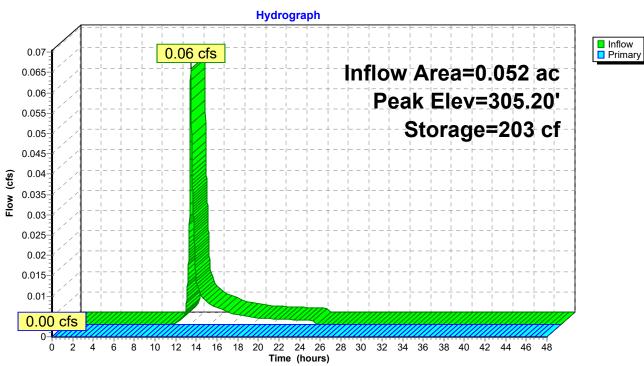
Volume	١n	vert Avail	.Storage	Storage Description	
#1	302.	42'	743 cf	Custom Stage DataListed below	
F lavistic			0	Otana	
Elevatio		Inc.Store	-	Store	
(fee	et) (cubic-feet)	(cubi	c-feet)	
302.4	12	0		0	
302.7	75	39		39	
303.0	00	29		68	
306.0	00	352		420	
306.2	25	29		449	
306.7	75	196		645	
307.0	00	98		743	
Device	Routing	Inv	ert Outl	et Devices	
#1	Primary	306.	75' 12.0	"Horiz. Orifice/Grate C= 0.600	
			Limi	ted to weir flow at low heads	
D	$\mathbf{D}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} + $				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.42' (Free Discharge)

Pond RG4:

Summary for Pond RG5:

Inflow Area =	0.052 ac, 40.18% Impervious, Inflow D	epth = 1.08" for 2-YR event
Inflow =	0.06 cfs @ 12.09 hrs, Volume=	0.005 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.20' @ 24.34 hrs Surf.Area= 0 sf Storage= 203 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inve	ert Avail.Sto	rage	Storage Description
#1	302.6	7' 4	86 cf	Custom Stage DataListed below
Flovetion		Inc. Store	Cum	Store
Elevation		Inc.Store	-	Store
(feet)	(C	ubic-feet)	(cupic	<u>c-feet)</u>
302.67		0		0
302.75		7		7
303.00		20		27
306.00		239		266
306.25		20		286
306.75		133		419
307.00		67		486
Device F	Routing	Invert	Outle	et Devices
#1 F	Primary	306.75'	12.0'	"Horiz. Orifice/Grate C= 0.600
			Limit	ed to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.67' (Free Discharge)

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG5:

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 138

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (n	iew Subcat)	Runoff Area=6			ff Depth=1.39" 4 cfs 0.018 af
Subcatchment2S: R	oad	Runoff Area=12			ff Depth=2.55" 6 cfs 0.061 af
Subcatchment3S: U		Runoff Area=8 Flow Length=525'			
Subcatchment4S:		Runoff Area=8 Flow Length=525'			
Subcatchment5S:		Runoff Area=3,0			ff Depth=4.36" 2 cfs 0.026 af
Subcatchment7S: (n	ew Subcat)	Runoff Area=6		•	ff Depth=3.49" 60 cfs 0.044 af
Subcatchment8S: (n	ew Subcat)	Runoff Area=17	,		ff Depth=1.74" '9 cfs 0.058 af
Subcatchment9S:		Runoff Area=1,9			ff Depth=4.36" 1 cfs_0.017 af
Subcatchment10S: (new Subcat)	Runoff Area=25 Flow Length=128			
Subcatchment11S:		Runoff Area=23			ff Depth=1.67" 3 cfs 0.076 af
Subcatchment12S:	Flow Length=485	Runoff Area=3 5' Slope=0.0350 '/			
Subcatchment13S:	Flow Length=331'	Runoff Area=6 Slope=0.0100 '/'			
Subcatchment14S:		Runoff Area=34 Flow Length=172			
Subcatchment15S:	Flow Length=1,115'	Runoff Area=3 Slope=0.0050 '/'			ff Depth=1.97" ⋅8 cfs_0.127 af
Subcatchment16S:		Runoff Area=4,6			ff Depth=4.36" ⋅8 cfs 0.039 af
SubcatchmentCUL:	(new Subcat)	Runoff Area=10			ff Depth=1.89" 3 cfs 0.038 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 139					
SubcatchmentP1:	Runoff Area=98,881 sf 5.04% Impervious Runoff Depth=1.26" Flow Length=650' Tc=12.2 min CN=63 Runoff=2.47 cfs 0.239 af				
Subcatchment P2:	Runoff Area=10,702 sf 0.00% Impervious Runoff Depth=1.14" Flow Length=344' Tc=8.6 min CN=61 Runoff=0.26 cfs 0.023 af				
SubcatchmentS1:	Runoff Area=1,539 sf 96.04% Impervious Runoff Depth=4.25" Tc=6.0 min CN=97 Runoff=0.16 cfs 0.013 af				
SubcatchmentS10:	Runoff Area=2,106 sf 30.86% Impervious Runoff Depth=1.89" Tc=6.0 min CN=72 Runoff=0.11 cfs 0.008 af				
SubcatchmentS11:	Runoff Area=1,858 sf 62.65% Impervious Runoff Depth=2.91" Tc=6.0 min CN=84 Runoff=0.14 cfs 0.010 af				
Subcatchment S12:	Runoff Area=9,267 sf 23.47% Impervious Runoff Depth=1.74" Tc=6.0 min CN=70 Runoff=0.42 cfs 0.031 af				
Subcatchment S13:	Runoff Area=4,314 sf 53.64% Impervious Runoff Depth=2.63" Tc=6.0 min CN=81 Runoff=0.31 cfs 0.022 af				
Subcatchment S14:	Runoff Area=2,371 sf 64.02% Impervious Runoff Depth=3.00" Tc=6.0 min CN=85 Runoff=0.19 cfs 0.014 af				
Subcatchment S15:	Runoff Area=44,214 sf 19.57% Impervious Runoff Depth=1.60" Tc=6.0 min CN=68 Runoff=1.83 cfs 0.135 af				
Subcatchment S19:	Runoff Area=31,232 sf 23.42% Impervious Runoff Depth=1.74" Tc=6.0 min CN=70 Runoff=1.43 cfs 0.104 af				
Subcatchment S2:	Runoff Area=0.550 ac 12.73% Impervious Runoff Depth=1.46" Tc=6.0 min CN=66 Runoff=0.89 cfs 0.067 af				
Subcatchment S20:	Runoff Area=11,551 sf 0.00% Impervious Runoff Depth=1.14" Tc=6.0 min CN=61 Runoff=0.31 cfs 0.025 af				
Subcatchment S21:	Runoff Area=9,941 sf 67.95% Impervious Runoff Depth=3.10" Tc=6.0 min CN=86 Runoff=0.82 cfs 0.059 af				
Subcatchment S22: Stow Road South	Runoff Area=6,662 sf 15.01% Impervious Runoff Depth=2.38" Tc=6.0 min CN=78 Runoff=0.43 cfs 0.030 af				
Subcatchment S23: Stow Road South	Runoff Area=1,297 sf 23.36% Impervious Runoff Depth=2.55" Tc=6.0 min CN=80 Runoff=0.09 cfs 0.006 af				
SubcatchmentS3:	Runoff Area=6,554 sf 46.64% Impervious Runoff Depth=2.38" Flow Length=426' Tc=11.6 min CN=78 Runoff=0.35 cfs 0.030 af				
Subcatchment S4:	Runoff Area=1,550 sf 34.97% Impervious Runoff Depth=2.05" Tc=6.0 min CN=74 Runoff=0.08 cfs 0.006 af				
SubcatchmentS5:	Runoff Area=2,245 sf 40.18% Impervious Runoff Depth=2.21" Tc=6.0 min CN=76 Runoff=0.13 cfs 0.009 af				

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 140

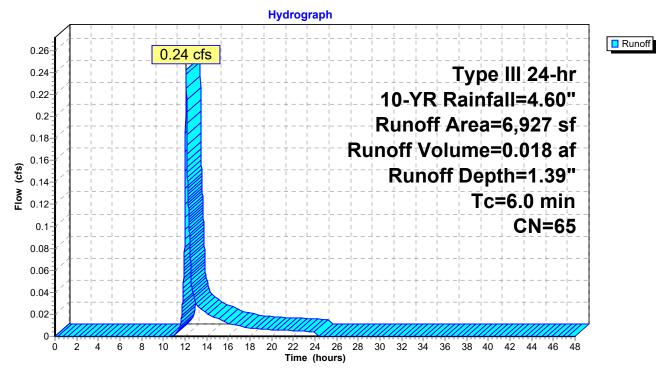
SubcatchmentSBS:	Runoff Area=6,892 sf 15.19% Impervious Runoff Depth=2.38" Tc=6.0 min CN=78 Runoff=0.44 cfs 0.031 af
	Avg. Flow Depth=0.44' Max Vel=5.69 fps Inflow=1.92 cfs 0.124 af L=72.0' S=0.0125 '/' Capacity=4.71 cfs Outflow=1.91 cfs 0.124 af
Reach 4R: 12.0" Round Pipe n=0.011	Avg. Flow Depth=0.08' Max Vel=5.02 fps Inflow=0.16 cfs 0.013 af L=22.0' S=0.0682 '/' Capacity=10.99 cfs Outflow=0.16 cfs 0.013 af
	Avg. Flow Depth=0.73' Max Vel=1.80 fps Inflow=6.58 cfs 0.768 af =845.0' S=0.0100 '/' Capacity=11.78 cfs Outflow=5.97 cfs 0.768 af
Reach 6R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.06' Max Vel=1.55 fps Inflow=0.02 cfs 0.008 af L=197.0' S=0.0100 '/' Capacity=1.43 cfs Outflow=0.02 cfs 0.008 af
Reach 7R: 12.0" Round Pipe n=0.014	Avg. Flow Depth=0.09' Max Vel=4.46 fps Inflow=0.16 cfs 0.013 af L=88.0' S=0.0795 '/' Capacity=9.33 cfs Outflow=0.16 cfs 0.013 af
Reach 8R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.18' Max Vel=5.60 fps Inflow=0.42 cfs 0.031 af L=128.0' S=0.0353 '/' Capacity=2.68 cfs Outflow=0.42 cfs 0.031 af
Reach 9R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.13' Max Vel=2.92 fps Inflow=0.13 cfs 0.009 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=0.14 cfs 0.009 af
Reach 10R: new 18.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps L=84.0' S=0.0400 '/' Capacity=24.83 cfs Outflow=0.00 cfs 0.000 af
Reach 11R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.60' Max Vel=5.57 fps Inflow=1.82 cfs 0.125 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=1.82 cfs 0.125 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 13R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 14R: (new Reach) 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.03' Max Vel=1.34 fps Inflow=0.01 cfs 0.002 af L=33.0' S=0.0173 '/' Capacity=1.88 cfs Outflow=0.01 cfs 0.002 af
Reach 15R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.07' Max Vel=2.18 fps Inflow=0.04 cfs 0.005 af L=18.0' S=0.0167 '/' Capacity=1.84 cfs Outflow=0.04 cfs 0.005 af
Reach 16R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.03' Max Vel=1.36 fps Inflow=0.01 cfs 0.003 af L=36.0' S=0.0194 '/' Capacity=1.99 cfs Outflow=0.01 cfs 0.003 af
Reach 17R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.67' Max Vel=8.45 fps Inflow=3.04 cfs 0.261 af L=67.0' S=0.0328 '/' Capacity=2.59 cfs Outflow=2.77 cfs 0.261 af
Reach 18R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=16.0' S=0.0200 '/' Capacity=2.02 cfs Outflow=0.00 cfs 0.000 af

Prepared by SCCM-01	osed Conditions_09102018 Type III 24-hr 10-YR Rainfall=4.60" Printed 9/10/2018 2012 HydroCAD Software Solutions LLC Page 141
Reach 19R: (new Reach) 8.0" Round Pip	Avg. Flow Depth=0.20' Max Vel=8.85 fps Inflow=0.78 cfs 0.045 af pe n=0.011 L=47.0' S=0.0781 '/' Capacity=3.99 cfs Outflow=0.77 cfs 0.045 af
Reach 20R: 12" RCP pipe 12.0" Round Pip	Avg. Flow Depth=0.27' Max Vel=5.01 fps Inflow=0.86 cfs 0.061 af be n=0.013 L=22.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=0.86 cfs 0.061 af
Reach 21R: (new Reach) 8.0" Round Pip	Avg. Flow Depth=0.11' Max Vel=1.58 fps Inflow=0.06 cfs 0.014 af pe n=0.011 L=50.0' S=0.0050 '/' Capacity=1.01 cfs Outflow=0.06 cfs 0.014 af
Reach CB1: CB1 12.0" Round Pip	Avg. Flow Depth=0.27' Max Vel=7.60 fps Inflow=1.32 cfs 0.100 af be n=0.011 L=27.0' S=0.0370 '/' Capacity=8.10 cfs Outflow=1.32 cfs 0.100 af
Reach CP1:	Inflow=0.93 cfs 0.090 af Outflow=0.93 cfs 0.090 af
Reach CP2:	Inflow=12.95 cfs 2.287 af Outflow=12.95 cfs 2.287 af
Reach PS1:	Avg. Flow Depth=0.37' Max Vel=4.12 fps Inflow=2.47 cfs 0.239 af n=0.035 L=228.0' S=0.0658 '/' Capacity=20.22 cfs Outflow=2.46 cfs 0.239 af
Reach PS10A:	Avg. Flow Depth=0.08' Max Vel=1.71 fps Inflow=0.16 cfs 0.013 af n=0.035 L=18.0' S=0.0833 '/' Capacity=261.94 cfs Outflow=0.16 cfs 0.013 af
Reach PS10B:	Avg. Flow Depth=0.08' Max Vel=1.63 fps Inflow=0.16 cfs 0.013 af n=0.035 L=42.0' S=0.0714 '/' Capacity=242.51 cfs Outflow=0.16 cfs 0.013 af
Reach PS2:	Avg. Flow Depth=0.13' Max Vel=2.04 fps Inflow=0.24 cfs 0.018 af n=0.035 L=31.0' S=0.0645 '/' Capacity=20.02 cfs Outflow=0.24 cfs 0.018 af
Reach PS3:	Avg. Flow Depth=0.16' Max Vel=2.47 fps Inflow=0.42 cfs 0.031 af n=0.035 L=58.0' S=0.0690 '/' Capacity=20.70 cfs Outflow=0.42 cfs 0.031 af
Reach PS4:	Avg. Flow Depth=0.17' Max Vel=1.66 fps Inflow=0.31 cfs 0.022 af n=0.035 L=34.0' S=0.0294 '/' Capacity=13.52 cfs Outflow=0.31 cfs 0.022 af
Reach PS6: (new Reach)	Avg. Flow Depth=0.41' Max Vel=1.86 fps Inflow=1.43 cfs 0.104 af n=0.035 L=398.0' S=0.0118 '/' Capacity=8.56 cfs Outflow=1.29 cfs 0.104 af
Reach PS7: (new Reach)	Avg. Flow Depth=0.34' Max Vel=3.49 fps Inflow=2.02 cfs 0.124 af n=0.035 L=303.0' S=0.0528 '/' Capacity=81.69 cfs Outflow=1.92 cfs 0.124 af
Reach PS8: (new Reach)	Avg. Flow Depth=0.63' Max Vel=3.73 fps Inflow=7.16 cfs 0.715 af n=0.023 L=40.0' S=0.0112 '/' Capacity=80.78 cfs Outflow=7.08 cfs 0.715 af
Reach PS9: (new Reach)	Avg. Flow Depth=0.30' Max Vel=1.98 fps Inflow=0.86 cfs 0.061 af n=0.035 L=75.0' S=0.0200 '/' Capacity=11.15 cfs Outflow=0.86 cfs 0.061 af
Pond 1P: (new Pond)	Peak Elev=301.66' Inflow=0.51 cfs 0.047 af 18.0" Round Culvert n=0.011 L=85.0' S=0.0412 '/' Outflow=0.51 cfs 0.047 af
Pond 2P: (new Pond)	Peak Elev=298.49' Inflow=2.23 cfs 0.173 af 18.0" Round Culvert n=0.011 L=47.0' S=0.0362 '/' Outflow=2.23 cfs 0.173 af

Pond 3P: MH2B	Peak Elev=284.67' Inflow=6.00 cfs 0.628 af 24.0" Round Culvert n=0.011 L=72.0' S=0.0200 '/' Outflow=6.00 cfs 0.628 af
Pond 4P: Constructed Wetla Pri	nd Peak Elev=260.48' Storage=22,660 cf Inflow=10.15 cfs 1.043 af mary=4.60 cfs 1.042 af Secondary=0.00 cfs 0.000 af Outflow=4.60 cfs 1.042 af
Pond 5P: MH2A	Peak Elev=278.71' Inflow=6.74 cfs 0.673 af 24.0" Round Culvert n=0.011 L=60.0' S=0.0200 '/' Outflow=6.74 cfs 0.673 af
Pond 20P: (new Pond)	Peak Elev=265.93' Inflow=6.91 cfs 0.690 af 24.0" Round Culvert n=0.011 L=160.0' S=0.0200 '/' Outflow=6.91 cfs 0.690 af
Pond BS: Bus Station RG	Peak Elev=257.51' Storage=2,027 cf Inflow=1.76 cfs 0.132 af Outflow=1.54 cfs 0.088 af
Pond CB2: (new Pond)	Peak Elev=262.32' Inflow=0.32 cfs 0.026 af 12.0" Round Culvert n=0.011 L=10.0' S=0.0100 '/' Outflow=0.32 cfs 0.026 af
Pond CB3: (new Pond)	Peak Elev=277.45' Inflow=0.21 cfs 0.017 af 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.21 cfs 0.017 af
Pond CB4: (new Pond)	Peak Elev=294.14' Inflow=0.60 cfs 0.044 af 12.0" Round Culvert n=0.011 L=7.0' S=0.0286 '/' Outflow=0.60 cfs 0.044 af
Pond CB5: (new Pond)	Peak Elev=294.42' Inflow=0.79 cfs 0.058 af 12.0" Round Culvert n=0.011 L=17.0' S=0.0235 '/' Outflow=0.79 cfs 0.058 af
Pond CULdeSAC: Cul-de-sa	c Peak Elev=299.78' Storage=1,672 cf Inflow=0.53 cfs 0.038 af Outflow=0.00 cfs 0.000 af
Pond MH1: (new Pond)	Peak Elev=262.51' Inflow=7.16 cfs 0.715 af 30.0" Round Culvert n=0.013 L=35.0' S=0.0100 '/' Outflow=7.16 cfs 0.715 af
Pond MH2: (new Pond)	Peak Elev=271.83' Inflow=6.91 cfs 0.690 af 24.0" Round Culvert n=0.011 L=125.0' S=0.0200 '/' Outflow=6.91 cfs 0.690 af
Pond MH3: (new Pond)	Peak Elev=290.29' Inflow=6.00 cfs 0.626 af 24.0" Round Culvert n=0.011 L=33.0' S=0.0200 '/' Outflow=6.00 cfs 0.626 af
Pond MH4:	Peak Elev=300.19' Inflow=0.16 cfs 0.015 af 18.0" Round Culvert n=0.011 L=169.0' S=0.0200 '/' Outflow=0.16 cfs 0.015 af
Pond MH5:	Peak Elev=301.29' Inflow=0.16 cfs 0.013 af 18.0" Round Culvert n=0.011 L=56.0' S=0.0107 '/' Outflow=0.16 cfs 0.013 af
Pond MH6: CB6	Peak Elev=294.00' Inflow=4.80 cfs 0.449 af 24.0" Round Culvert n=0.011 L=101.0' S=0.0200 '/' Outflow=4.80 cfs 0.449 af
Pond RG10:	Peak Elev=306.86' Storage=427 cf Inflow=0.11 cfs 0.013 af Outflow=0.01 cfs 0.003 af

Pine Hill Proposed Proposed Condit Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD	Printed 9/10/2018
Pond RG11:	Peak Elev=306.87' Storage=239 cf Inflow=0.14 cfs 0.010 af Outflow=0.04 cfs 0.005 af
Pond RG12:	Peak Elev=310.28' Storage=0 cf Inflow=0.42 cfs 0.031 af Outflow=0.42 cfs 0.031 af
Pond RG13:	Peak Elev=307.97' Storage=609 cf Inflow=0.31 cfs 0.022 af Outflow=0.02 cfs 0.008 af
Pond RG14:	Peak Elev=305.00' Storage=231 cf Inflow=0.19 cfs 0.014 af Outflow=0.13 cfs 0.009 af
Pond RG15:	Peak Elev=300.99' Storage=520 cf Inflow=1.83 cfs 0.135 af Outflow=1.82 cfs 0.125 af
Pond RG16:	Peak Elev=301.09' Storage=1,017 cf Inflow=2.84 cfs 0.280 af Outflow=3.04 cfs 0.261 af
Pond RG19:	Peak Elev=295.92' Storage=1,404 cf Inflow=1.29 cfs 0.104 af Outflow=0.71 cfs 0.076 af
Pond RG20:	Peak Elev=295.05' Storage=1,010 cf Inflow=0.31 cfs 0.025 af Outflow=0.01 cfs 0.002 af
Pond RG21:	Peak Elev=291.73' Storage=702 cf Inflow=0.82 cfs 0.059 af Outflow=0.78 cfs 0.045 af
Pond RG22:	Peak Elev=258.58' Storage=709 cf Inflow=0.43 cfs 0.030 af Outflow=0.06 cfs 0.014 af
Pond RG23:	Peak Elev=257.87' Storage=472 cf Inflow=0.09 cfs 0.021 af Outflow=0.03 cfs 0.010 af
Pond RG3:	Peak Elev=311.01' Storage=339 cf Inflow=0.35 cfs 0.030 af Outflow=0.34 cfs 0.023 af
Pond RG4:	Peak Elev=304.68' Storage=265 cf Inflow=0.08 cfs 0.006 af Outflow=0.00 cfs 0.000 af
Pond RG5:	Peak Elev=306.73' Storage=413 cf Inflow=0.13 cfs 0.009 af Outflow=0.00 cfs 0.000 af

Total Runoff Area = 16.749 acRunoff Volume = 2.638 afAverage Runoff Depth = 1.89"86.64% Pervious = 14.511 ac13.36% Impervious = 2.238 ac

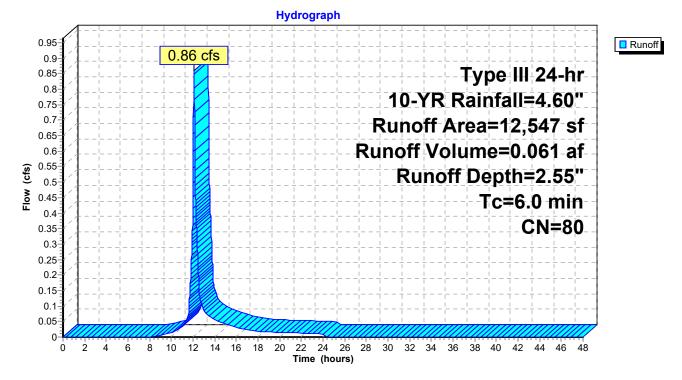

Summary for Subcatchment 1S: (new Subcat)

Runoff = 0.24 cfs @ 12.10 hrs, Volume= 0.018 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

Α	rea (sf)	CN	Description		
	771	98	Paved park	ing & roofs	3
	6,156	61	>75% Ġras	s cover, Go	ood, HSG B
	6,927	65	Weighted A	verage	
	6,156		88.87% Pei	vious Area	3
	771		11.13% Imp	pervious Are	rea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
6.0					Direct Entry,

Subcatchment 1S: (new Subcat)

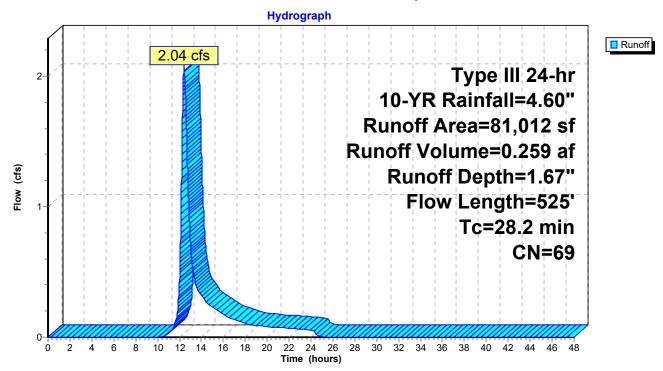

Summary for Subcatchment 2S: Road

Runoff = 0.86 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

	Are	ea (sf)	CN	Description		
*		4,975	74	>75% Gras	s cover, Go	iood, HSG C
*		3,197	98	Impervious		
*		4,375	73	Woods, Fai	r, HSG C	
	1	2,547	80	Weighted A	verage	
		9,350		74.52% Per	vious Area	а
		3,197		25.48% Imp	ervious Ar	rea
(m	Tc nin)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	I I I I I I I I I I I I I I I I I I I
	6.0	((1010	, (19000)	(010)	Direct Entry,

Subcatchment 2S: Road


Summary for Subcatchment 3S: Undeveloped Area

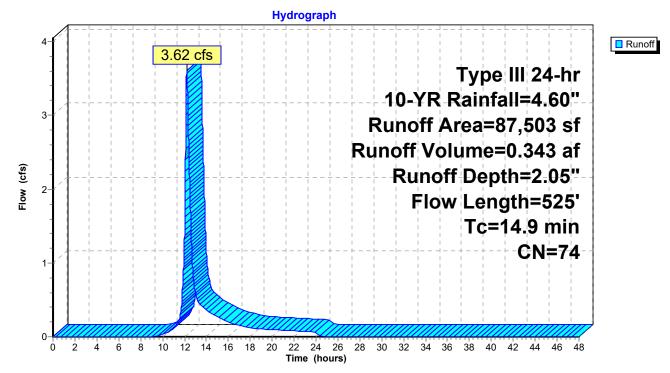
Runoff = 2.04 cfs @ 12.42 hrs, Volume= 0.259 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

_	A	rea (sf)	CN	Description		
*		26,806	61	>75% grass	s cover, goo	od, HSG B
_		54,206	73	Woods, Fai	r, HSG Ć	
		81,012	69	Weighted A	verage	
		81,012		100.00% Pe	ervious Are	а
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	8.2	50	0.0605	0.10		Sheet Flow,
	20.0	475	0.0250	0.40		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps
	28.2	525	Total			

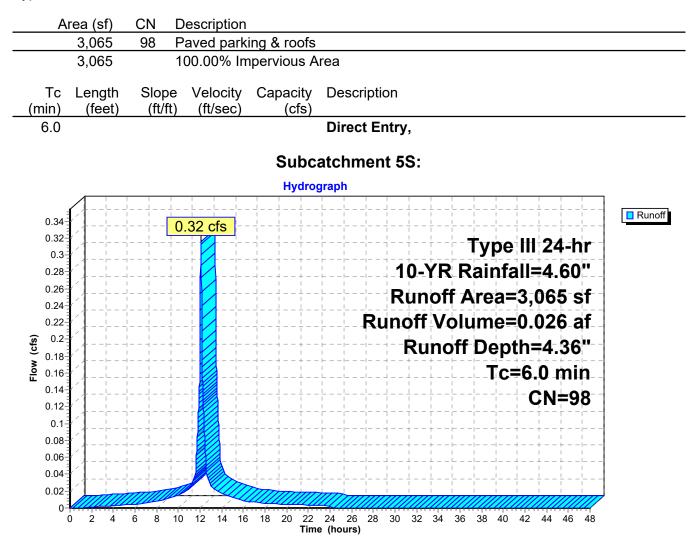
Subcatchment 3S: Undeveloped Area

Summary for Subcatchment 4S:


Runoff = 3.62 cfs @ 12.21 hrs, Volume= 0.343 af, Depth= 2.05"

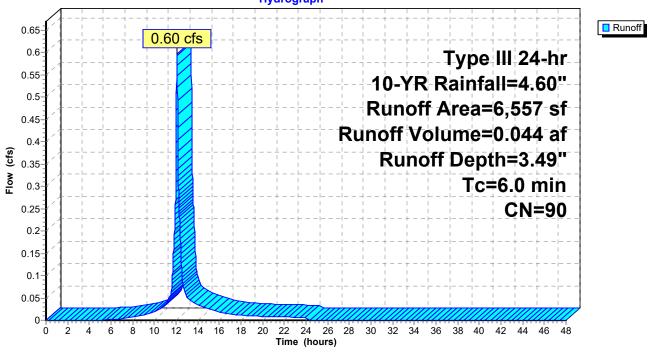
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

_	A	rea (sf)	CN	Description		
*		62,598	73	Woods, Fai	r, HSG C	
		2,061	98	Paved park	ing & roofs	
_		22,844	74	>75% Ġras	s cover, Go	bod, HSG C
		87,503	74	Weighted A	verage	
		85,442		97.64% Pei	vious Area	
		2,061		2.36% Impe	ervious Are	а
	Тс	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.9	50	0.0300	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.00"
	10.0	475	0.0250	0.79		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	110	525	Total			


14.9 525 Total

Subcatchment 4S:

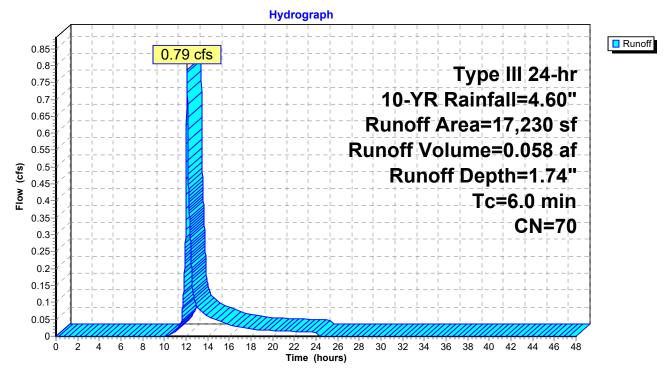
Summary for Subcatchment 5S:


Runoff = 0.32 cfs @ 12.08 hrs, Volume= 0.026 af, Depth= 4.36"

Summary for Subcatchment 7S: (new Subcat)

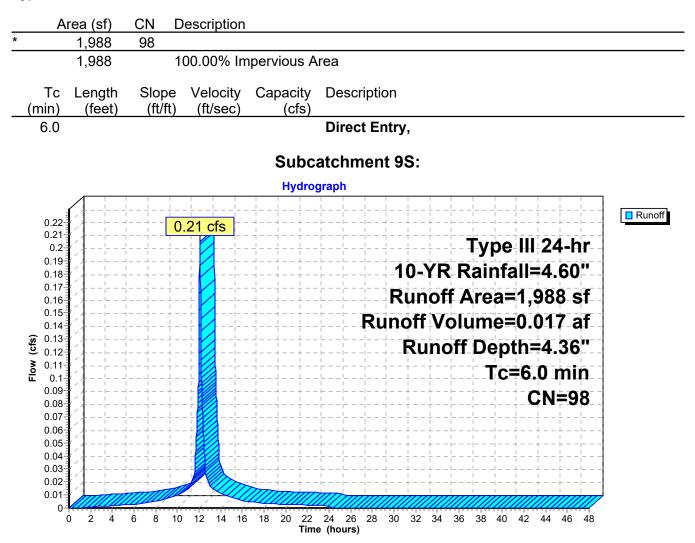
Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 3.49"

	A	rea (sf)	CN	Description		
*		5,183	98	Impervious		
*		1,374	61	>75% grass	s cover, goo	od, HSG B
		6,557 1,374 5,183		Weighted A 20.95% Pei 79.05% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	6.0			, , , , , , , , , , , , , , , , , , ,		Direct Entry,
				Su	bcatchm	ent 7S: (new Subcat)
					Hydro	graph


Summary for Subcatchment 8S: (new Subcat)

Runoff = 0.79 cfs @ 12.09 hrs, Volume= 0.058 af, Depth= 1.74"

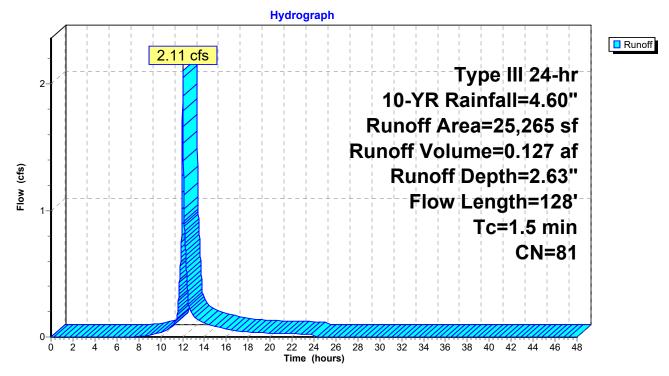
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"


_	A	rea (sf)	CN	Description		
*		4,188	98	Impervious		
*		13,042	61	>75% grass	s cover, goo	od, HSG B
		17,230	70	Weighted A	verage	
		13,042		75.69% Pei	vious Area	ì
		4,188		24.31% Imp	pervious Ar	ea
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment 8S: (new Subcat)

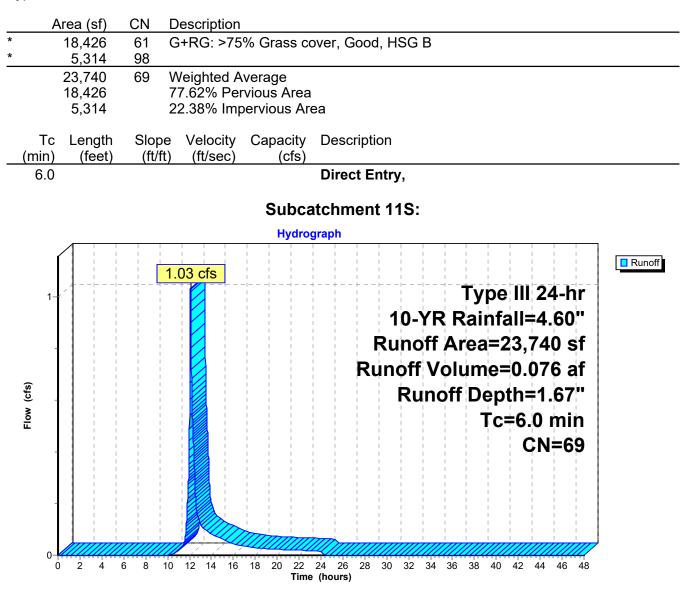
Summary for Subcatchment 9S:

Runoff = 0.21 cfs @ 12.08 hrs, Volume= 0.017 af, Depth= 4.36"


Summary for Subcatchment 10S: (new Subcat)

Runoff = 2.11 cfs @ 12.02 hrs, Volume= 0.127 af, Depth= 2.63"

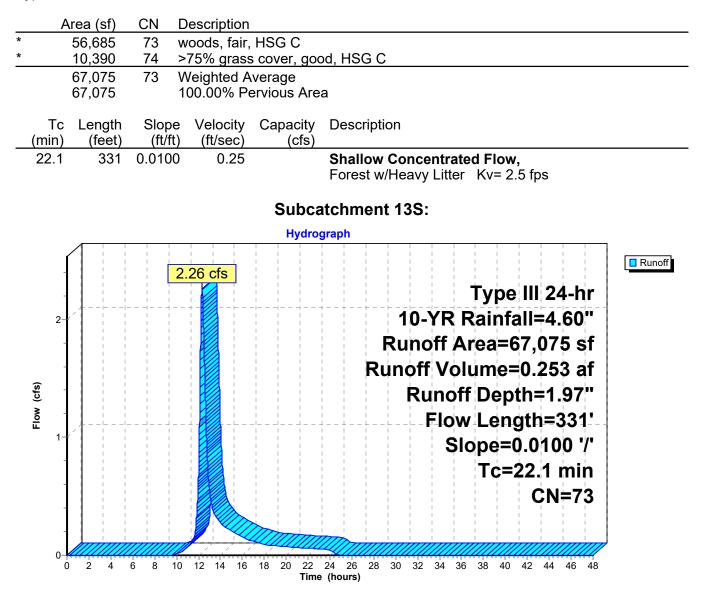
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"


/	Area (sf)	CN E	Description		
	7,231	98 F	aved park	ing & roofs	
	18,034	74 >	75% Gras	s cover, Go	ood, HSG C
	25,265	81 V	Veighted A	verage	
	18,034	7	1.38% Per	vious Area	
	7,231	2	8.62% Imp	pervious Are	ea
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.7	50	0.0200	1.16		Sheet Flow,
0.8	78	0.0500	1.57		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
1.5	128	Total			

Subcatchment 10S: (new Subcat)

Summary for Subcatchment 11S:

Runoff = 1.03 cfs @ 12.09 hrs, Volume= 0.076 af, Depth= 1.67"

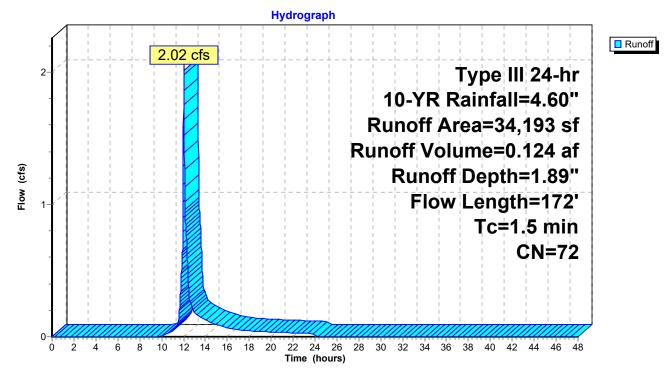

Summary for Subcatchment 12S:

Runoff = 2.13 cfs @ 12.12 hrs, Volume= 0.165 af, Depth= 2.38"

Summary for Subcatchment 13S:

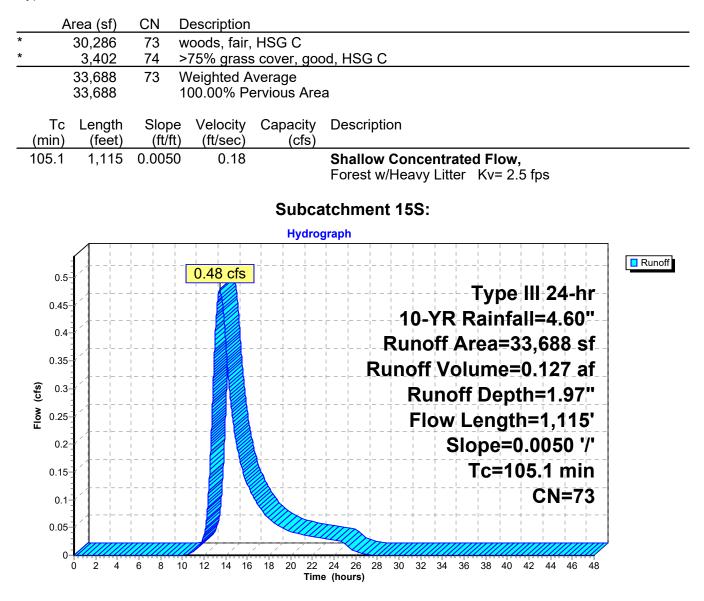
Runoff = 2.26 cfs @ 12.31 hrs, Volume= 0.253 af, Depth= 1.97"

Summary for Subcatchment 14S:


Runoff = 2.02 cfs @ 12.03 hrs, Volume= 0.124 af, Depth= 1.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

_	A	vrea (sf)	CN	Description		
*		23,718	61	>75% grass	s cover, goo	od, HSG B
*		9,784	98	0		
*		691	60	woods, fair,	HSG B	
		34,193	72	Weighted A	verage	
		24,409		71.39% Pei	vious Area	l
		9,784		28.61% Imp	pervious Ar	ea
	_					
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.4	47	0.1000	2.18		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.00"
	1.1	125	0.0700	1.85		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	1 5	170	Tatal			


1.5 172 Total

Subcatchment 14S:

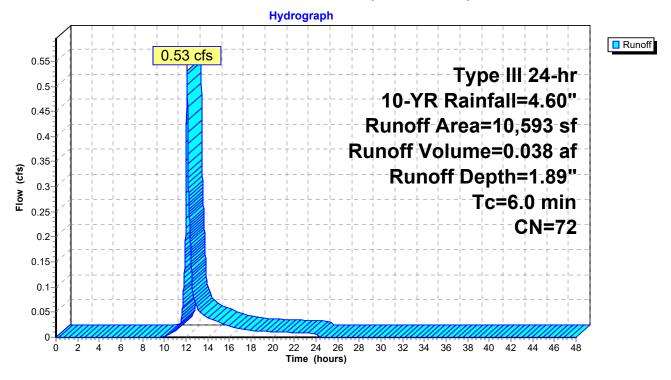
Summary for Subcatchment 15S:

Runoff = 0.48 cfs @ 13.43 hrs, Volume= 0.127 af, Depth= 1.97"

Summary for Subcatchment 16S:

Runoff = 0.48 cfs @ 12.08 hrs, Volume= 0.039 af, Depth= 4.36"

Tc nin)	4,678 4,678 Lengt																					
nin)	Lengtl			100.0	00%	6 Im	perv	/iou	s Ar	ea												
	(feet		lope (ft/ft)	e Ve	eloc ft/se	city		pac (ct	ity	De		·										
6.0										Dir	ect	Er	itry	,								
							9	Suk	oca	tch	me	ent	16	S:								
								Ну	drog	raph	1											
-						- - 									 			 		 	 	
0.5				<mark>0.48</mark>		;								- 	- - - -		Evzi	- no	- HH	2	1_F) r
0.45			 			 	1	 					4	ן ר ח		1			3 =	1	1	1
0.4	/ / _ 		+-			 	- 	+ 	+			 		-	1	1	- -	1	1	1	1	1
0.35	<pre>/</pre>							<u> </u>				 D							:4, :0.			
0.3	/		+-			 		- 	+			٦u							th=	+		
0.3 0.25	/					 	$-\frac{1}{1}$	 	$\frac{1}{1} = -$			 	[TU		7 		1 - 1	⊧11- ≑6.	T	T	
0.2				L		 	 _	 				 	 	 ⊥ 	 	 	 	-C-	<u> </u>	<u>+</u>	L	-!
			+		0				+			 		 	 	 	 			N	-9	0
0.15	¢ 					!			- 			 			 - 	 	 		 	 	 - 	
0.1						 	- - 	, , , ,	 +			 		, , , , +	+	' 	 	 	, , , ,	; ; ; +		
0.05								 						 	 	 	- - - -	 	 	 	1	I I I
0		4 6	·ř···· 8 1	, 10 12	2 14	4 16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48

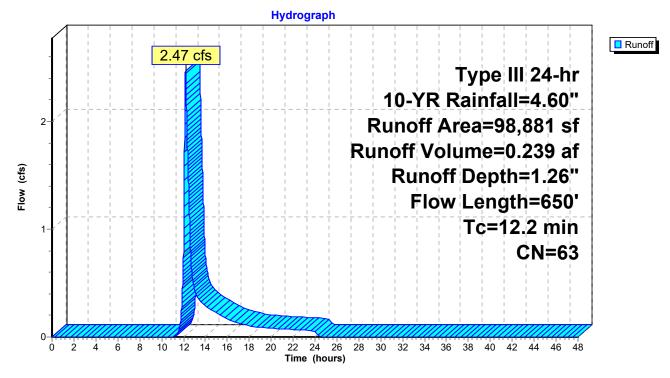

Summary for Subcatchment CUL: (new Subcat)

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.038 af, Depth= 1.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

	A	rea (sf)	CN	Description		
*		3,132	98			
*		7,461	61	G+RG: >75	% grass co	over, good, HSG B
		10,593 7,461 3,132		Weighted A 70.43% Per 29.57% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment CUL: (new Subcat)

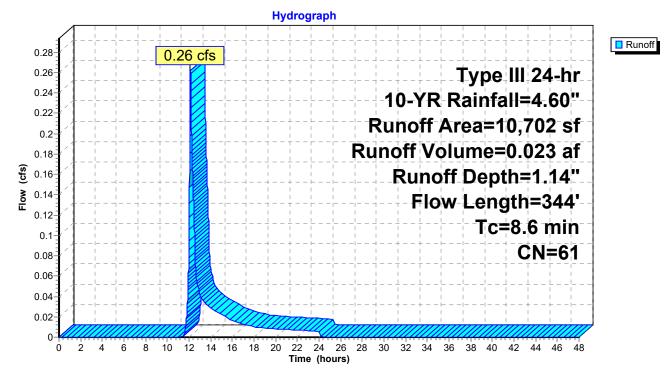

Summary for Subcatchment P1:

Runoff = 2.47 cfs @ 12.19 hrs, Volume= 0.239 af, Depth= 1.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

	A	rea (sf)	CN E	Description		
		93,901	61 >	75% Gras	s cover, Go	ood, HSG B
*		4,980	98 ir	npervious		
		98,881	63 V	Veighted A	verage	
		93,901	9	4.96% Per	vious Area	
		4,980	5	.04% Impe	ervious Area	а
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.7	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	4.5	600	0.1010	2.22		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	12.2	650	Total			

Subcatchment P1:

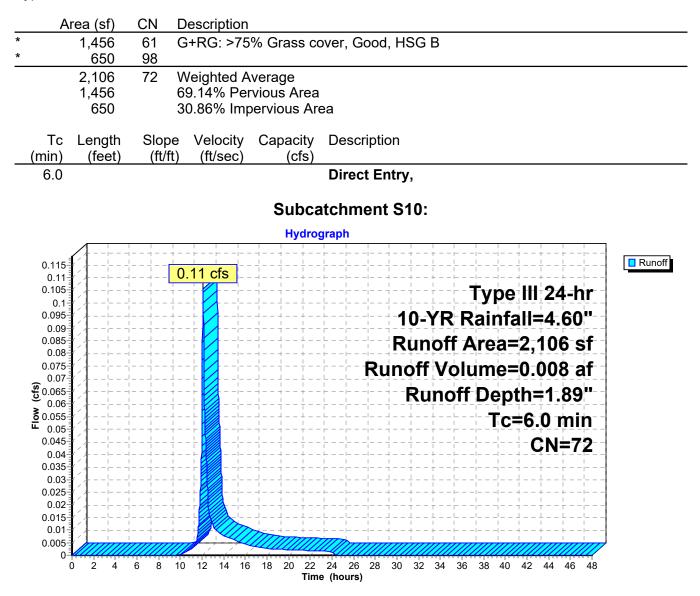

Summary for Subcatchment P2:

Runoff = 0.26 cfs @ 12.14 hrs, Volume= 0.023 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

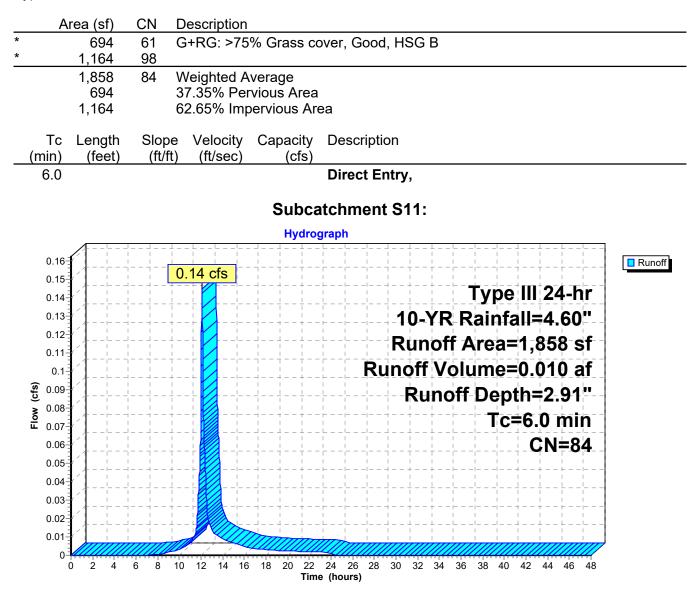
	A	rea (sf)	CN [Description		
*		10,702	61 (G+RG: >75	% Grass co	over, Good, HSG B
		10,702	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	50	0.1000	0.12		Sheet Flow,
	1.0	138	0.2200	2.35		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow,
	0.9	156	0.1700	2.89		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	8.6	344	Total			

Subcatchment P2:


Summary for Subcatchment S1:

Runoff = 0.16 cfs @ 12.08 hrs, Volume= 0.013 af, Depth= 4.25"

Α	vrea (sf)	CN	Descr	iptior	า																
	61	61	>75%	Gras	s co	ver,	Go	od, H	ISC	GΒ											
	1,478	98	<u></u>																		
	1,539 61	97	Weigh 3.96%																		
	1,478		96.04					a													
	1,110		00.01	<i>,</i>	porti	040	/ 0	ä													
Тс	Length	Slope		ocity	Ca	paci		Des	scri	ptic	n										
min)	(feet)	(ft/ft) (ft/	/sec)		(cf	s)														
6.0								Dire	ect	En	try	,									
						• •••		. 4 . I.		4		4.									
						Su	DCa	atch	m	en	[5	1:									
						Ну	drog	raph													_
		+	+			 	 	 - 	-	 -	 	 +	 +	 	 	 -	 	+	 	 -	Runo
0.17-			0.16 c	rts -		<u> </u>	<u> </u>	<u> </u> _				<u> </u>	<u> </u>			i	<u> </u>	<u> </u>	<u> </u>		
0.16- 0.15-	: /1						<u>+</u>				·	<u> </u>	+ - -	7	Γγι	be	¦Η	24	4-r	∖r⁻-	
0.15	3 /1				 i		т — — і і — і	i-	i	 	1	<u> </u> 	VD				a =				
0.13-		+	+	!-		+	+		!-			-	1	1	ī.	1	1	1	1	1	
0.12-	= _1						+ ! !				R	un	OŤ	ΓA	re	a=	1,	53	9 3	St	
0.11-							 	!_	F	Ru	nc	bff	V	blu	im	e=	:0.	01	3_a	af₋₋	
i 0.1-		+					- 					1	i i	1		i.	th=	1	1	1	
0.1- 0.09- 0.08-	H 21	+				+	+	-				NU	+	/ 			+	+	+		
			L	-			 	 _ 			 	 	 	 	I	C	=6 .	0-	mi	n	
0.07-	┋╱┼╌┾╌┤			!		<u> </u>	<u> </u>					<u> </u>	<u> </u>	L	! !	! !	- C	N	=9	77	
0.06- 0.05-	= _1						+ ¦					<u> </u>	+ 1	 	 			+ 1	<u> </u> 	-¦	
0.04-	3 /	+				+	+					+ !	+	 !	 	-1	+ !	+	+ !	- !	
0.03-	= _1 i i	+ 				+	+ 	⊢	l·	+ 		+	+ +	⊢ – – ∟		-1	+	+	+ 	- -	
0.02-	= _1	<u>-</u> <u>-</u>				 						 				 	 	1 1 1			
0.01-		mm		\swarrow	1																J
0-		6 8		14 1		20	22	24		 20	20	22	24	26	20	40	42	44	46		
	0 2 4	σŏ	10 12	14 1	6 18		22 Time	24 2 (hou		28	30	32	34	36	38	40	42	44	46	48	


Summary for Subcatchment S10:

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Depth= 1.89"

Summary for Subcatchment S11:

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.010 af, Depth= 2.91"

Summary for Subcatchment S12:

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 0.031 af, Depth= 1.74"

A	vrea (sf)		Description													
	2,175	98				_										
	7,092		G+RG: >75		cover,	Good	, HS	SG E	3							
	9,267 7,092		Weighted A 76.53% Pei		•											
	2,175		23.47% Imp													
	2,170		20.4770 111		licu											
Тс	Length	Slope		Capacity	/ Des	scripti	on									
min)	(feet)	(ft/ft)	(ft/sec)	(cfs	/											
6.0					Dire	ect E	ntry,	,								
				Suba	atch	mon	+ C 1	2 .								
						men	. 51	۷.								
				Hydr	ograph	1	1 1				1	1	1	1		
0.46-		+-		+ + -		!	+ + 	+ +		· 	-!	+	+	+		Runo
0.44-			0.42 cfs		L L			L L	L	!	_	- 			-	
0.42- 0.4-	¥⊢-⊣ ∕ /!!	+-+	+	+ + -			+ + 	+ +		IУ	ре	<u>†</u>	±24	1-r	1r	
0.38-				++-	-		-1	0-Y	Ŕ	Rai	nfa	ill=	ŧ4.	60) <mark></mark>	
0.36- 0.34-				+ + -			R	ind	٦ff	Are	 a=	:Q -'	26	7-c	ef -	
0.32- 0.3-		+-+	+	+ + -				+				+ - •	+	+		
0.28-						RI	4 4	L		lum		<u> </u>	± = =	<u>+</u>		
3 0.26- 0.24-				+ + -		·i	F	Rui	10	ff D	ep	th=	=1 .	74	U.U	
0.22-					 L L 	 	 		L		Гс	= 6-	0 1	mi	n-l	
• 0.2- 0.18-		+-	 	+ + -		i		+ +		·i		+	+	+		
0.16-		+-		+ -	- 			 + 			-!	<u></u>	N	→ /	<u>v</u>	
0.14- 0.12-			 L	· -ii i -		i		r + L L		i !		+ 	+ 1	+ L		
0.1-					 - - 	·	 				-	+	 +	 	-!	
0.08- 0.06-	∦ ∕¦ii			·		·i	i i J J	г — — т L		j !	-i	т — — Ц	т — — ⊥	т — — L		
0.04-		+-		 ++- 	 		 	 + 	- 		-	+	 +	 +	-	
0.02- 0-				····												
	0 2 4	6 8 1	0 12 14 16		2 24 2 me (hou	26 28	30	32	34	36 38	40	42	44	46	48	

Summary for Subcatchment S13:

Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.022 af, Depth= 2.63"

	Area (sf)	CN	Descripti	on														
	2,314	98																
	2,000	61	>75% Gi	ass cov	/er, Go	od, HS	<u>G</u> B	}										
	4,314	81	Weighte															
	2,000		46.36%															
	2,314		53.64%	mpervi	ous Ar	ea												
Тс	Length	Slop	e Veloci	ty Ca	oacity	Descr	iptic	on										
(min)	(feet)	(ft/f	t) (ft/se	c)	(cfs)		· .											
6.0						Direc	t En	ntry	,									
						. 4 . I	4	~	0.									
						tchm	ent	51	3:									
					Hydro	graph												
0.34	4-				+ + 				+ 	+ L				+ I				Runoff
0.32	2		0.31 cfs		I I I I			1	 	 	 		I	 I		1		Tranon
0.3	3								 +			Гур	e	III.	24	ŀ-h	r_	
0.28	8-1	, , , , , , , , , , , ,			, , , , + +		 	-4	 			ain						
0.26	6 - 1			 _	 			!	<u> </u>	L	L					L		
0.24	4			 	 			R	un	of	fΑ	rea	1=4	4,3	314	1 s	; f	
0.22	2	- 	++	-i	, , , , + +		Ru	inc	ff	Va	ын	me		A-Á)22	2-2	f	
ر ة 0.2	2			 -!!	 				1	1	1						1	
<u>ප</u> 0.18	8				 	·			КU	no)TT	De	pt	n =	2.	63		
(cls) 0.18	6	i 	і і т — — н	-	i		- 	i 1	 	i T	 	T (c≓	6.	0 r	ni	n	
0.14	4			-	 + +			 	 +	 +	 	!-	+	1			1	
0.12	2 2			-l	· · · · · · · · · · · · · · · · · · ·		 	 	 		L	 ! -	· _ 4		N	-0		
0.1	- F _ F =				$\frac{1}{1} \frac{1}{1}$				 	<u> </u> 		-		$\frac{1}{1}$				
0.08	- 1		+ +		+ +			 		- 			- +	+			 	
0.06	· · · · · · · · · · · · · · · · · · ·	 	+ +	-	 +		-	 	+	+	 	 - 	· - +	+		 		
0.04								!			L	-	·	+		L	i	
0.02										-			-		///			
(0 2 4	6 8	10 12 14	16 18	20 22	24 26	28	30	32	34	36	38 4	0	42	44	46	48	

Summary for Subcatchment S14:

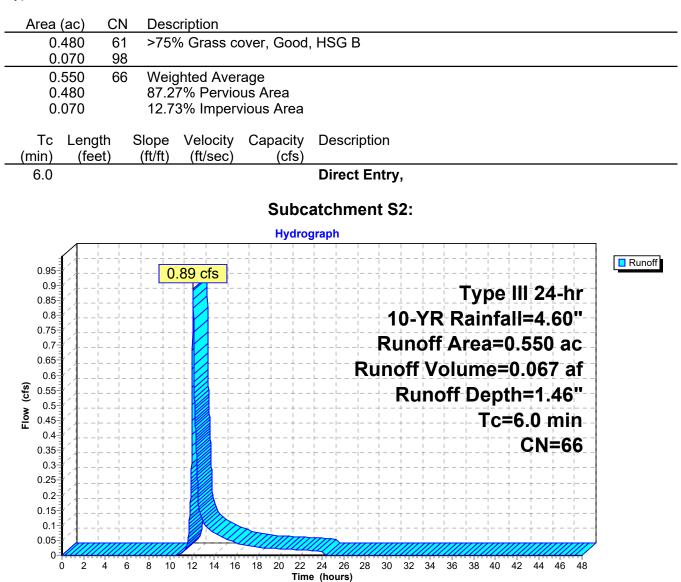
Runoff = 0.19 cfs @ 12.09 hrs, Volume= 0.014 af, Depth= 3.00"

	A	rea (sf)	CN	Descrip	otion																	
*		1,518	98							~				_								
×		853	61	G+RG:				s co	ver	, Go	bod	, HS	SG	В								
		2,371		Weight																		
		853		35.98%																		
		1,518		64.02%	lm	bervi	ous	Are	ea													
	Тс	Length	Slope	e Velo	city	Ca	pac	ity	De	scr	iptic	on										
(r	nin)	(feet)	(ft/ft) (ft/s	ec)		(ct	fs)														
	6.0								Diı	rect	t Er	ntry	,									
						¢	Suk	oca	tch	m	ant	S 1	14.									
						•					5111											
		<u></u>]				пу	drog ⊥	rapi	• 	I	I	I	L	L			1	L	L		1
	0.21		 <mark>4</mark>		- ·	 	+	 +	 ⊢	 	 	 	 +	 +	 	 	 _	 	 +	 ↓	 -	Runoff
	0.2	(0.19 cf	S _ ·		+	+	 ⊢ – –	 		 	+	+	⊨ – –	·	-	+	+	+	-	
	0.19	(+				 ·	+	+		Ēν	be	†H	22	4-r	י יר '	
	0.18	() <u>}</u>	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$				<u> </u>	+	 				<u> </u> 	<u>+</u>								
	0.17	[<u>+</u>				-1	0- `	ΥR	ŀΚ	all	nta	all=	=4.	60);=	
	0.16 0.15		J J 4 + +		- ·		1 +	⊥ +	L 	 	! ! !	R	un	of	fΑ	re	a=	:2,	37	1-5	sf	
	0.14	(++				 +	 +	 ⊢ – –	 	- 					1			1	1	1	
_	0.13	(/					- 	т — —			Ru	Inc	DIL	⁺ VJ	DIL	Im	e=	:0.	ŲΈ	4 -č	AT	
Flow (cfs)	0.12	(<u>+</u>	 				Rū	'nc	ff	De	'n	th=	<u>+</u> 3_	00) ++	
ş	0.11 0.1					!	<u> </u>	<u>+</u>			'	-		1	1_ -	1	1.	1	1	1	1	
문	0.09							+ +			 	 !	+	+ +			C	=6.	01	mı	n	
	0.08	/					; +	; +				 	; † – –	i +		; 	-	¦-€	N	= 8	5	
	0.07	(+		- ·			<u>+</u> – –	 	 	 	 	 	 	 			+	7 I 4 T		·	
	0.06	()∤⊱	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$		$ $ $ \cdot$		<u> </u>	$\frac{1}{1}$				¦ ·	<u> </u>	$\frac{1}{1}$				$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{1} = -$		
	0.05	//¦	+		!		1	<u>+</u>	L			!	<u> </u>	<u> </u>	L		-	<u> </u>	<u>+</u>	$\frac{1}{1} = -$		
	0.04	[/[+ +		l- ·		+	+	∟ !		 	·	+	+ !				+	+	⊥ – - !	-	
	0.03 0.02		+				+	+	⊢ – – 	 	 	+ ·	+	+		 	-1	+	+	+	-	
	0.02					TTT					 	1	T = = 	 1	 	1	-1	1 I	T = -	г I	-	J
	0			·/····		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·		<u>41</u>	44		///	///	///	///	Щ.	///	////	Щ.	Щ.	Щ	
	(0 2 4	68	10 12 1	4 16	5 18	20	22 Time	24	26	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S15:

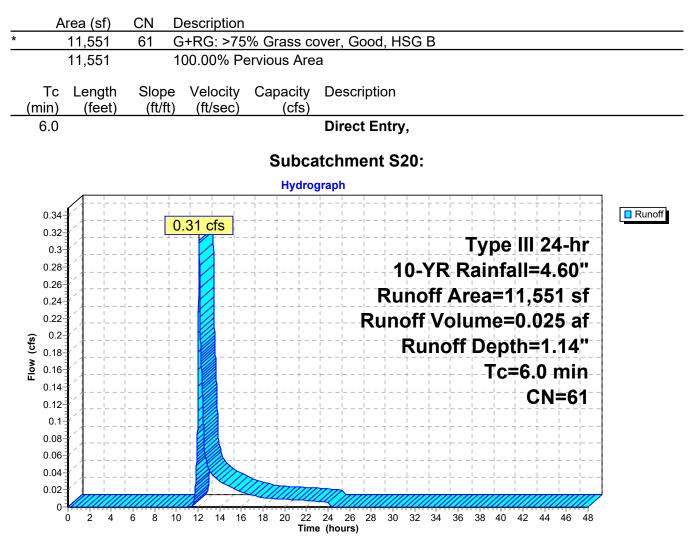
Runoff = 1.83 cfs @ 12.09 hrs, Volume= 0.135 af, Depth= 1.60"

Α	rea (sf)	CN I	Description									
*	8,653	98										
	35,561		G+RG: >75		over, G	ood, ⊦	ISG B					
	44,214		Weighted A									
	35,561		80.43% Pe									
	8,653		19.57% lmp	pervious Ar	ea							
Tc	Length	Slope		Capacity	Desci	ription						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
6.0					Direc	t Entr	у,					
				Subc	atchm	ent S	15:					
				Hydro	graph							
2-€ - - - - - - - - - - - - - - - - - -			.83 cfs			Rι	unof off V	R R f Ar /olu	ainf ea= ıme: Dep	all= 44,2 =0.1 oth= =6.0	24-hr 4.60" 14 sf 35 af 1.60" 0 min N=68	Runoff
0-	2 4	6 8 10) 12 14 16	18 20 22 Tim	24 26 • (hours)	28 30	32 34	36	38 40	42 4	44 46 48	


Summary for Subcatchment S19:

Runoff = 1.43 cfs @ 12.09 hrs, Volume= 0.104 af, Depth= 1.74"

* 7,316 98 23,916 61 >75% Grass cover, Good, HSG B 31,232 70 Weighted Average 23,916 76.58% Pervious Area 7,316 23.42% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment S19: Hydrograph 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min CN=70	A	rea (sf)	CN	Description	1						
31,232 23,916 76.58% Pervious Area 7,316 23.42% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment S19: Hydrograph 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60'' Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74'' Tc=6.0 min											
23,916 7,316 7						ood, HS	G B				
T,316 23.42% Impervious Area Tc Length (ff/ft) Slope Velocity Capacity (cfs) Description 6.0 Direct Entry, Subcatchment S19: Hydrograph Type III 24-hr 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Type 6.0 min											
Tc Length (feet) Slope Velocity (ft/sec) Capacity (cfs) Description 6.0 Direct Entry, Subcatchment S19: Hydrograph 1.43 cfs Type III 24-hr 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc =6.0 min Tc =6.0 min											
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment S19: Hydrograph 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Depth=1.74" Tc=6.0 min		.,									
6.0 Direct Entry, Subcatchment S19: Hydrograph 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min						Descr	iption				
Subcatchment S19: Hydrograph Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Depth=1.74" Tc=6.0 min		(feet)	(ft/ft) (ft/sec)	(cfs)	Direct	. F 10 4 10 1				
Hydrograph 1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Depth=1.74" Tc=6.0 min	6.0					Direct	Entry,	I			
1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min					Subca	atchme	ent S1	9:			
1.43 cfs Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min					Hydro	graph					
Type III 24-hr 10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min	ĺ			1 43 cfs							Runoff
10-YR Rainfall=4.60" Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74" Tc=6.0 min	-								Tvpe	III 24-hr	
ଅନ୍ୟୁ ଅନୁ ଅନୁ ଅନୁ ଅନୁ ସୁ ଅନୁ Runoff Area=31,232 sf Runoff Volume=0.104 af Runoff Depth=1.74'' Tc=6.0 min							1				
ਿੱ ਇ ਸ਼ੁਹਿਰ ਸਿੰਗ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ ਸਿੰਘ	-						1 I	- 1 1			
ଞ ଝୁ Tc=6.0 min				+ -				!!			
	(cts						F	Runoff	f Dept	h=1.74"	
CN=70	Flow								Tc=	6.0 min	
										CN=70	
	-										
	-										
0 ////////////////////////////////////		2 4	6 8 1	0 12 14 16			28 30	32 34 36	38 40	42 44 46 48	


Summary for Subcatchment S2:

Runoff = 0.89 cfs @ 12.10 hrs, Volume= 0.067 af, Depth= 1.46"

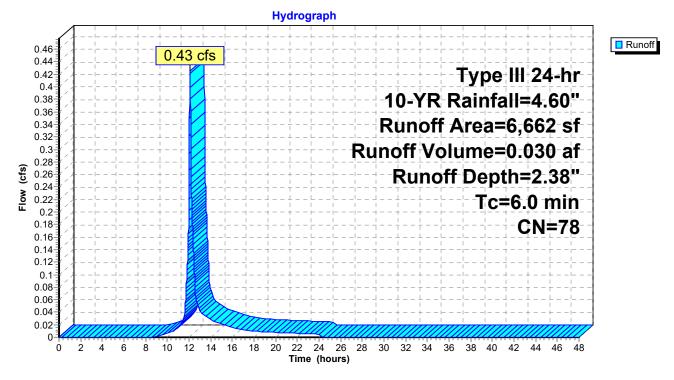
Summary for Subcatchment S20:

Runoff = 0.31 cfs @ 12.10 hrs, Volume= 0.025 af, Depth= 1.14"

Summary for Subcatchment S21:

Runoff = 0.82 cfs @ 12.09 hrs, Volume= 0.059 af, Depth= 3.10"

	A	rea (sf)	CN E	Description															
		6,755	98																
		3,186		G+RG: >75	% Grass	s cov	ver, Go	boc	, HS	SG	B								
		9,941		Veighted A															
		3,186		32.05% Per															
		6,755	6	87.95% Imp	pervious	Area	а												
	Тс	Length	Slope	Velocity	Capac		Descr	iptio	on										
(m	in)	(feet)	(ft/ft)	(ft/sec)	(ct	s)													
6	6.0						Direct	t Er	ntry	,									
					Sub	ocat	chm	ent	S 2	21:									
					Ну	drogi	raph												
	0.9						·	-¦	 		<u> </u> 					+ 1	 		Runoff
	0.85		0).82 cfs				 	i — — - I		 	 		1	 I	 	Г — - I	1	- Runon
	0.8					т — — Г I I	 I	1	 	r — — I	т — — I		Γv	ne	ĪŪ	24	1-ł	١r	
	0.75		+-			+ +		·				i i			i.	i.	i.	i.	
	0.7		+-			+			; ~] (U-	Ϋ́R	K	all	nta	all=	=4.	60		
	0.65					+ 	I 	 	Rı	In	of	fΑ	re	a=	:9,	94	1.9	sf	
	0.6		 		 		L _ 4	 									1	1	
	0.55					 -		Rι	nc	DIL	V	DIU	Im	e=	÷U.	U5	9 8	a t	
Flow (cfs)	0.5				·					Ru	nc)ff	De	ep†	th=	=3.	10)'''	
ž	0.45			·				; 				 	1	1.	1	1	1	1	
Ĕ	0.4		+ -			 + -		 	 	 	 † – –	 		C:	=6.	<u>ַ</u>	μī	<u>n</u>	
	0.35	/ /	+ -		 +	 + ⊢		 	 	 +	 +	 ⊢ – –	 	-	(ЭN	±8	6	
	0.3	/	+-			 + -			 	+	+	 			+	+	+	-	
	0.25	,			·			.	, 	- 	- 			-	- 	- 	- 	-	
	0.2				·	L I	l			L	⊥	L	 						
	0.15	/				+ -		¦	¦	<u> </u>	<u> </u>		¦		<u> </u>	$\frac{1}{1}$	$\frac{1}{1}$		
	0.1	í_+¦¦	$\frac{1}{1}\frac{1}{1}-$! !	$\frac{1}{1} = -\frac{1}{1}$	<mark> </mark>		 	<u> </u>	$\frac{1}{1} = -$				<u> </u> – –	$\frac{1}{1}$	$\frac{1}{1} = -$		
	0.05							-			-	-	-	-	-	-	-	-	J
	⊏0 () 2 4	6 8 10) 12 14 16	18 20	22	24 26	28	30	32	34	36	38	40	42	44	46	48	

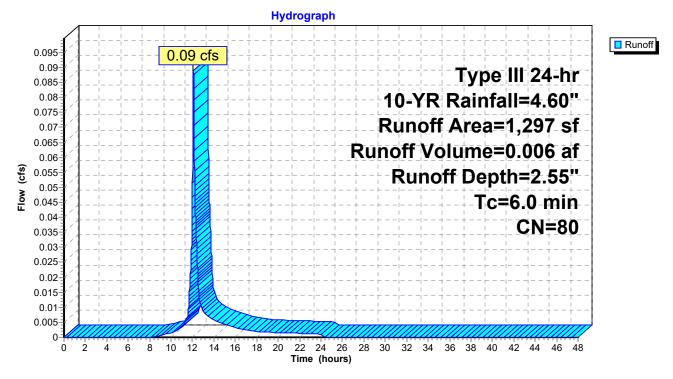

Summary for Subcatchment S22: Stow Road South

Runoff = 0.43 cfs @ 12.09 hrs, Volume= 0.030 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

	A	rea (sf)	CN	Description		
*		5,662	74	G+RG: >75	% Grass co	over, Good, HSG C
*		1,000	98			
		6,662 5,662 1,000		Weighted A 84.99% Pei 15.01% Imp	vious Area	
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S22: Stow Road South

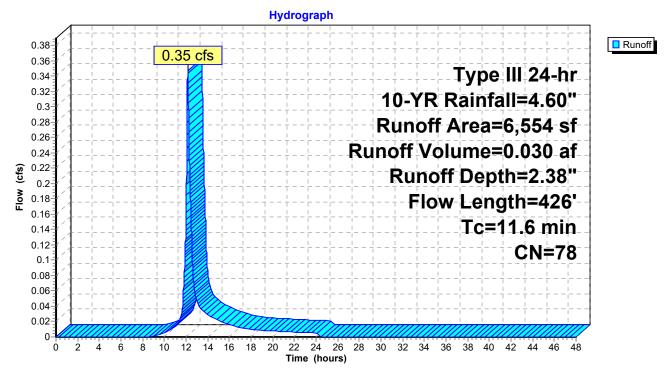

Summary for Subcatchment S23: Stow Road South

Runoff = 0.09 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 2.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

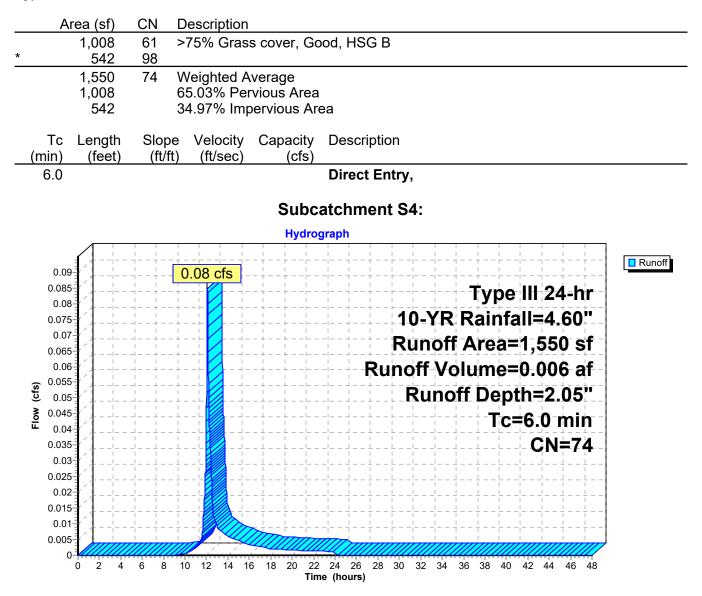
	A	rea (sf)	CN	Description		
*		994	74	G+RG: >75	% Grass co	over, Good, HSG C
*		303	98			
		1,297 994 303		Weighted A 76.64% Pei 23.36% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S23: Stow Road South


Summary for Subcatchment S3:

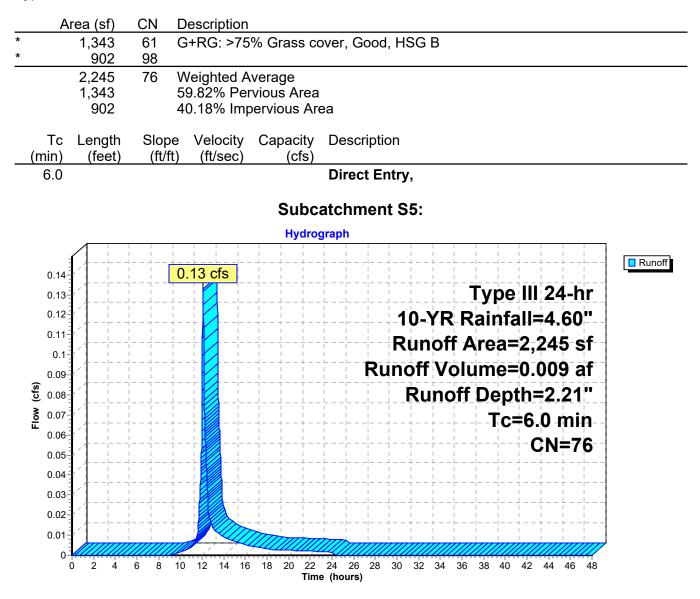
Runoff = 0.35 cfs @ 12.16 hrs, Volume= 0.030 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"


_	Area (sf) CN Description						
*		3,497	61 C	1 G+RG: >75% Grass cover, Good, HSG B			
*		3,057	98				
		6,554	78 V	Weighted Average			
		3,497	5	53.36% Pervious Area			
		3,057	4	46.64% Impervious Area			
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	3.7	50	0.0600	0.22		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.00"	
	7.9	376	0.0130	0.80		Shallow Concentrated Flow,	
_						Short Grass Pasture Kv= 7.0 fps	
	11.6	426	Total				

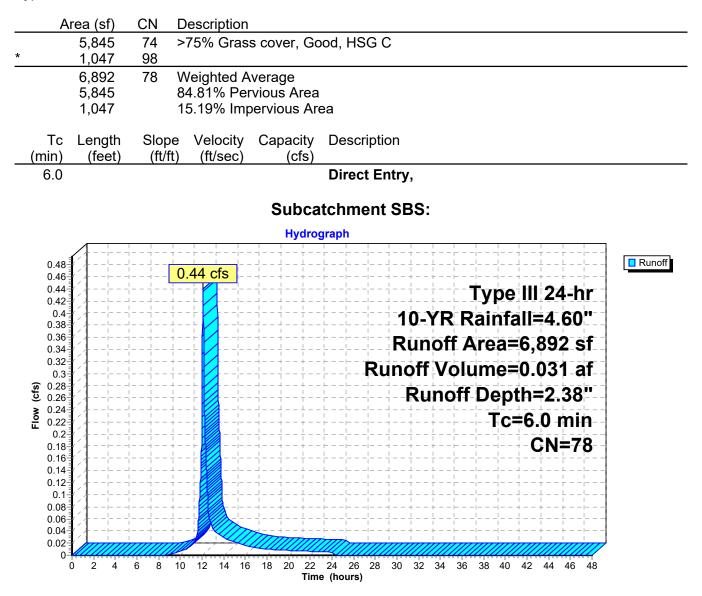
Subcatchment S3:

Summary for Subcatchment S4:


Runoff = 0.08 cfs @ 12.09 hrs, Volume= 0.006 af, Depth= 2.05"

Summary for Subcatchment S5:

Runoff = 0.13 cfs @ 12.09 hrs, Volume= 0.009 af, Depth= 2.21"


Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

Summary for Subcatchment SBS:

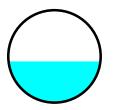
Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.031 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR Rainfall=4.60"

Summary for Reach 1R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS7 OUTLET depth by 0.13' @ 12.09 hrs

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 1.89" for 10-YR event


 Inflow =
 1.92 cfs @
 12.07 hrs, Volume=
 0.124 af

 Outflow =
 1.91 cfs @
 12.07 hrs, Volume=
 0.124 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.69 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.03 fps, Avg. Travel Time= 0.6 min

Peak Storage= 24 cf @ 12.07 hrs Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.71 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0125 '/' Inlet Invert= 261.00', Outlet Invert= 260.10'

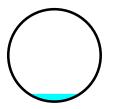
Hydrograph Inflow
Outflow 1.92 cfs 1.91 cfs Inflow Area=0.785 ac 2 Avg. Flow Depth=0.44' Max Vel=5.69 fps 12.0" **Round Pipe** Flow (cfs) n=0.011 1 L=72.0' S=0.0125 '/' Capacity=4.71 cfs 0 2 6 8 10 12 14 16 18 22 24 26 28 ò 4 20 30 32 34 36 38 40 42 44 46 48 Time (hours)

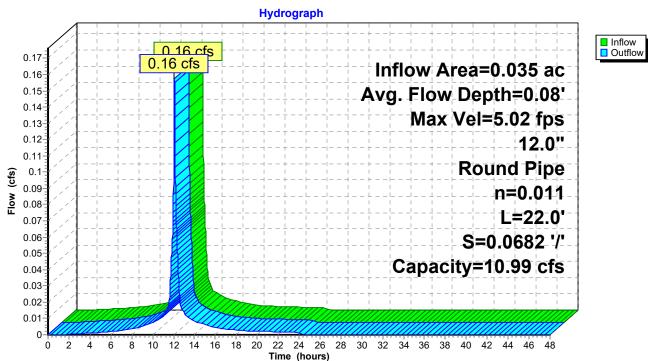
Reach 1R: (new Reach)

Summary for Reach 4R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10A OUTLET depth by 0.01' @ 22.64 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 4.25" for 10-YR event


 Inflow =
 0.16 cfs @ 12.09 hrs, Volume=
 0.013 af


 Outflow =
 0.16 cfs @ 12.09 hrs, Volume=
 0.013 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.02 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.69 fps, Avg. Travel Time= 0.2 min

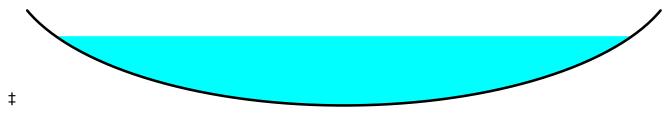
Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.99 cfs

12.0" Round Pipe n= 0.011 Length= 22.0' Slope= 0.0682 '/' Inlet Invert= 315.00', Outlet Invert= 313.50'

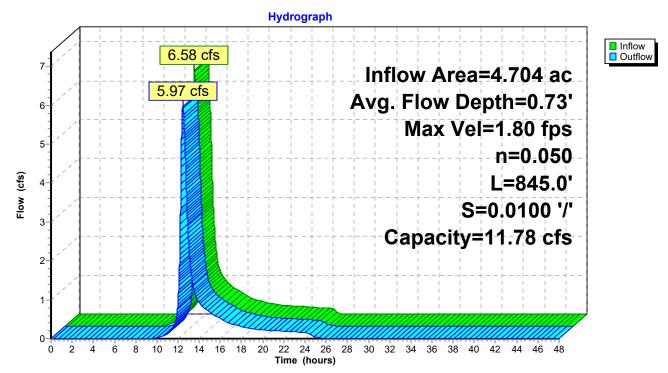
Reach 4R:

Summary for Reach 5R: Intermittent Stream

 Inflow Area =
 4.704 ac,
 1.01% Impervious, Inflow Depth =
 1.96" for 10-YR event


 Inflow =
 6.58 cfs @
 12.20 hrs, Volume=
 0.768 af

 Outflow =
 5.97 cfs @
 12.45 hrs, Volume=
 0.768 af, Atten= 9%, Lag= 15.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.80 fps, Min. Travel Time= 7.8 min Avg. Velocity = 0.47 fps, Avg. Travel Time= 29.9 min

Peak Storage= 2,802 cf @ 12.32 hrs Average Depth at Peak Storage= 0.73' Bank-Full Depth= 1.00' Flow Area= 5.3 sf, Capacity= 11.78 cfs

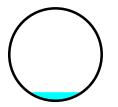
8.00' x 1.00' deep Parabolic Channel, n= 0.050 High grass Length= 845.0' Slope= 0.0100 '/' Inlet Invert= 260.00', Outlet Invert= 251.55'

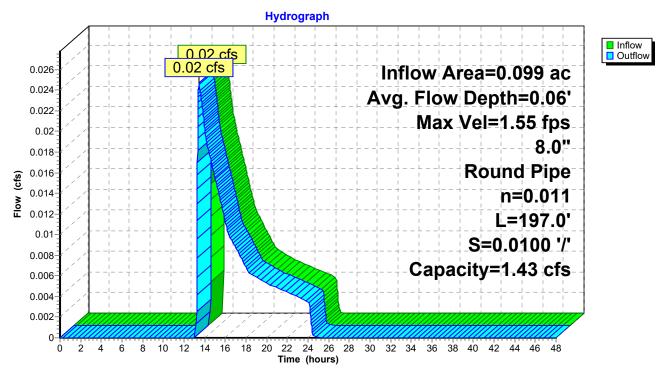
Reach 5R: Intermittent Stream

Summary for Reach 6R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.099 ac, 53.64% Impervious, Inflow Depth =
 0.96" for 10-YR event


 Inflow =
 0.02 cfs @
 13.38 hrs, Volume=
 0.008 af


 Outflow =
 0.02 cfs @
 13.45 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 4.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.55 fps, Min. Travel Time= 2.1 min Avg. Velocity = 1.05 fps, Avg. Travel Time= 3.1 min

Peak Storage= 3 cf @ 13.42 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.43 cfs

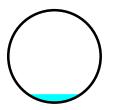
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 197.0' Slope= 0.0100 '/' Inlet Invert= 304.20', Outlet Invert= 302.23'

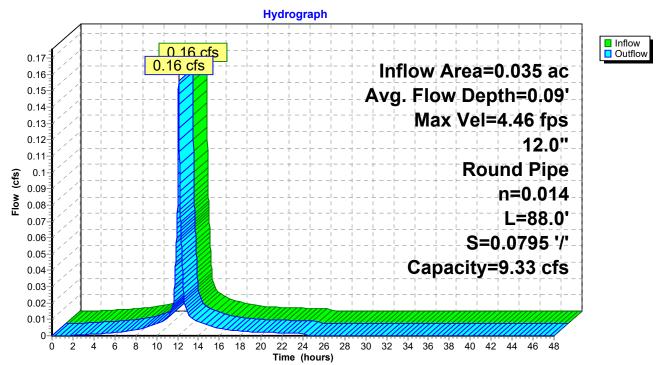
Reach 6R: new

Summary for Reach 7R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10B OUTLET depth by 0.01' @ 12.17 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 4.25" for 10-YR event


 Inflow =
 0.16 cfs @
 12.10 hrs, Volume=
 0.013 af


 Outflow =
 0.16 cfs @
 12.11 hrs, Volume=
 0.013 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.46 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 1.0 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 9.33 cfs

12.0" Round Pipe n= 0.014 Concrete pipe, finished Length= 88.0' Slope= 0.0795 '/' Inlet Invert= 310.50', Outlet Invert= 303.50'

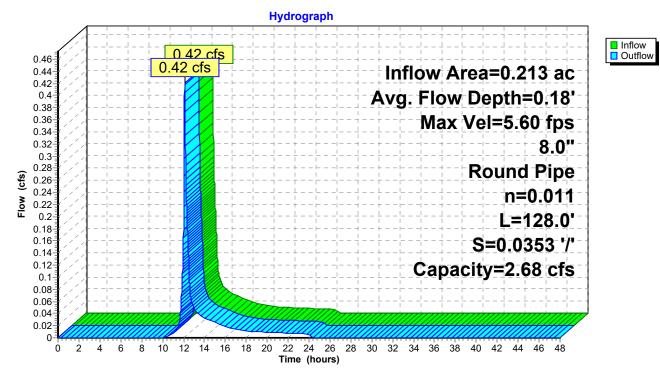
Reach 7R:

Summary for Reach 8R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 1.74" for 10-YR event

 Inflow =
 0.42 cfs @
 12.11 hrs, Volume=
 0.031 af


 Outflow =
 0.42 cfs @
 12.12 hrs, Volume=
 0.031 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.60 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.11 fps, Avg. Travel Time= 1.0 min

Peak Storage= 10 cf @ 12.11 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.68 cfs

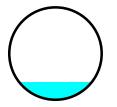
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 128.0' Slope= 0.0353 '/' Inlet Invert= 306.75', Outlet Invert= 302.23'

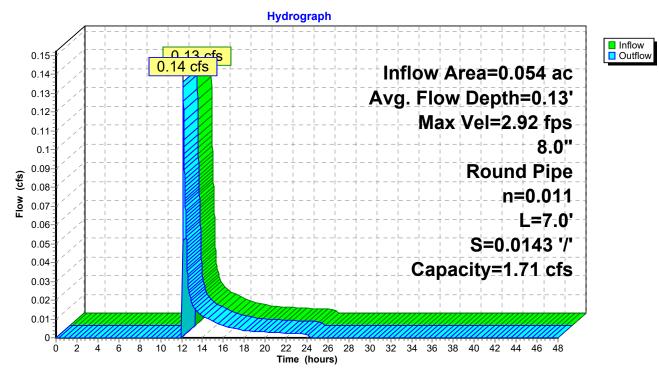
Reach 8R: new

Summary for Reach 9R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.054 ac, 64.02% Impervious, Inflow Depth =
 1.89" for 10-YR event


 Inflow =
 0.13 cfs @
 12.17 hrs, Volume=
 0.009 af


 Outflow =
 0.14 cfs @
 12.16 hrs, Volume=
 0.009 af, Atten= 0%, Lag= 0.0 min

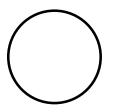
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.92 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.12 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.16 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

Reach 9R: new

Summary for Reach 10R: new


[43] Hint: Has no inflow (Outflow=Zero)

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 24.83 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 84.0' Slope= 0.0400 '/' Inlet Invert= 301.30', Outlet Invert= 297.94'

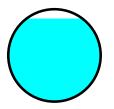
Hydrograph Outflow Avg. Flow Depth=0.00' Max Vel=0.00 fps 18.0" **Round Pipe** Flow (cfs) n=0.011 L=84.0' S=0.0400 '/' Capacity=24.83 cfs 0.00 cfs 0-4 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 Time (hours)

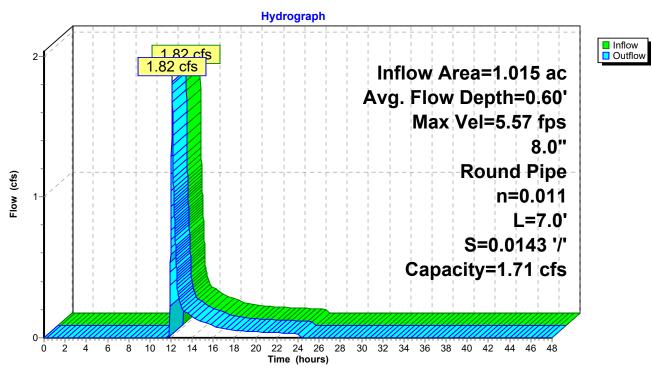
Reach 10R: new

Summary for Reach 11R: new

[52] Hint: Inlet/Outlet conditions not evaluated [55] Hint: Peak inflow is 106% of Manning's capacity

 Inflow Area =
 1.015 ac, 19.57% Impervious, Inflow Depth =
 1.48" for 10-YR event


 Inflow =
 1.82 cfs @
 12.10 hrs, Volume=
 0.125 af


 Outflow =
 1.82 cfs @
 12.10 hrs, Volume=
 0.125 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.57 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.43 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.10 hrs Average Depth at Peak Storage= 0.60' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

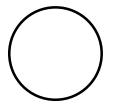
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

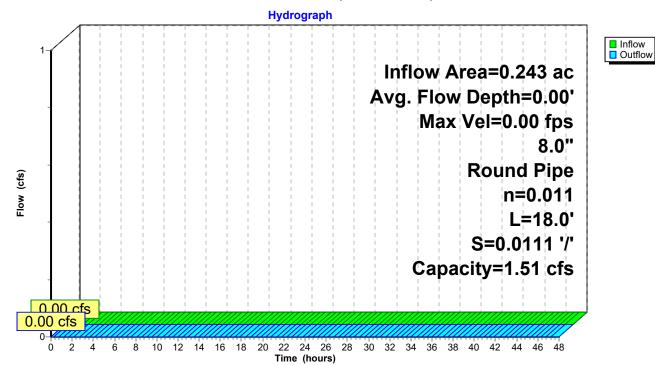
Reach 11R: new

Summary for Reach 12R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.243 ac, 29.57% Impervious, Inflow Depth =
 0.00" for 10-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

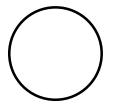
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 297.30', Outlet Invert= 297.10'

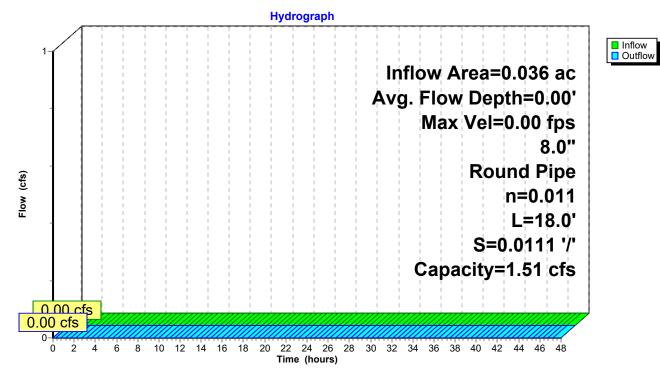
Reach 12R: (new Reach)

Summary for Reach 13R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.036 ac, 34.97% Impervious, Inflow Depth =
 0.00" for 10-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

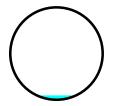
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 301.30', Outlet Invert= 301.10'

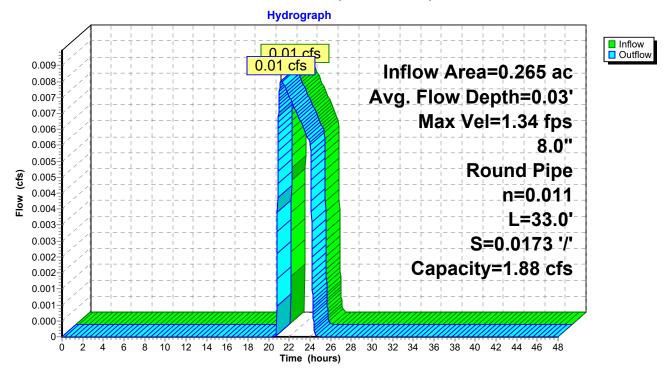
Reach 13R: New

Summary for Reach 14R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.265 ac,
 0.00% Impervious,
 Inflow Depth =
 0.09"
 for
 10-YR event


 Inflow =
 0.01 cfs @
 21.21 hrs,
 Volume=
 0.002 af


 Outflow =
 0.01 cfs @
 21.22 hrs,
 Volume=
 0.002 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.34 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.21 fps, Avg. Travel Time= 0.5 min

Peak Storage= 0 cf @ 21.21 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.88 cfs

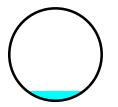
8.0" Round Pipe n= 0.011 Length= 33.0' Slope= 0.0173 '/' Inlet Invert= 290.30', Outlet Invert= 289.73'

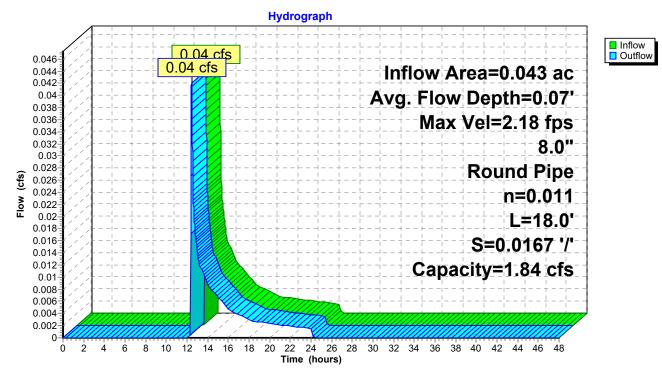
Reach 14R: (new Reach)

Summary for Reach 15R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.043 ac, 62.65% Impervious, Inflow Depth =
 1.39" for 10-YR event


 Inflow =
 0.04 cfs @
 12.44 hrs, Volume=
 0.005 af


 Outflow =
 0.04 cfs @
 12.44 hrs, Volume=
 0.005 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.18 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 12.44 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.84 cfs

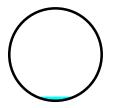
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 18.0' Slope= 0.0167 '/' Inlet Invert= 302.30', Outlet Invert= 302.00'

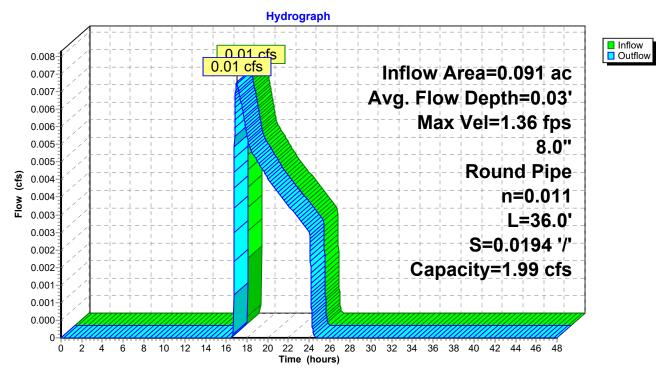
Reach 15R: New

Summary for Reach 16R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.091 ac, 45.76% Impervious, Inflow Depth =
 0.37" for 10-YR event


 Inflow =
 0.01 cfs @
 16.99 hrs, Volume=
 0.003 af


 Outflow =
 0.01 cfs @
 17.00 hrs, Volume=
 0.003 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.36 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 0.5 min

Peak Storage= 0 cf @ 16.99 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.99 cfs

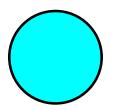
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 36.0' Slope= 0.0194 '/' Inlet Invert= 302.00', Outlet Invert= 301.30'

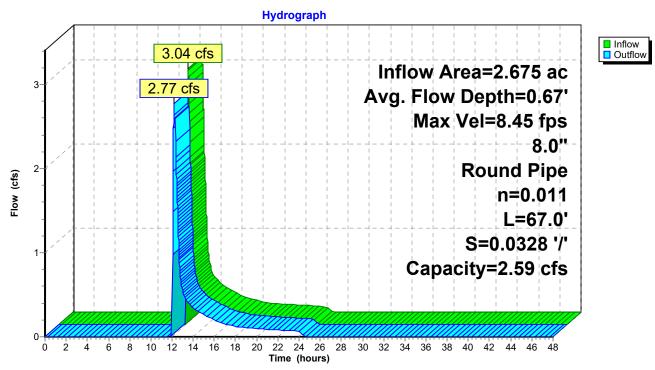
Reach 16R: New

Summary for Reach 17R: New

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 117% of Manning's capacity[76] Warning: Detained 0.001 af (Pond w/culvert advised)

 Inflow Area =
 2.675 ac,
 4.94% Impervious, Inflow Depth =
 1.17" for 10-YR event


 Inflow =
 3.04 cfs @
 12.20 hrs, Volume=
 0.261 af


 Outflow =
 2.77 cfs @
 12.18 hrs, Volume=
 0.261 af, Atten= 9%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.45 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.97 fps, Avg. Travel Time= 0.3 min

Peak Storage= 23 cf @ 12.19 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.59 cfs

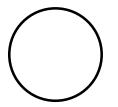
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 67.0' Slope= 0.0328 '/' Inlet Invert= 298.00', Outlet Invert= 295.80'

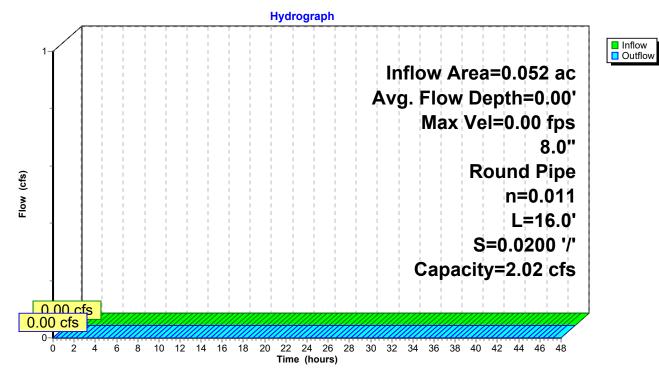
Reach 17R: New

Summary for Reach 18R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.052 ac, 40.18% Impervious, Inflow Depth =
 0.00" for 10-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.02 cfs

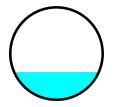
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 16.0' Slope= 0.0200 '/' Inlet Invert= 301.30', Outlet Invert= 300.98'

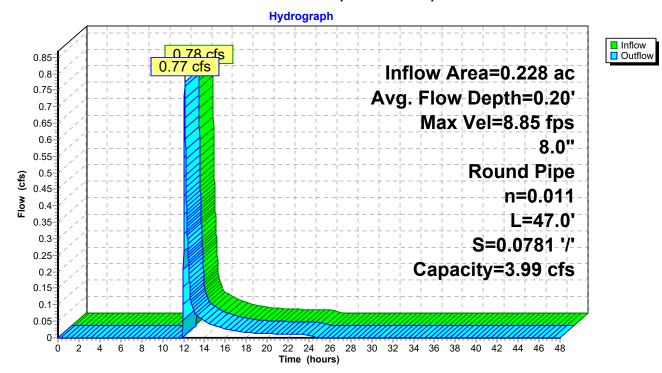
Reach 18R: New

Summary for Reach 19R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.228 ac, 67.95% Impervious, Inflow Depth =
 2.39" for 10-YR event


 Inflow =
 0.78 cfs @
 12.11 hrs, Volume=
 0.045 af


 Outflow =
 0.77 cfs @
 12.12 hrs, Volume=
 0.045 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.85 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.14 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.99 cfs

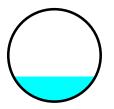
8.0" Round Pipe n= 0.011 Length= 47.0' Slope= 0.0781 '/' Inlet Invert= 287.00', Outlet Invert= 283.33'

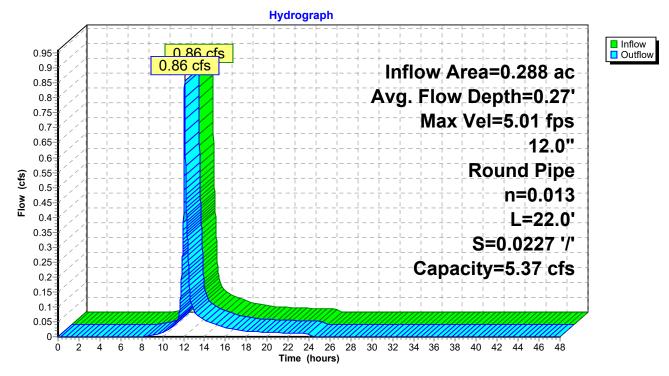
Reach 19R: (new Reach)

Summary for Reach 20R: 12" RCP pipe

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach PS9 outlet invert by 0.27' @ 12.11 hrs

 Inflow Area =
 0.288 ac, 25.48% Impervious, Inflow Depth = 2.55" for 10-YR event


 Inflow =
 0.86 cfs @ 12.11 hrs, Volume=
 0.061 af


 Outflow =
 0.86 cfs @ 12.11 hrs, Volume=
 0.061 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.01 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.75 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.11 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

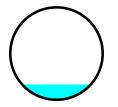
12.0" Round Pipe n= 0.013 Length= 22.0' Slope= 0.0227 '/' Inlet Invert= 257.75', Outlet Invert= 257.25'

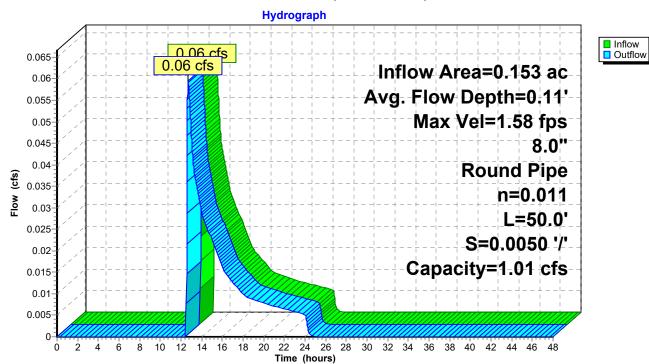
Reach 20R: 12" RCP pipe

Summary for Reach 21R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.153 ac, 15.01% Impervious, Inflow Depth =
 1.13" for 10-YR event


 Inflow =
 0.06 cfs @
 12.67 hrs, Volume=
 0.014 af


 Outflow =
 0.06 cfs @
 12.69 hrs, Volume=
 0.014 af, Atten= 0%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.58 fps, Min. Travel Time= 0.5 min Avg. Velocity = 0.96 fps, Avg. Travel Time= 0.9 min

Peak Storage= 2 cf @ 12.68 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.01 cfs

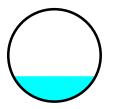
8.0" Round Pipe n= 0.011 Length= 50.0' Slope= 0.0050 '/' Inlet Invert= 254.00', Outlet Invert= 253.75'

Reach 21R: (new Reach)

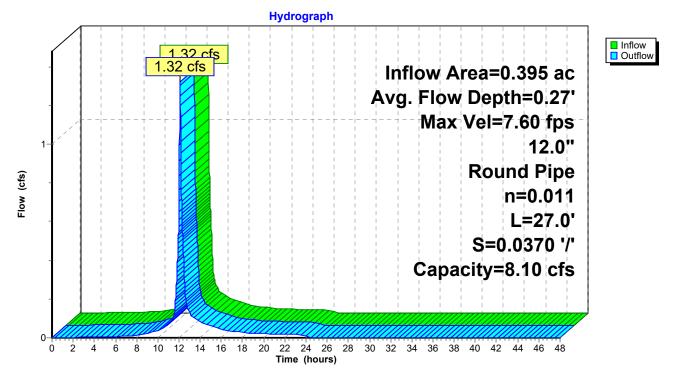
Summary for Reach CB1: CB1

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 20R outlet invert by 0.02' @ 12.10 hrs

 Inflow Area =
 0.395 ac, 45.72% Impervious, Inflow Depth = 3.04" for 10-YR event


 Inflow =
 1.32 cfs @ 12.10 hrs, Volume=
 0.100 af

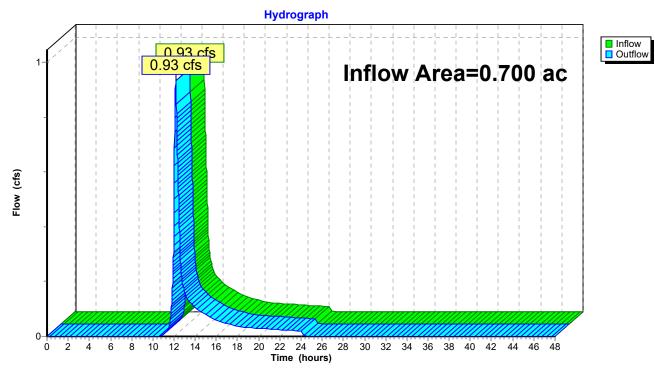
 Outflow =
 1.32 cfs @ 12.10 hrs, Volume=
 0.100 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 7.60 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.34 fps, Avg. Travel Time= 0.2 min

Peak Storage= 5 cf @ 12.10 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.10 cfs

12.0" Round Pipe n= 0.011 Length= 27.0' Slope= 0.0370 '/' Inlet Invert= 257.00', Outlet Invert= 256.00'

Reach CB1: CB1

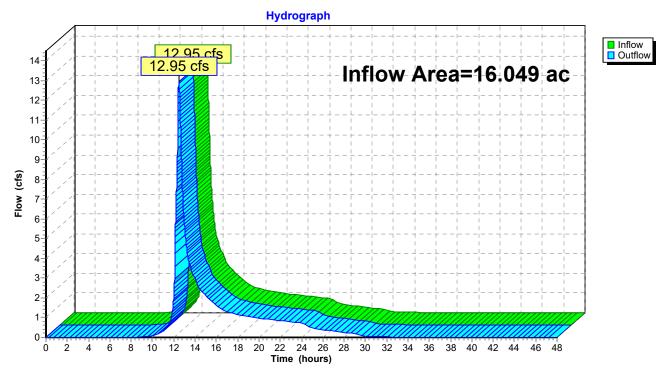


Summary for Reach CP1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		0.700 ac, 20.01% Impervious, Inflow Depth = 1.54" for 10-YR event
Inflow	=	0.93 cfs @ 12.19 hrs, Volume= 0.090 af
Outflow	=	0.93 cfs @ 12.19 hrs, Volume= 0.090 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Summary for Reach CP2:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		16.049 ac, 13.07% Impervious, Inflow Depth = 1.71" 1	for 10-YR event
Inflow	=	12.95 cfs @ 12.48 hrs, Volume= 2.287 af	
Outflow	=	12.95 cfs @ 12.48 hrs, Volume= 2.287 af, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach CP2:

Summary for Reach PS1:

Inflow Area = 2.270 ac. 5.04% Impervious, Inflow Depth = 1.26" for 10-YR event 2.47 cfs @ 12.19 hrs, Volume= Inflow 0.239 af = 2.46 cfs @ 12.21 hrs, Volume= Outflow = 0.239 af, Atten= 1%, Lag= 1.6 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.12 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 2.3 min Peak Storage= 136 cf @ 12.20 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.22 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 228.0' Slope= 0.0658 '/' Inlet Invert= 316.00', Outlet Invert= 301.00' Reach PS1: Hydrograph Inflow 2.47 cfs Outflow 2.46 cfs Inflow Area=2.270 ac Avg. Flow Depth=0.37' Max Vel=4.12 fps 2 n=0.035 Flow (cfs) L=228.0' S=0.0658 '/' Capacity=20.22 cfs 0 2 10 12 14 16 18 Ó 4 6 8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Time (hours)

Summary for Reach PS10A:

0.16 cfs @ 12.08 hrs, Volume=

0.035 ac, 96.04% Impervious, Inflow Depth = 4.25" for 10-YR event

0.013 af

Inflow Area =

=

Inflow

0.16 cfs @ 12.09 hrs, Volume= Outflow = 0.013 af, Atten= 0%, Lag= 0.3 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.71 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.82 fps, Avg. Travel Time= 0.4 min Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 261.94 cfs 10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 18.0' Slope= 0.0833 '/' Inlet Invert= 316.50', Outlet Invert= 315.00' Reach PS10A: Hydrograph Inflow 0.16 cfs Outflow 0.17 0.16 cfs Inflow Area=0.035 ac 0.16 0.15 Avg. Flow Depth=0.08' 0.14 Max Vel=1.71 fps 0 13 0.12 n=0.035 0.11 0.1 (cfs) L=18.0' 0.09 Flow S=0.0833 '/' 0.08 0.07 Capacity=261.94 cfs 0.06 0.05 0.04 0.03 0.02 0.01 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

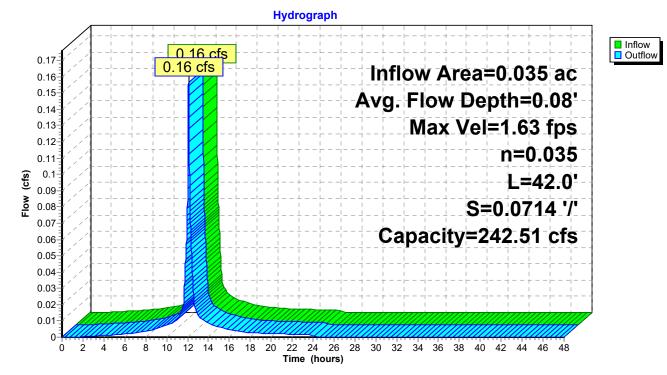
Summary for Reach PS10B:

[61] Hint: Exceeded Reach 4R outlet invert by 0.08' @ 12.10 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 4.25" for 10-YR event

 Inflow =
 0.16 cfs @ 12.09 hrs, Volume=
 0.013 af

 Outflow =
 0.16 cfs @ 12.10 hrs, Volume=
 0.013 af, Atten= 0%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.63 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.76 fps, Avg. Travel Time= 0.9 min

Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 242.51 cfs

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 42.0' Slope= 0.0714 '/' Inlet Invert= 313.50', Outlet Invert= 310.50'

Reach PS10B:

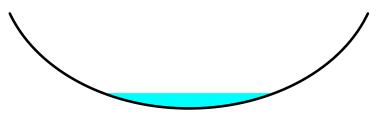
Summary for Reach PS2:

Inflow Area = 0.159 ac, 11.13% Impervious, Inflow Depth = 1.39" for 10-YR event 0.24 cfs @ 12.10 hrs, Volume= Inflow 0.018 af = Outflow 0.24 cfs @ 12.10 hrs, Volume= = 0.018 af, Atten= 0%, Lag= 0.4 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.04 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.80 fps, Avg. Travel Time= 0.6 min Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.02 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 31.0' Slope= 0.0645 '/' Inlet Invert= 303.00', Outlet Invert= 301.00' Reach PS2: Hydrograph Inflow 0.24 cfs Outflow 0.26 0.24 cfs Inflow Area=0.159 ac 0.24 Avg. Flow Depth=0.13' 0.22 Max Vel=2.04 fps 0.2 0.18 n=0.035 0.16 (cfs) L=31.0' 0.14 Flow S=0.0645 '/' 0.12 Capacity=20.02 cfs 0 1 0.08 0.06 0.04 0.02 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

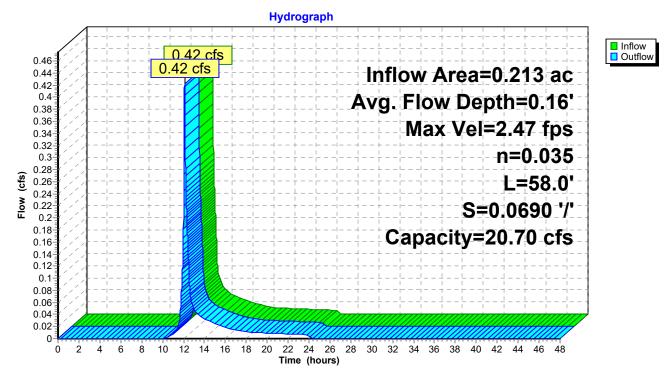
Time (hours)

Summary for Reach PS3:

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 1.74" for 10-YR event


 Inflow =
 0.42 cfs @
 12.09 hrs, Volume=
 0.031 af

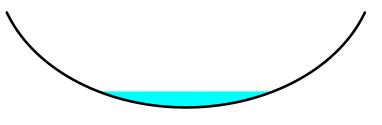
 Outflow =
 0.42 cfs @
 12.10 hrs, Volume=
 0.031 af, Atten= 0%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.47 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.92 fps, Avg. Travel Time= 1.0 min

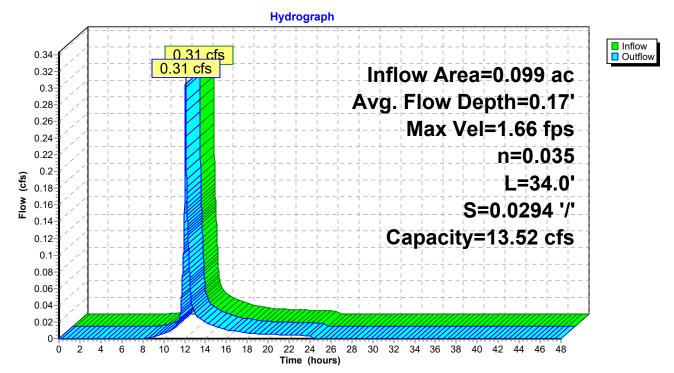
Peak Storage= 10 cf @ 12.10 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.70 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 58.0' Slope= 0.0690 '/' Inlet Invert= 313.00', Outlet Invert= 309.00'

Reach PS3:


Summary for Reach PS4:

Inflow Area =0.099 ac, 53.64% Impervious, Inflow Depth =2.63" for 10-YR eventInflow =0.31 cfs @12.09 hrs, Volume=0.022 afOutflow =0.31 cfs @12.10 hrs, Volume=0.022 af, Atten= 0%, Lag= 0.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.66 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.57 fps, Avg. Travel Time= 1.0 min

Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 13.52 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 34.0' Slope= 0.0294 '/' Inlet Invert= 307.00', Outlet Invert= 306.00'

Reach PS4:

Summary for Reach PS6: (new Reach)

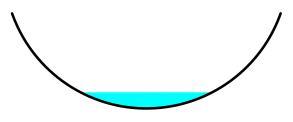
0.717 ac, 23.42% Impervious, Inflow Depth = 1.74" for 10-YR event

Inflow Area =

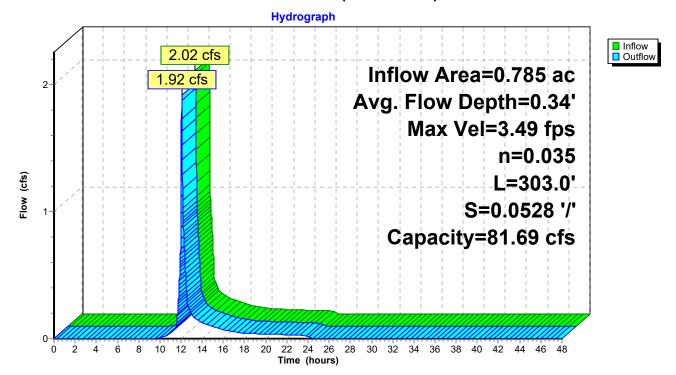
Inflow 1.43 cfs @ 12.09 hrs, Volume= 0.104 af = 1.29 cfs @ 12.19 hrs, Volume= Outflow = 0.104 af, Atten= 10%, Lag= 5.9 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.86 fps, Min. Travel Time= 3.6 min Avg. Velocity = 0.62 fps, Avg. Travel Time= 10.7 min Peak Storage= 276 cf @ 12.13 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 8.56 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 398.0' Slope= 0.0118 '/' Inlet Invert= 300.00', Outlet Invert= 295.30' Reach PS6: (new Reach) Hydrograph Inflow 1.43 cfs Outflow Inflow Area=0.717 ac 1.29 cfs Avg. Flow Depth=0.41' Max Vel=1.86 fps n=0.035 Flow (cfs) L=398.0' S=0.0118 '/' Capacity=8.56 cfs 0 Ó ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Reach PS7: (new Reach)

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 1.89" for 10-YR event


 Inflow =
 2.02 cfs @
 12.03 hrs, Volume=
 0.124 af

 Outflow =
 1.92 cfs @
 12.07 hrs, Volume=
 0.124 af, Atten= 5%, Lag= 2.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.49 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.22 fps, Avg. Travel Time= 4.1 min

Peak Storage= 167 cf @ 12.04 hrs Average Depth at Peak Storage= 0.34' Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 81.69 cfs

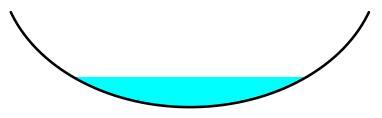
6.00' x 2.00' deep Parabolic Channel, n= 0.035 Length= 303.0' Slope= 0.0528 '/' Inlet Invert= 277.00', Outlet Invert= 261.00'

Reach PS7: (new Reach)

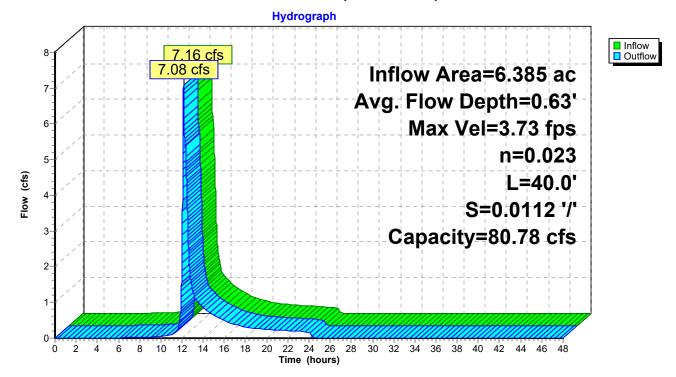
Summary for Reach PS8: (new Reach)

[79] Warning: Submerged Pond MH1 Primary device # 1 INLET by 0.28'

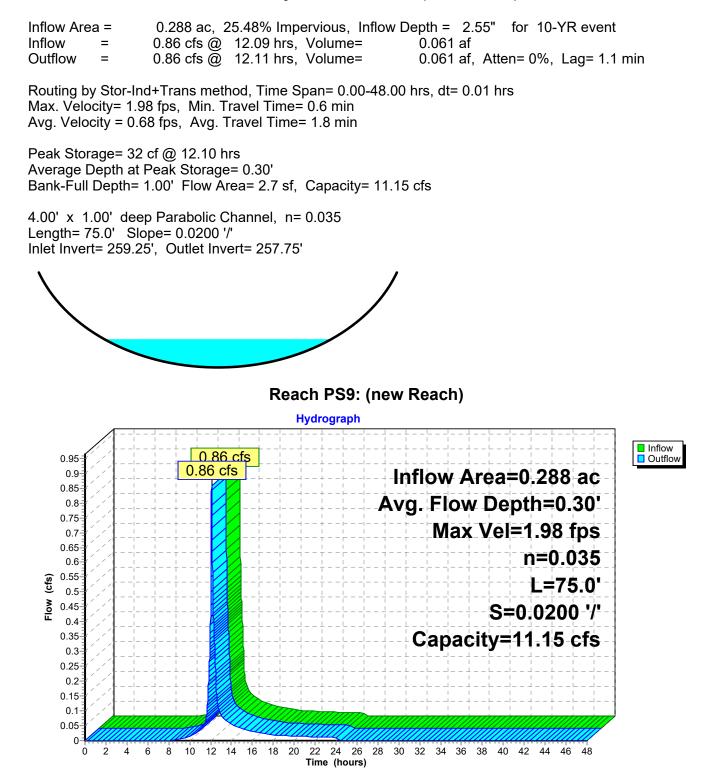
 Inflow Area =
 6.385 ac, 20.41% Impervious, Inflow Depth =
 1.34" for 10-YR event


 Inflow =
 7.16 cfs @
 12.14 hrs, Volume=
 0.715 af

 Outflow =
 7.08 cfs @
 12.15 hrs, Volume=
 0.715 af, Atten= 1%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.73 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 0.6 min

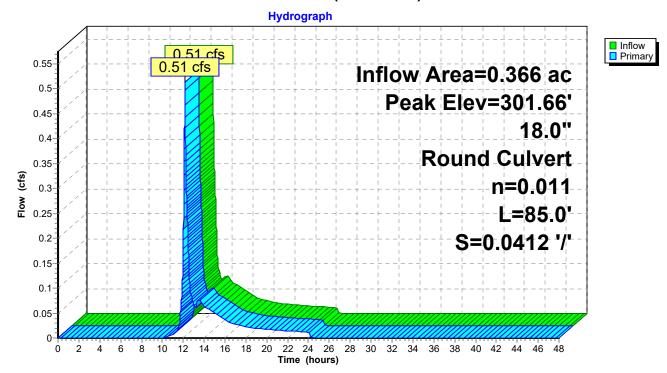
Peak Storage= 76 cf @ 12.15 hrs Average Depth at Peak Storage= 0.63' Bank-Full Depth= 2.00' Flow Area= 10.7 sf, Capacity= 80.78 cfs


8.00' x 2.00' deep Parabolic Channel, n= 0.023 Length= 40.0' Slope= 0.0112 '/' Inlet Invert= 260.95', Outlet Invert= 260.50'

Reach PS8: (new Reach)

Summary for Reach PS9: (new Reach)

Summary for Pond 1P: (new Pond)


[57] Hint: Peaked at 301.66' (Flood elevation advised)[63] Warning: Exceeded Reach 9R INLET depth by 3.62' @ 12.11 hrs

Inflow Area =	0.366 ac, 37.66% Impervious, Inflow	Depth = 1.55" for 10-YR event
Inflow =	0.51 cfs @ 12.15 hrs, Volume=	0.047 af
Outflow =	0.51 cfs @12.15 hrs, Volume=	0.047 af, Atten= 0%, Lag= 0.0 min
Primary =	0.51 cfs @ 12.15 hrs, Volume=	0.047 af

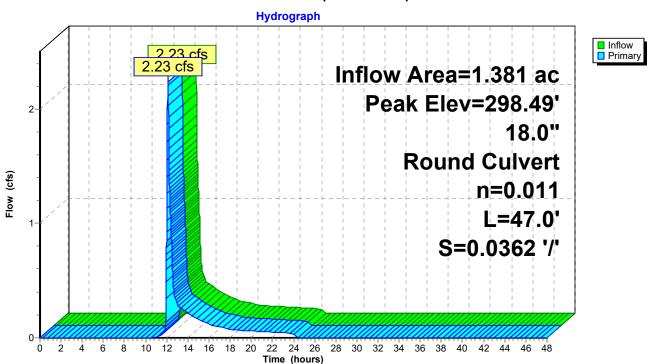
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.66' @ 12.15 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.30'	18.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.30' / 297.80' S= 0.0412 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.51 cfs @ 12.15 hrs HW=301.65' (Free Discharge) **1=Culvert** (Inlet Controls 0.51 cfs @ 1.60 fps)

Pond 1P: (new Pond)

Summary for Pond 2P: (new Pond)


[57] Hint: Peaked at 298.49' (Flood elevation advised)[62] Hint: Exceeded Reach 11R OUTLET depth by 0.05' @ 12.16 hrs[79] Warning: Submerged Pond 1P Primary device # 1 OUTLET by 0.69'

Inflow Area =	1.381 ac, 24.37% Impervious, Inflow I	Depth = 1.50" for 10-YR event
Inflow =	2.23 cfs @ 12.11 hrs, Volume=	0.173 af
Outflow =	2.23 cfs @ 12.11 hrs, Volume=	0.173 af, Atten= 0%, Lag= 0.0 min
Primary =	2.23 cfs @ 12.11 hrs, Volume=	0.173 af

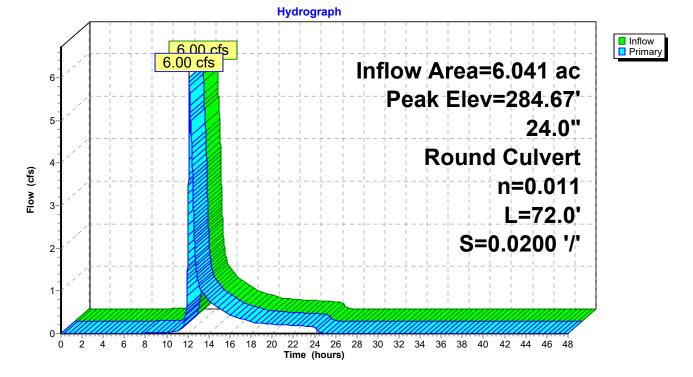
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 298.49' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	297.70'	18.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 297.70' / 296.00' S= 0.0362 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=2.23 cfs @ 12.11 hrs HW=298.49' (Free Discharge) -1=Culvert (Inlet Controls 2.23 cfs @ 2.38 fps)

Pond 2P: (new Pond)

Summary for Pond 3P: MH2B


[57] Hint: Peaked at 284.67' (Flood elevation advised)

Inflow Area =	6.041 ac, 17.09% Impervious, Inflow D	Depth = 1.25" for 10-YR event
Inflow =	6.00 cfs @ 12.14 hrs, Volume=	0.628 af
Outflow =	6.00 cfs @ 12.14 hrs, Volume=	0.628 af, Atten= 0%, Lag= 0.0 min
Primary =	6.00 cfs @ 12.14 hrs, Volume=	0.628 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 284.67' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	283.44'	24.0" Round 2B L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.44' / 282.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=5.95 cfs @ 12.14 hrs HW=284.66' (Free Discharge) **□1=2B** (Inlet Controls 5.95 cfs @ 2.97 fps)

Pond 3P: MH2B

Summary for Pond 4P: Constructed Wetland

[62] Hint: Exceeded Reach 1R OUTLET depth by 0.20' @ 12.58 hrs

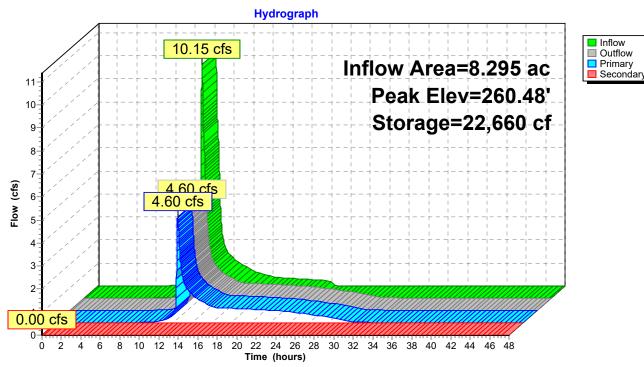
Inflow Area =	8.295 ac, 21.89% Impervious, Inflow D	epth = 1.51" for 10-YR event
Inflow =	10.15 cfs @ 12.14 hrs, Volume=	1.043 af
Outflow =	4.60 cfs @ 12.51 hrs, Volume=	1.042 af, Atten= 55%, Lag= 21.9 min
Primary =	4.60 cfs @_ 12.51 hrs, Volume=	1.042 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 258.30' Surf.Area= 5,072 sf Storage= 7,845 cf Peak Elev= 260.48' @ 12.51 hrs Surf.Area= 8,334 sf Storage= 22,660 cf (14,815 cf above start)

Plug-Flow detention time= 357.7 min calculated for 0.861 af (83% of inflow) Center-of-Mass det. time= 211.8 min (1,074.0 - 862.2)

Volume	Invert	Avail.Sto	rage Storag	e Description	
#1	254.00'	37,03	37 cf Custo	m Stage Data (Pr	ismatic)Listed below (Recalc)
Elevatio	n Su	ırf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
254.0		729	0	0	
255.0	-	972	851	851	
256.0	00	1,244	1,108	1,959	
257.0	00	1,541	1,393	3,351	
258.0		4,558	3,050	6,401	
258.3		5,072	1,445	7,845	
259.0	-	6,345	3,996	11,841	
260.0		7,660	7,003	18,843	
261.0		9,072	8,366	27,209	
262.0	00	10,584	9,828	37,037	
Device	Routing	Invert	Outlet Devic	ces	
#1	Primary	258.30'	30.0" Rour	nd Culvert	
	-				form to fill, Ke= 0.700
					258.00' S= 0.0100 '/' Cc= 0.900
				•	both interior, Flow Area= 4.91 sf
#2	Device 1	260.30')" Horiz. Orifice/0	
40	Davis 4			eir flow at low hea	
#3	Device 1	258.30'		Drifice/Grate X 2.0	
#4	Device 1	258.30'		th 5.0" cc spacing Orifice/Grate C=	
π -	Device I	200.00		eir flow at low hea	
#5	Secondary	260.90'			road-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
					70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=4.59 cfs @ 12.51 hrs HW=260.48' (Free Discharge)


-1=Culvert (Passes 4.59 cfs of 18.03 cfs potential flow)

1-2=Orifice/Grate (Weir Controls 3.90 cfs @ 1.38 fps)

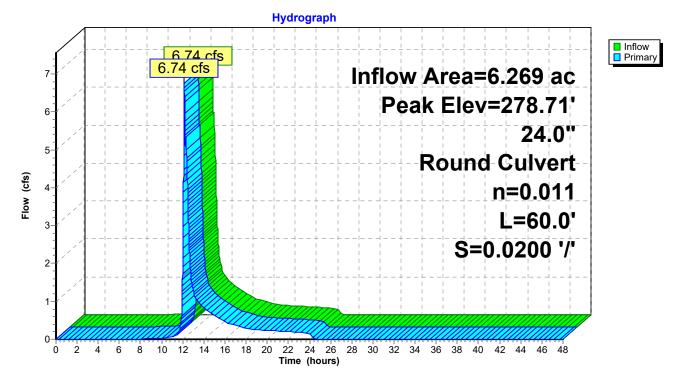
-3=Orifice/Grate (Orifice Controls 0.06 cfs @ 5.89 fps)

-4=Orifice/Grate (Orifice Controls 0.62 cfs @ 7.10 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=258.30' (Free Discharge) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: Constructed Wetland

Summary for Pond 5P: MH2A


[57] Hint: Peaked at 278.71' (Flood elevation advised)

Inflow Area =	6.269 ac, 18.94% Impervious, Inflo	w Depth = 1.29" for 10-YR event
Inflow =	6.74 cfs @ 12.14 hrs, Volume=	0.673 af
Outflow =	6.74 cfs @ 12.14 hrs, Volume=	0.673 af, Atten= 0%, Lag= 0.0 min
Primary =	6.74 cfs @ 12.14 hrs, Volume=	0.673 af

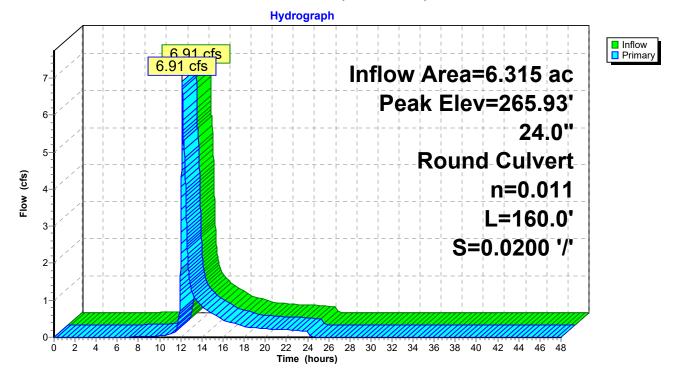
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 278.71' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.40'	24.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.40' / 276.20' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=6.69 cfs @ 12.14 hrs HW=278.71' (Free Discharge) ☐ 1=Culvert (Inlet Controls 6.69 cfs @ 3.07 fps)

Pond 5P: MH2A

Summary for Pond 20P: (new Pond)


[57] Hint: Peaked at 265.93' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 1.31" for 10-YR event
Inflow =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af
Outflow =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af, Atten= 0%, Lag= 0.0 min
Primary =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 265.93' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	264.60'	24.0" Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 264.60' / 261.40' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=6.86 cfs @ 12.14 hrs HW=265.93' (Free Discharge) ☐ 1=Culvert (Inlet Controls 6.86 cfs @ 3.10 fps)

Pond 20P: (new Pond)

Summary for Pond BS: Bus Station RG

[63] Warning: Exceeded Reach CB1 INLET depth by 0.30' @ 24.70 hrs

Inflow Area =	0.554 ac, 36.99% Impervious, Inflow Depth = 2.85" for 10-YR event
Inflow =	1.76 cfs @ 12.10 hrs, Volume= 0.132 af
Outflow =	1.54 cfs @ 12.15 hrs, Volume= 0.088 af, Atten= 12%, Lag= 2.8 min
Primary =	1.54 cfs @ 12.15 hrs, Volume= 0.088 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.51' @ 12.15 hrs Surf.Area= 0 sf Storage= 2,027 cf

Plug-Flow detention time= 176.5 min calculated for 0.088 af (67% of inflow) Center-of-Mass det. time= 74.3 min (879.7 - 805.3)

Volume	Inv	vert Avai	I.Storage	Storage Description	
#1	254.	47'	2,201 cf	Custom Stage DataListed below	
Elevatic	n	Inc.Store	Cum	n.Store	
(fee	et) (cubic-feet)	(cubi	c-feet)	
254.4	7	0		0	
254.8	30	122		122	
255.0)5	92		214	
256.0)5	367		581	
256.3	80	92		673	
257.3	30	1,222		1,895	
257.8	30	306		2,201	
Device	Routing	In	vert Outle	et Devices	
#1	Primary	257	.30' 18.0	"Horiz. Orifice/Grate C= 0.600	
			Limi	ted to weir flow at low heads	
	Drimony OutFlow Moved 52 of a 1245 hrs. 111/-257 541 (Free Discharge)				

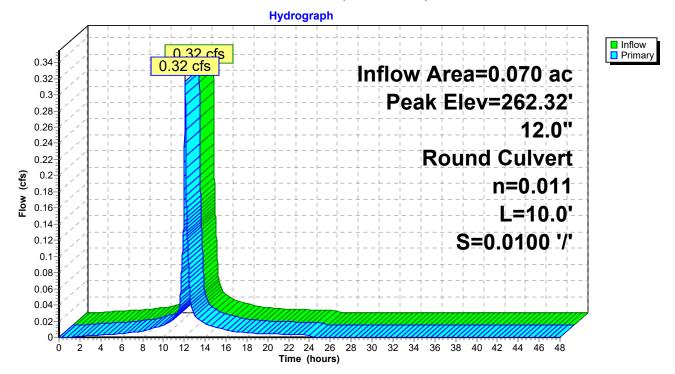
Primary OutFlow Max=1.53 cfs @ 12.15 hrs HW=257.51' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.53 cfs @ 1.51 fps)

Hydrograph Inflow 1.76 cfs Primary Inflow Area=0.554 ac 1.54 cfs Peak Elev=257.51' Storage=2,027 cf Flow (cfs) 0-2 10 12 14 16 18 20 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 4 6 8 22

Time (hours)

Pond BS: Bus Station RG

Summary for Pond CB2: (new Pond)


[57] Hint: Peaked at 262.32' (Flood elevation advised)

Inflow Area =	0.070 ac,100.00% Impervious, Inflow	Depth = 4.36" for 10-YR event
Inflow =	0.32 cfs @ 12.08 hrs, Volume=	0.026 af
Outflow =	0.32 cfs @ 12.08 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min
Primary =	0.32 cfs @ 12.08 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.32' @ 12.08 hrs

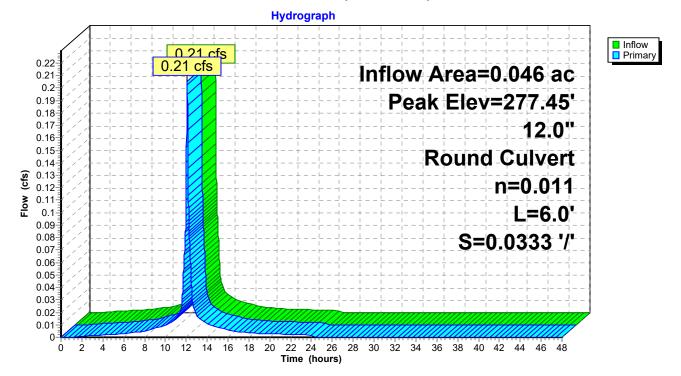
Device	Routing	Invert	Outlet Devices
#1	Primary	262.00'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 262.00' / 261.90' S= 0.0100 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.32 cfs @ 12.08 hrs HW=262.32' (Free Discharge) **1=Culvert** (Barrel Controls 0.32 cfs @ 2.20 fps)

Pond CB2: (new Pond)

Summary for Pond CB3: (new Pond)

[57] Hint: Peaked at 277.45' (Flood elevation advised)


Inflow Area =	0.046 ac,100.00% Impervious, Inflo	w Depth = 4.36" for 10-YR event
Inflow =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af
Outflow =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af, Atten= 0%, Lag= 0.0 min
Primary =	0.21 cfs @ 12.08 hrs, Volume=	0.017 af

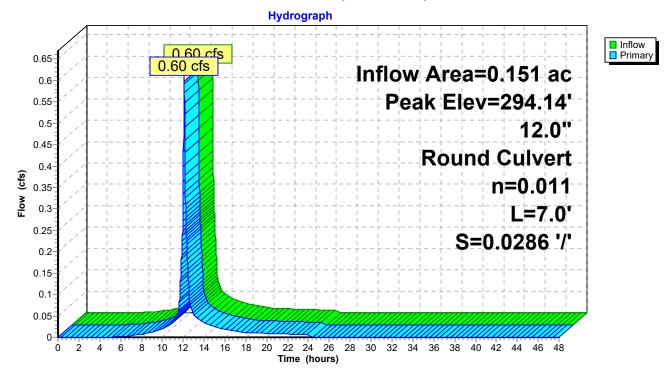
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 277.45' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.20'	12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.20' / 277.00' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 12.08 hrs HW=277.45' (Free Discharge) ←1=Culvert (Inlet Controls 0.20 cfs @ 1.34 fps)

Pond CB3: (new Pond)

Summary for Pond CB4: (new Pond)


[57] Hint: Peaked at 294.14' (Flood elevation advised)

Inflow Area =	0.151 ac, 79.05% Impervious, Inflow I	Depth = 3.49" for 10-YR event
Inflow =	0.60 cfs @ 12.09 hrs, Volume=	0.044 af
Outflow =	0.60 cfs @ 12.09 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min
Primary =	0.60 cfs @ 12.09 hrs, Volume=	0.044 af

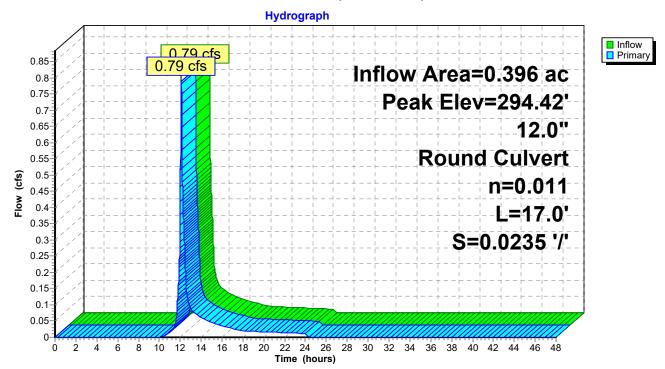
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.14' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	293.70'	12.0" Round Culvert L= 7.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.70' / 293.50' S= 0.0286 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.60 cfs @ 12.09 hrs HW=294.14' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.60 cfs @ 1.79 fps)

Pond CB4: (new Pond)

Summary for Pond CB5: (new Pond)


[57] Hint: Peaked at 294.42' (Flood elevation advised)

Inflow Area =	0.396 ac, 24.31% Impervious, Inflow	Depth = 1.74" for 10-YR event
Inflow =	0.79 cfs @ 12.09 hrs, Volume=	0.058 af
Outflow =	0.79 cfs @ 12.09 hrs, Volume=	0.058 af, Atten= 0%, Lag= 0.0 min
Primary =	0.79 cfs @ 12.09 hrs, Volume=	0.058 af

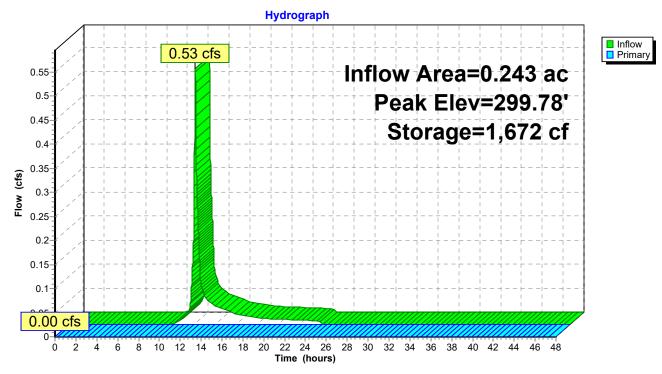
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.42' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	293.90'	12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.90' / 293.50' S= 0.0235 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.79 cfs @ 12.09 hrs HW=294.42' (Free Discharge) -1=Culvert (Inlet Controls 0.79 cfs @ 1.93 fps)

Pond CB5: (new Pond)

Summary for Pond CULdeSAC: Cul-de-sac


Inflow Area	a =	0.243 ac, 29.57% Impervious, Inflow Depth = 1.89" for 10-YR event
Inflow	=	0.53 cfs @ 12.09 hrs, Volume= 0.038 af
Outflow	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 299.78' @ 24.34 hrs Surf.Area= 0 sf Storage= 1,672 cf Flood Elev= 300.00' Surf.Area= 0 sf Storage= 2,622 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

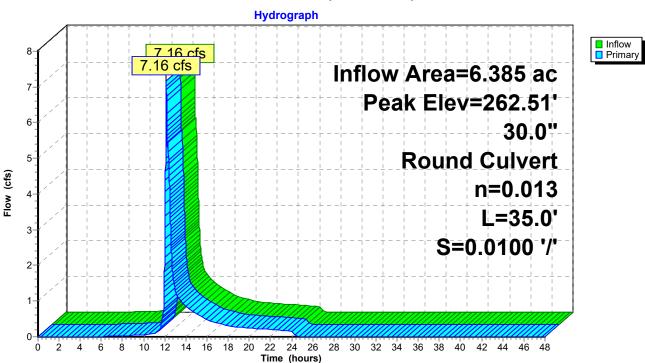
Volume	Inv	vert Ava	il.Storage	Storage Description
#1	297	.92'	4,394 cf	Custom Stage DataListed below
Elevatio (fee		Inc.Store (cubic-feet)		n.Store ic-feet)
297.9	92	0		0
298.2	25	283		283
298.5	50	213		496
299.5	50	850		1,346
299.7	75	213		1,559
300.2	25	2,126		3,685
300.5	50	709		4,394
Device	Routing	j In	vert Outl	let Devices
#1	Primary	/ 300)" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads
	o (=)			

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=297.92' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs)

Pond CULdeSAC: Cul-de-sac

Summary for Pond MH1: (new Pond)

[57] Hint: Peaked at 262.51' (Flood elevation advised)[79] Warning: Submerged Pond 20P Primary device # 1 OUTLET by 1.11'


[81] Warning: Exceeded Pond CB2 by 0.23' @ 12.14 hrs

Inflow Area	=	6.385 ac, 20.41% Impervious, Inflow Depth = 1.34" for 10)-YR event
Inflow =	=	7.16 cfs @ 12.14 hrs, Volume= 0.715 af	
Outflow =	=	7.16 cfs @ 12.14 hrs, Volume= 0.715 af, Atten= 0%	,Lag= 0.0 min
Primary =	=	7.16 cfs @ 12.14 hrs, Volume= 0.715 af	-

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.51' @ 12.14 hrs

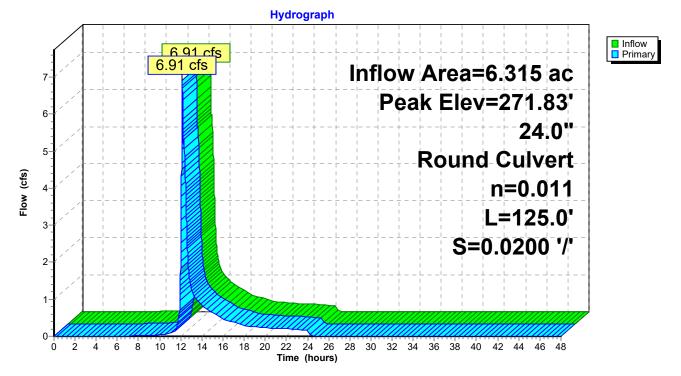
Device	Routing	Invert	Outlet Devices
#1	Primary	261.30'	30.0" Round Culvert L= 35.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 261.30' / 260.95' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=7.12 cfs @ 12.14 hrs HW=262.51' (Free Discharge) **1=Culvert** (Barrel Controls 7.12 cfs @ 4.43 fps)

Pond MH1: (new Pond)

Summary for Pond MH2: (new Pond)

[57] Hint: Peaked at 271.83' (Flood elevation advised)


Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 1.31" for 10-YR event
Inflow =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af
Outflow =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af, Atten= 0%, Lag= 0.0 min
Primary =	6.91 cfs @ 12.14 hrs, Volume=	0.690 af

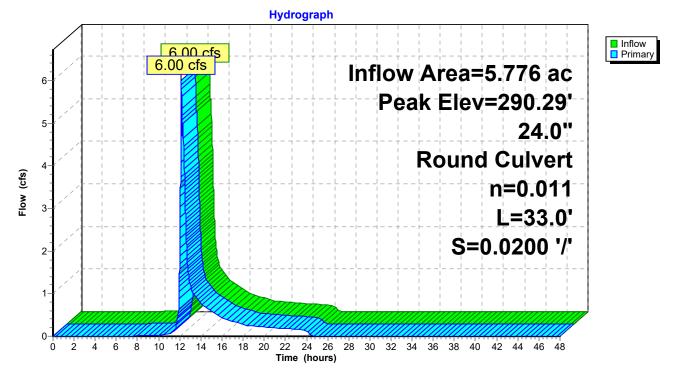
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 271.83' @ 12.14 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	270.50'	24.0" Round Culvert L= 125.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.50' / 268.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=6.86 cfs @ 12.14 hrs HW=271.83' (Free Discharge) ☐ 1=Culvert (Inlet Controls 6.86 cfs @ 3.10 fps)

Pond MH2: (new Pond)

Summary for Pond MH3: (new Pond)


[57] Hint: Peaked at 290.29' (Flood elevation advised)

Inflow Area =	5.776 ac, 17.87% Impervious, Inflow	Depth = 1.30" for 10-YR event
Inflow =	6.00 cfs @ 12.14 hrs, Volume=	0.626 af
Outflow =	6.00 cfs @ 12.14 hrs, Volume=	0.626 af, Atten= 0%, Lag= 0.0 min
Primary =	6.00 cfs @ 12.14 hrs, Volume=	0.626 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 290.29' @ 12.14 hrs

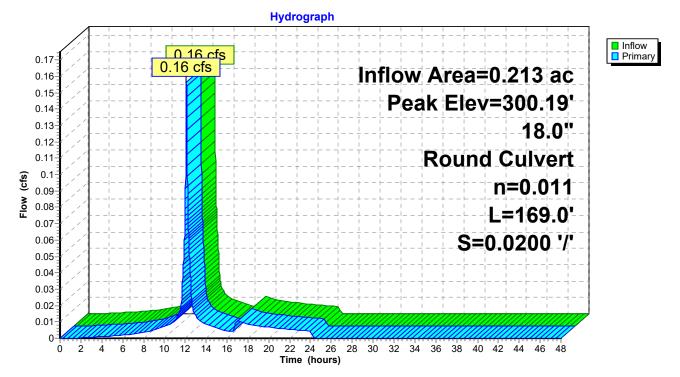
Device	Routing	Invert	Outlet Devices
#1	Primary	289.06'	24.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 289.06' / 288.40' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 3.14 sf

Primary OutFlow Max=5.95 cfs @ 12.14 hrs HW=290.28' (Free Discharge) **1=Culvert** (Inlet Controls 5.95 cfs @ 2.97 fps)

Pond MH3: (new Pond)

Summary for Pond MH4:

[57] Hint: Peaked at 300.19' (Flood elevation advised)


Inflow Area =	0.213 ac, 50.94% Impervious, Inflow	Depth = 0.86" for 10-YR event
Inflow =	0.16 cfs @ 12.11 hrs, Volume=	0.015 af
Outflow =	0.16 cfs @ 12.11 hrs, Volume=	0.015 af, Atten= 0%, Lag= 0.0 min
Primary =	0.16 cfs @ 12.11 hrs, Volume=	0.015 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.19' @ 12.11 hrs

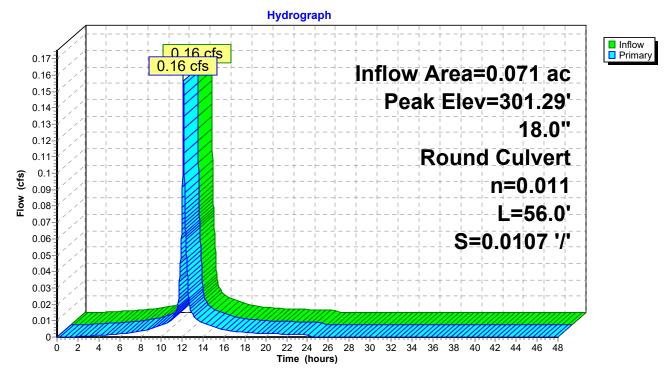
Device	Routing	Invert	Outlet Devices
#1	Primary	300.00'	18.0" Round Culvert L= 169.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 296.62' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.16 cfs @ 12.11 hrs HW=300.19' (Free Discharge) **1=Culvert** (Inlet Controls 0.16 cfs @ 1.18 fps)

Pond MH4:

Summary for Pond MH5:

[57] Hint: Peaked at 301.29' (Flood elevation advised)[62] Hint: Exceeded Reach 13R OUTLET depth by 0.19' @ 12.11 hrs


Inflow Area =	0.071 ac, 65.39% Impervious, Inflow	Depth = 2.12" for 10-YR event
Inflow =	0.16 cfs @ 12.11 hrs, Volume=	0.013 af
Outflow =	0.16 cfs @ 12.11 hrs, Volume=	0.013 af, Atten= 0%, Lag= 0.0 min
Primary =	0.16 cfs @ 12.11 hrs, Volume=	0.013 af

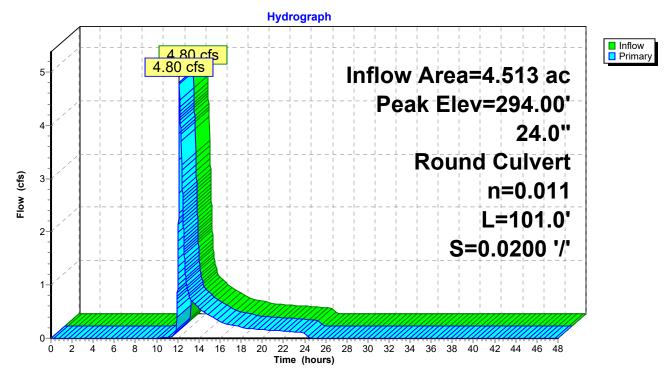
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.29' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.10'	18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.10' / 300.50' S= 0.0107 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.16 cfs @ 12.11 hrs HW=301.29' (Free Discharge) **1=Culvert** (Inlet Controls 0.16 cfs @ 1.18 fps)

Pond MH5:

Summary for Pond MH6: CB6


[57] Hint: Peaked at 294.00' (Flood elevation advised)

Inflow Area =	4.513 ac, 14.39% Impervious, Inflow	Depth = 1.19" for 10-YR event
Inflow =	4.80 cfs @ 12.16 hrs, Volume=	0.449 af
Outflow =	4.80 cfs @ 12.16 hrs, Volume=	0.449 af, Atten= 0%, Lag= 0.0 min
Primary =	4.80 cfs @ 12.16 hrs, Volume=	0.449 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.00' @ 12.16 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	292.92'	24.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 292.92' / 290.90' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

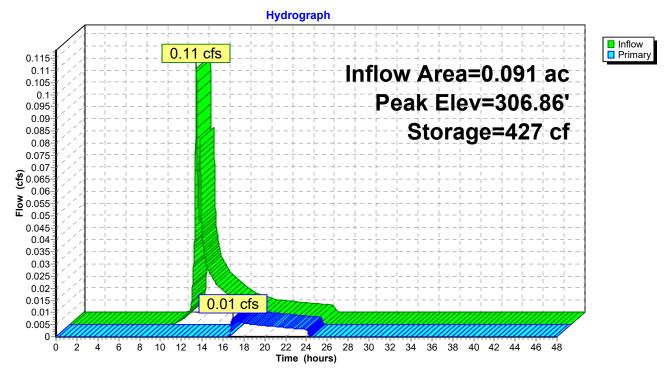
Primary OutFlow Max=4.80 cfs @ 12.16 hrs HW=294.00' (Free Discharge) ☐ 1=Culvert (Inlet Controls 4.80 cfs @ 2.79 fps)

Pond MH6: CB6

Summary for Pond RG10:

[63] Warning: Exceeded Reach 15R INLET depth by 4.55' @ 24.44 hrs

Inflow Area =	0.091 ac, 45.76% Impervious, Inflow Deptl	h = 1.66" for 10-YR event
Inflow =	0.11 cfs @ 12.09 hrs, Volume= 0.0	013 af
Outflow =	0.01 cfs @ 16.99 hrs, Volume= 0.0	003 af, Atten= 93%, Lag= 293.6 min
Primary =	0.01 cfs @ 16.99 hrs, Volume= 0.0	003 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.86' @ 16.99 hrs Surf.Area= 0 sf Storage= 427 cf

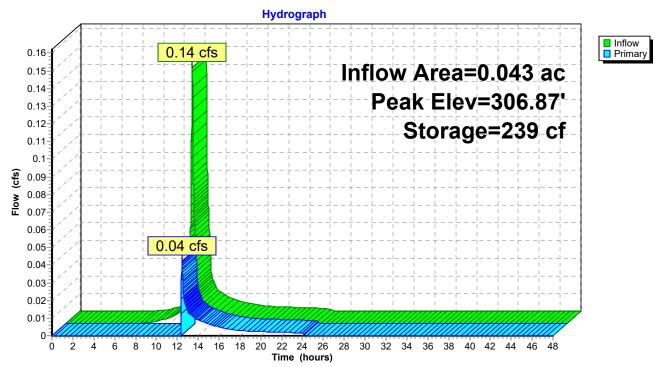
Plug-Flow detention time= 480.4 min calculated for 0.003 af (22% of inflow) Center-of-Mass det. time= 313.2 min (1,196.2 - 882.9)

Volume	Invei	rt Avail.Sto	rage St	orage Description
#1	303.77	7' 50	09 cf Cu	ustom Stage DataListed below
Elevation		Inc.Store	Cum.Sto	ore
(feet)	(CL	ubic-feet)	(cubic-fe	eet)
303.77		0		0
303.85		8		8
304.10		25		33
306.10		200	2	233
306.35		25	2	258
306.85		167	4	425
307.10		84	5	509
Device R	Routing	Invert	Outlet D	Devices
#1 P	Primary	306.85'	-	oriz. Orifice/Grate C= 0.600
			Limited	to weir flow at low heads
D · · · · · ·			- 40.001	

Primary OutFlow Max=0.00 cfs @ 16.99 hrs HW=306.86' (Free Discharge)

Pond RG10:

Summary for Pond RG11:


Inflow Area =	0.043 ac, 62.65% Impervious, Inflow De	epth = 2.91" for 10-YR event
Inflow =	0.14 cfs @ 12.09 hrs, Volume=	0.010 af
Outflow =	0.04 cfs @12.44 hrs, Volume=	0.005 af, Atten= 71%, Lag= 20.9 min
Primary =	0.04 cfs @ 12.44 hrs, Volume=	0.005 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.87' @ 12.44 hrs Surf.Area= 0 sf Storage= 239 cf

Plug-Flow detention time= 239.4 min calculated for 0.005 af (48% of inflow) Center-of-Mass det. time= 124.4 min (938.2 - 813.9)

Volume	In	vert Av	/ail.Stor	age	Storage De	escriptio	n			
#1	303	.77'	28	1 cf	Custom S	tage Da	taListed I	below		
Elevatio	on	Inc.Stor	е	Cum.	Store					
(fee	et)	(cubic-feet	:)	(cubic	-feet)					
303.7	77		0		0					
303.8	35		5		5					
304.1	10	1	4		19					
306.1	10	11	0		129					
306.3	35	1	4		143					
306.8	35	9	2		235					
307.2	10	4	6		281					
Device	Routing		Invert	Outle	t Devices					
#1	Primary	٬ 3	06.85'	12.0"	Horiz. Ori	ifice/Gra	ate C=0	.600		
				Limite	ed to weir f	low at lo	w heads			
Primary		Max=0 (14 cfs @	124	1 hrs HW=	306 87	(Free D	ischarge)		

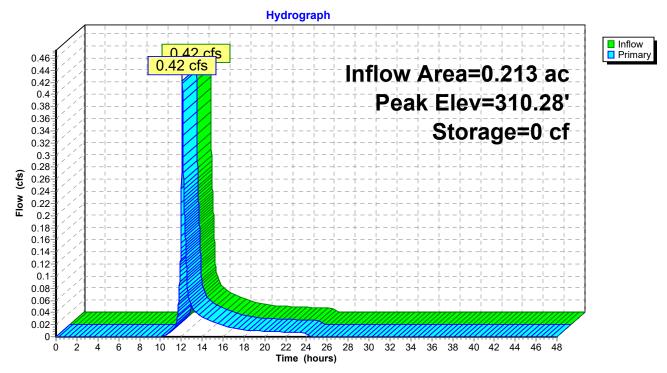
Primary OutFlow Max=0.04 cfs @ 12.44 hrs HW=306.87' (Free Discharge)

Pond RG11:

Summary for Pond RG12:

[62] Hint: Exceeded Reach PS3 OUTLET depth by 1.27' @ 0.00 hrs

Inflow Area =	0.213 ac, 23.47% Impervious, Inflow	Depth = 1.74" for 10-YR event
Inflow =	0.42 cfs @ 12.10 hrs, Volume=	0.031 af
Outflow =	0.42 cfs @ 12.11 hrs, Volume=	0.031 af, Atten= 0%, Lag= 0.0 min
Primary =	0.42 cfs @ 12.11 hrs, Volume=	0.031 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.28' @ 12.11 hrs Surf.Area= 0 sf Storage= 0 cf

Plug-Flow detention time= 0.0 min calculated for 0.031 af (100% of inflow) Center-of-Mass det. time= 0.0 min (853.4 - 853.4)

Volume	Inv	ert Avail.St	orage	Storage Description
#1	310.2	27'	760 cf	Custom Stage DataListed below
			-	
Elevatio	n	Inc.Store	Cum	n.Store
(feet	t) (e	cubic-feet)	(cubi	<u>c-feet)</u>
310.2 [°]	7	0		0
310.6	0	15		15
310.8	5	44		59
312.1	0	219		278
312.3	5	44		322
312.8	5	292		614
313.1	0	146		760
Device	Routing	Invert	Outl	et Devices
#1	Primary	309.75		"Horiz. Orifice/Grate X 0.50 C= 0.600 ted to weir flow at low heads
Drimary	OutFlow	Max-1 37 ofe	@ 12 4	11 hrs $HW = 310.28'$ (Free Discharge)

Primary OutFlow Max=1.37 cfs @ 12.11 hrs HW=310.28' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 1.37 cfs @ 1.75 fps)

Pond RG12:

Summary for Pond RG13:

[63] Warning: Exceeded Reach PS4 INLET depth by 0.95' @ 24.37 hrs

Inflow Area =	0.099 ac, 53.64% Impervious, Inflow Depth = 2.63" for 10-YR event
Inflow =	0.31 cfs @ 12.10 hrs, Volume= 0.022 af
Outflow =	0.02 cfs @ 13.38 hrs, Volume= 0.008 af, Atten= 92%, Lag= 76.9 min
Primary =	0.02 cfs @ 13.38 hrs, Volume= 0.008 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 307.97' @ 13.38 hrs Surf.Area= 0 sf Storage= 609 cf

Plug-Flow detention time= 312.5 min calculated for 0.008 af (36% of inflow) Center-of-Mass det. time= 187.1 min (1,010.8 - 823.7)

Volume	In	vert Ava	ail.Storag	e Storage	Description
#1	304	.29'	706	cf Custon	n Stage DataListed below
			-	-	
Elevatio	n	Inc.Store	C	um.Store	
(fee	et)	(cubic-feet)	(C	ubic-feet)	
304.2	29	0		0	
304.6	62	42		42	
304.8	37	31		73	
307.2	20	290		363	
307.4	5	31		394	
307.9	95	208		602	
308.2	20	104		706	
Device	Routing	g l	nvert C	utlet Device	S
#1	Primary	/ 30	7.95' 1	2.0" Horiz.	Orifice/Grate C= 0.600
	-		L	imited to we	ir flow at low heads
D				0.001	$\Lambda = 0.07 \ (\text{Emp} = \text{Disc} + \text{emp})$

Primary OutFlow Max=0.02 cfs @ 13.38 hrs HW=307.97' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.02 cfs @ 0.43 fps)

Pond RG13: Hydrograph InflowPrimary 0.31 cfs 0.34 0.32 Inflow Area=0.099 ac 0.3 Peak Elev=307.97' 0.28 0.26 Storage=609 cf 0.24 0.22 0.2 0.2 0.18 0.16 0.16 0.14

22 24 26 28 30 32 34 36 38 40 42 44 46 48

0.12 0.1 0.08

0.04 0.02 0-

2

Ó

4 6 8

0.02 cfs

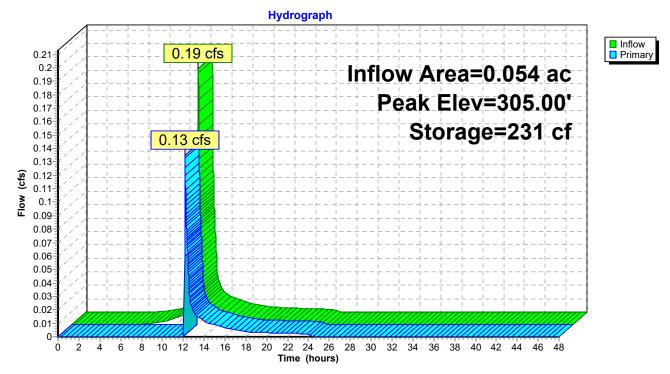
10 12 14 16 18

20

Time (hours)

Summary for Pond RG14:

Inflow Area =	0.054 ac, 64.02% Impervious, Inflow	Depth = 3.00" for 10-YR event
Inflow =	0.19 cfs @ 12.09 hrs, Volume=	0.014 af
Outflow =	0.13 cfs @ 12.17 hrs, Volume=	0.009 af, Atten= 29%, Lag= 4.7 min
Primary =	0.13 cfs $\overline{@}$ 12.17 hrs, Volume=	0.009 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.00' @ 12.17 hrs Surf.Area= 0 sf Storage= 231 cf

Plug-Flow detention time= 178.6 min calculated for 0.009 af (63% of inflow) Center-of-Mass det. time= 76.3 min (887.1 - 810.8)

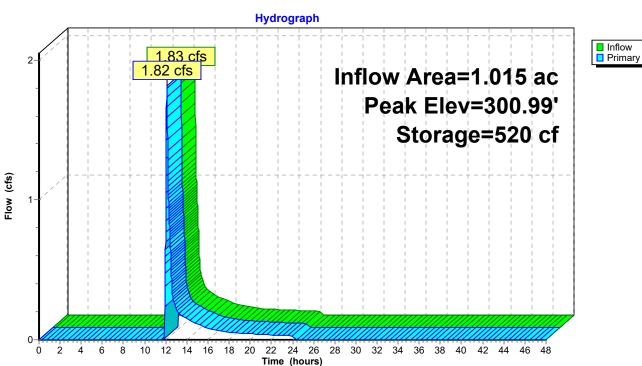
Volume	١nv	vert Ava	il.Storage	Storage Description
#1	302.	54'	272 cf	Custom Stage DataListed below
_				
Elevatio	on	Inc.Store	Cun	m.Store
(fee	et) (cubic-feet)	(cubi	pic-feet)
302.5	54	0		0
302.6	62	5		5
302.8	37	15		20
304.2	20	82		102
304.4	45	15		117
304.9	95	103		220
305.2	20	52		272
Device	Routing	lr	vert Out	tlet Devices
#1	Primary	304		0" Horiz. Orifice/Grate C= 0.600 hited to weir flow at low heads
Primary		v Max=0 13	cfs @ 12	17 brs HW=305.00' (Free Discharge)

Primary OutFlow Max=0.13 cfs @ 12.17 hrs HW=305.00' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.13 cfs @ 0.77 fps)

Pond RG14:

Summary for Pond RG15:

[61] Hint: Exceeded Reach 10R outlet invert by 3.05' @ 12.10 hrs


Inflow Area	ı =	1.015 ac, 19.57% Impervious, Inflow Depth = 1.60" for 10-YR event
Inflow	=	I.83 cfs @ 12.09 hrs, Volume= 0.135 af
Outflow	=	1.82 cfs @ 12.10 hrs, Volume= 0.125 af, Atten= 1%, Lag= 0.6 min
Primary	=	1.82 cfs @ 12.10 hrs, Volume= 0.125 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.99' @ 12.10 hrs Surf.Area= 0 sf Storage= 520 cf

Plug-Flow detention time= 51.8 min calculated for 0.125 af (93% of inflow) Center-of-Mass det. time= 14.3 min (872.0 - 857.7)

Volume	Inve	rt Avail.Sto	rage S	torage Description
#1	298.00)' 5	24 cf C	ustom Stage DataListed below
Flovetion		Inc. Ctore		
Elevation		Inc.Store	Cum.St	
(feet)	(Cเ	ubic-feet)	(cubic-fe	eet)
298.00		0		0
299.00		110		110
300.00		110		220
300.25		28		248
300.75		184		432
301.00		92		524
Device R	louting	Invert	Outlet I	Devices
#1 P	rimary	300.75'	18.0" H	loriz. Orifice/Grate C= 0.600
	2		Limited	to weir flow at low heads

Primary OutFlow Max=1.81 cfs @ 12.10 hrs HW=300.99' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.81 cfs @ 1.60 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 250

Pond RG15:

Summary for Pond RG16:

[93] Warning: Storage range exceeded by 0.09'

[88] Warning: Qout>Qin may require Finer Routing>1

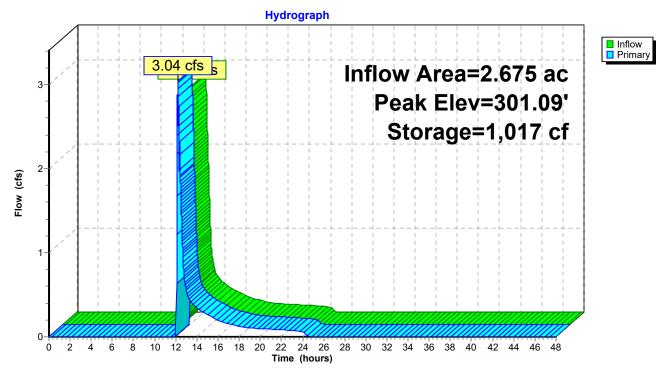
[85] Warning: Oscillations may require Finer Routing>1

[61] Hint: Exceeded Reach PS1 outlet invert by 0.09 @ 12.20 hrs

[61] Hint: Exceeded Reach PS2 outlet invert by 0.09' @ 12.20 hrs

Inflow Area =	2.675 ac,	4.94% Impervious, Inflow	/ Depth = 1.26"	for 10-YR event
Inflow =	2.84 cfs @	12.20 hrs, Volume=	0.280 af	
Outflow =	3.04 cfs @	12.20 hrs, Volume=	0.261 af, Atte	en= 0%, Lag= 0.0 min
Primary =	3.04 cfs @	12.20 hrs, Volume=	0.261 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.09' @ 12.20 hrs Surf.Area= 0 sf Storage= 1,017 cf


Plug-Flow detention time= 50.7 min calculated for 0.261 af (93% of inflow) Center-of-Mass det. time= 14.6 min (894.3 - 879.7)

Volume	١n	vert Avai	il.Storage	Storage Description
#1	298.	00'	1,017 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cun	n.Store
(fee	et)	(cubic-feet)	(cubi	ic-feet)
298.0	00	0		0
299.0	00	182		182
300.0	00	182		364
300.2	25	46		410
300.7	75	455		865
301.0	00	152		1,017
Device	Routing	<u>In</u>	<u>vert Out</u>	let Devices
#1	Primary	300	.75' 18.0)" Horiz. Orifice/Grate C= 0.600
			Lim	ited to weir flow at low heads
			6 0 10	

Primary OutFlow Max=3.03 cfs @ 12.20 hrs HW=301.09' (Free Discharge)

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 252

Pond RG16:

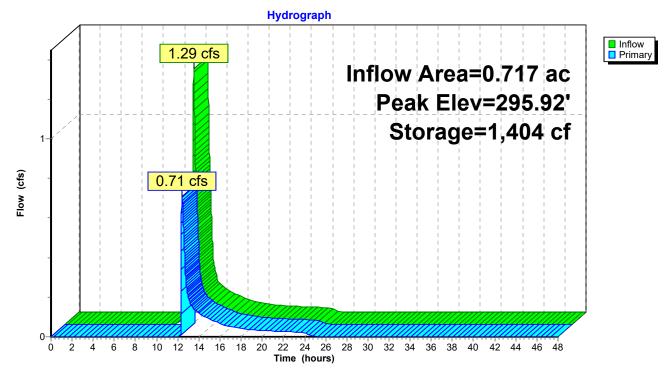
Summary for Pond RG19:

[62] Hint: Exceeded Reach PS6 OUTLET depth by 0.45' @ 43.13 hrs

Inflow Area =	0.717 ac, 23.42% Impervious, Inflow D	Depth = 1.74" for 10-YR event
Inflow =	1.29 cfs @ 12.19 hrs, Volume=	0.104 af
Outflow =	0.71 cfs @ 12.40 hrs, Volume=	0.076 af, Atten= 45%, Lag= 12.6 min
Primary =	0.71 cfs @ 12.40 hrs, Volume=	0.076 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 295.92' @ 12.40 hrs Surf.Area= 0 sf Storage= 1,404 cf

Plug-Flow detention time= 158.2 min calculated for 0.076 af (73% of inflow) Center-of-Mass det. time= 59.9 min (922.6 - 862.7)


Volume	Inver	t Avail.Sto	rage Storage	Description
#1	293.50	' 1,48	34 cf Custon	n Stage DataListed below
			a a /	
Elevatio	on li	nc.Store	Cum.Store	
(fee	et) (cu	bic-feet)	(cubic-feet)	
293.5	50	0	0	
293.7	' 5	73	73	
295.0	00	365	438	
295.2	25	73	511	
295.7	75	730	1,241	
296.0	00	243	1,484	
Device	Routing	Invert	Outlet Device	S
#1	Primary	292.63'	8.0" Round	Culvert
	,		L= 39.5' CP	P, projecting, no headwall, Ke= 0.900
				nvert= 292.63' / 292.23' S= 0.0101 '/' Cc= 0.900
			n= 0.011, Fl	ow Area= 0.35 sf
#2	Device 1	295.75'	12.0" Horiz.	Orifice/Grate C= 0.600
			Limited to we	ir flow at low heads

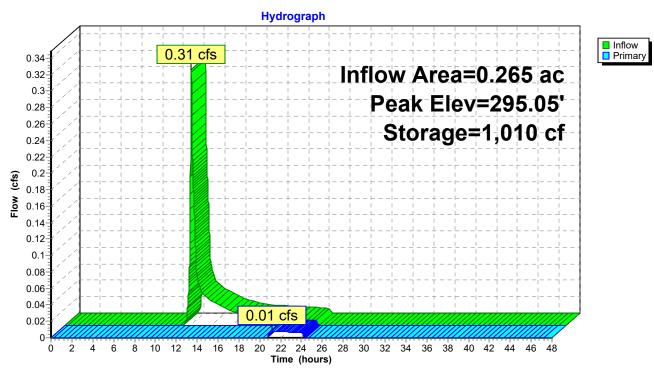
Primary OutFlow Max=0.71 cfs @ 12.40 hrs HW=295.92' (Free Discharge) **1=Culvert** (Passes 0.71 cfs of 2.28 cfs potential flow)

1-2=Orifice/Grate (Weir Controls 0.71 cfs @ 1.34 fps)

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 254

Pond RG19:

Summary for Pond RG20:


Inflow Area =	0.265 ac,	0.00% Impervious, Inflo	w Depth = 1.14" for 10-YR event
Inflow =	0.31 cfs @	12.10 hrs, Volume=	0.025 af
Outflow =	0.01 cfs @	21.21 hrs, Volume=	0.002 af, Atten= 97%, Lag= 546.3 min
Primary =	0.01 cfs @	21.21 hrs, Volume=	0.002 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 295.05' @ 21.21 hrs Surf.Area= 0 sf Storage= 1,010 cf

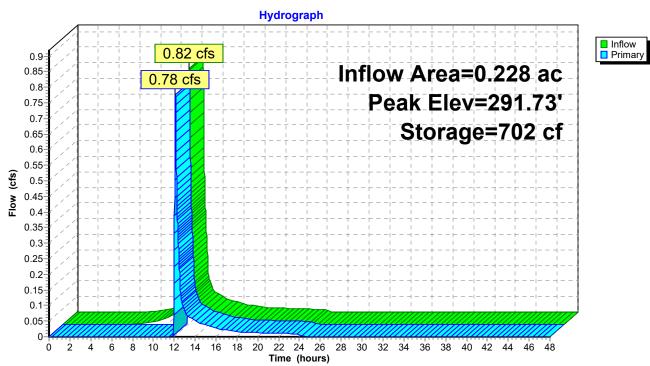
Plug-Flow detention time= 631.1 min calculated for 0.002 af (8% of inflow) Center-of-Mass det. time= 467.3 min (1,345.9 - 878.6)

Volume	Inv	ert Avai	I.Storage	Storage Description
#1	292.	47'	1,191 cf	Custom Stage DataListed below
_				
Elevatio	on	Inc.Store	Cum	m.Store
(fee	et) (cubic-feet)	(cubi	pic-feet)
292.4	17	0		0
292.5	55	18		18
292.8	30	55		73
294.3	30	330		403
294.5	55	55		458
295.0)5	550		1,008
295.3	30	183		1,191
Device	Routing	In	vert Outl	tlet Devices
#1	Primary	295		0" Horiz. Orifice/Grate C= 0.600 nited to weir flow at low heads
Primary		/ Max=0.00	cfs @ 21 3	21 brs_HW=295.05' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 21.21 hrs HW=295.05' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.00 cfs @ 0.19 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 256

Pond RG20:

Summary for Pond RG21:


Inflow Area =	0.228 ac,	67.95% Impervious,	Inflow Depth = 3.10'	for 10-YR event
Inflow =	0.82 cfs @	12.09 hrs, Volume=	= 0.059 af	
Outflow =	0.78 cfs @	12.11 hrs, Volume=	= 0.045 af, A	tten= 5%, Lag= 1.7 min
Primary =	0.78 cfs @	12.11 hrs, Volume=	= 0.045 af	
5	0			

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 291.73' @ 12.11 hrs Surf.Area= 0 sf Storage= 702 cf

Plug-Flow detention time= 131.8 min calculated for 0.045 af (77% of inflow) Center-of-Mass det. time= 49.8 min (857.4 - 807.6)

Volume	In	vert A	vail.Stor	rage	Storage De	scription				
#1	289	.62'	74	l9 cf	Custom St	age DataL	isted be	low		
Elevatio	on	Inc.Sto	re	Cum.	Store					
(fee	et)	(cubic-fee	et)	(cubic	-feet <u>)</u>					
289.6	62		0		0					
289.9	95	6	65		65					
290.2	20	2	9		114					
291.2	20	19	95		309					
291.4	45	2	19		358					
291.5	55	22	28		586					
291.8	30	16	63		749					
Device	Routing		Invert	Outle	t Devices					
#1	Primary	/ 2	291.55'	-	Horiz. Ori			00		
Drimon		w Max-0	77 cfc 6	م 101 ه	1 bre 니///-'	001 72' /E	Trop Die	abarga)		

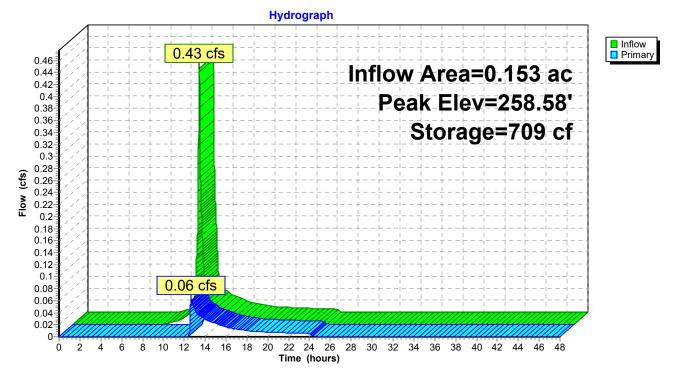
Primary OutFlow Max=0.77 cfs @ 12.11 hrs HW=291.73' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.77 cfs @ 1.38 fps)

Pond RG21:

Summary for Pond RG22:

Inflow Area =	0.153 ac, 15.01% Impervious, Inflow De	epth = 2.38" for 10-YR event
Inflow =	0.43 cfs @ 12.09 hrs, Volume=	0.030 af
Outflow =	0.06 cfs @12.67 hrs, Volume=	0.014 af, Atten= 86%, Lag= 35.0 min
Primary =	0.06 cfs @ 12.67 hrs, Volume=	0.014 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 258.58' @ 12.67 hrs Surf.Area= 0 sf Storage= 709 cf


Plug-Flow detention time= 253.0 min calculated for 0.014 af (48% of inflow) Center-of-Mass det. time= 134.3 min (965.2 - 830.9)

Volume	Inv	ert Avail.S	torage	Storage Description
#1	256.	22'	853 cf	Custom Stage DataListed below
			-	
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et) (cubic-feet)	(cubi	c-feet)
256.2	22	0		0
256.5	55	66		66
256.8	30	49		115
257.8	30	197		312
258.0)5	49		361
258.5	55	328		689
258.8	30	164		853
Device	Routing	Inve	rt Outle	et Devices
#1	Primary	258.55	-	" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads
Primary		/ Max=0.06 cfs	s @ 12 6	37 hrs HW=258 58' (Free Discharge)

Primary OutFlow Max=0.06 cfs @ 12.67 hrs HW=258.58' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.06 cfs @ 0.57 fps)

Type III 24-hr 10-YR Rainfall=4.60" Pine Hill Proposed Proposed Conditions_09102018 Prepared by SCCM-01 Printed 9/10/2018 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 260

Pond RG22:

Summary for Pond RG23:

[63] Warning: Exceeded Reach 21R INLET depth by 3.85' @ 27.92 hrs

Inflow Area =	0.183 ac, 16.37% Impervious, Inflow D	epth = 1.36" for 10-YR event
Inflow =	0.09 cfs @ 12.09 hrs, Volume=	0.021 af
Outflow =	0.03 cfs @ 14.77 hrs, Volume=	0.010 af, Atten= 68%, Lag= 160.8 min
Primary =	0.03 cfs @ 14.77 hrs, Volume=	0.010 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.87' @ 14.77 hrs Surf.Area= 0 sf Storage= 472 cf

Plug-Flow detention time= 319.4 min calculated for 0.010 af (49% of inflow) Center-of-Mass det. time= 163.6 min (1,087.2 - 923.6)

Volume	Inv	ert Avail.S	Storage	Storage Description
#1	255.2	27'	568 cf	Custom Stage DataListed below
			-	
Elevatior	-	Inc.Store	Cum	m.Store
(feet) (cubic-feet)	(cubi	pic-feet)
255.27	7	0		0
255.60)	41		41
255.85	5	31		72
257.10)	155		227
257.35	5	31		258
257.85	5	207		465
258.10)	103		568
Device	Routing	Inve	rt Outle	tlet Devices
#1	Primary	257.8	5' 12.0	0" Horiz. Orifice/Grate C= 0.600
	•		Limi	nited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 14.77 hrs HW=257.87' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.02 cfs @ 0.44 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 10-YR Rainfall=4.60" Prepared by SCCM-01 Printed 9/10/2018 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 262

Hydrograph Inflow 0.09 cfs Primary 0.095 Inflow Area=0.183 ac 0.09 0.085 Peak Elev=257.87' 0.08 0.075 Storage=472 cf 0.07 0.065 0.06 Flow (cfs) 0.055 0.05 0.045 0.04 0.035 0.03 cfs 0.03 0.025 0.02 0.015 0.01

Pond RG23:

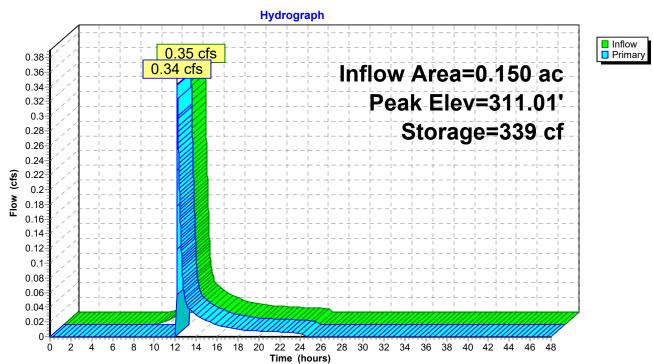
0.005 0-

Ó

2 22 24 26 8 10 12 14 16 18 20 28 30 32 34 36 38 40 42 44 46 48 4 6 Time (hours)

Summary for Pond RG3:

[93] Warning: Storage range exceeded by 0.01'


Inflow Area =	0.150 ac, 46.64% Impervious, Inflow D	Depth = 2.38" for 10-YR event
Inflow =	0.35 cfs @ 12.16 hrs, Volume=	0.030 af
Outflow =	0.34 cfs @ 12.20 hrs, Volume=	0.023 af, Atten= 1%, Lag= 2.2 min
Primary =	0.34 cfs @ 12.20 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 311.01' @ 12.20 hrs Surf.Area= 0 sf Storage= 339 cf

Plug-Flow detention time= 130.6 min calculated for 0.023 af (77% of inflow) Center-of-Mass det. time= 46.0 min (882.1 - 836.1)

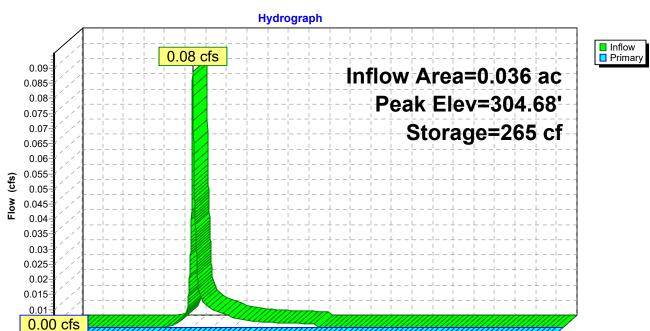
Volume	Inver	t Avail.Stor	rage Storage	Description
#1	309.50	' 33	39 cf Custom	Stage DataListed below
Elevatior (feet 309.50 309.75 310.25 310.50 311.00) (cu) 5)	nc.Store bic-feet) 0 32 63 32 212	Cum.Store (cubic-feet) 0 32 95 127 339	
-	Routing Primary	Invert 310.90'	Head (feet) 0 2.50 3.00 3.5 Coef. (English	O' breadth Broad-Crested Rectangular Weir .20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .60 4.00 4.50 5.00 5.50

Primary OutFlow Max=0.34 cfs @ 12.20 hrs HW=311.01' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.34 cfs @ 0.78 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 264

Pond RG3:

Summary for Pond RG4:

Inflow Area =	0.036 ac, 34.97% Impervious, Inflow	Depth = 2.05" for 10-YR event
Inflow =	0.08 cfs @ 12.09 hrs, Volume=	0.006 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 304.68' @ 24.34 hrs Surf.Area= 0 sf Storage= 265 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.	Storage	Storage Description
#1	302.	42'	743 cf	Custom Stage DataListed below
			•	
Elevatio		Inc.Store	-	n.Store
(fee	et) (cubic-feet)	(cubi	<u>c-feet)</u>
302.4	12	0		0
302.7	75	39		39
303.0	00	29		68
306.0	00	352		420
306.2	25	29		449
306.7	75	196		645
307.0	00	98		743
Device	Routing	Inv	ert Outl	et Devices
#1	Primary	306.7	75' 12.0	"Horiz. Orifice/Grate C= 0.600
	,		Limi	ted to weir flow at low heads
D	0.4Flav	· Max-0.00 a	f- @ 0 00	$\Delta hras = 110/-200(40!)$ (Error Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.42' (Free Discharge)

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr10-YR Rainfall=4.60"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 266

10 12 14 16 18 20

22

24 26

Time (hours)

28 30 32 34 36 38 40 42 44 46 48

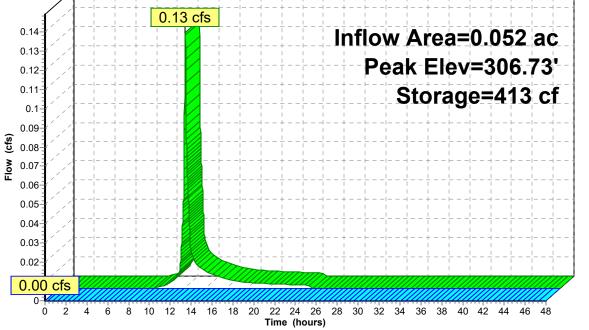
0 2 4 6 8

Pond RG4:

Summary for Pond RG5:

Inflow Area =	0.052 ac, 40.18% Impervious, Ir	nflow Depth = 2.21" for 10-YR event
Inflow =	0.13 cfs @ 12.09 hrs, Volume=	0.009 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.73' @ 24.34 hrs Surf.Area= 0 sf Storage= 413 cf


Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	vert Ava	il.Storage	Storage Description
#1	302	.67'	486 cf	Custom Stage DataListed below
_			-	
Elevatio		Inc.Store	-	n.Store
(fee	et)	(cubic-feet)	(cub	ic-feet)
302.6	67	0		0
302.7	75	7		7
303.0	00	20		27
306.0	00	239		266
306.2	25	20		286
306.7	75	133		419
307.0	00	67		486
Device	Routing	ı İr	nvert Out	let Devices
#1	Primary	306	6.75' 12.	0" Horiz. Orifice/Grate C= 0.600
			Lim	ited to weir flow at low heads
D		Max-0.00		0 hrs 1 N - 200 GZ (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.67' (Free Discharge)

Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 10-YR Rainfall=4.60" Prepared by SCCM-01 Printed 9/10/2018 HydroCAD® 10.00 s/n 03895 @ 2012 HydroCAD Software Solutions LLC Page 268

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 268
Pond RG5:
Hydrograph
0.13 cfs

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr 25-YR Rainfall=5.30"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 269

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (n	ew Subcat)	Runoff Area=6			Depth=1.86" cfs 0.025 af
Subcatchment2S: Ro	bad	Runoff Area=12			Depth=3.16" cfs 0.076 af
Subcatchment3S: Ur		Runoff Area=8 Flow Length=525'			
Subcatchment4S:		Runoff Area=8 Flow Length=525'			
Subcatchment 5S:		Runoff Area=3,0			Depth=5.06" cfs 0.030 af
Subcatchment7S: (n	ew Subcat)	Runoff Area=6			Depth=4.17" cfs 0.052 af
Subcatchment8S: (n	ew Subcat)	Runoff Area=17			Depth=2.26" cfs 0.075 af
Subcatchment9S:		Runoff Area=1,9			Depth=5.06" cfs 0.019 af
Subcatchment10S: (new Subcat)	Runoff Area=25 Flow Length=128	•	•	
Subcatchment11S:		Runoff Area=23			Depth=2.18" cfs 0.099 af
Subcatchment12S:	Flow Length=485	Runoff Area=3 5' Slope=0.0350 '/			
Subcatchment13S:	Flow Length=331'	Runoff Area=6 Slope=0.0100 '/'			
Subcatchment14S:		Runoff Area=34 Flow Length=172			
Subcatchment15S:	Flow Length=1,115'	Runoff Area=3 Slope=0.0050 '/'			
Subcatchment16S:		Runoff Area=4,6			Depth=5.06" cfs 0.045 af
Subcatchment CUL: ((new Subcat)	Runoff Area=10			Depth=2.43" cfs 0.049 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 270		
SubcatchmentP1:	Runoff Area=98,881 sf 5.04% Impervious Runoff Depth=1.70" Flow Length=650' Tc=12.2 min CN=63 Runoff=3.47 cfs 0.322 af	
Subcatchment P2:	Runoff Area=10,702 sf 0.00% Impervious Runoff Depth=1.55" Flow Length=344' Tc=8.6 min CN=61 Runoff=0.38 cfs 0.032 af	
SubcatchmentS1:	Runoff Area=1,539 sf 96.04% Impervious Runoff Depth=4.95" Tc=6.0 min CN=97 Runoff=0.18 cfs 0.015 af	
SubcatchmentS10:	Runoff Area=2,106 sf 30.86% Impervious Runoff Depth=2.43" Tc=6.0 min CN=72 Runoff=0.14 cfs 0.010 af	
SubcatchmentS11:	Runoff Area=1,858 sf 62.65% Impervious Runoff Depth=3.55" Tc=6.0 min CN=84 Runoff=0.18 cfs 0.013 af	
SubcatchmentS12:	Runoff Area=9,267 sf 23.47% Impervious Runoff Depth=2.26" Tc=6.0 min CN=70 Runoff=0.56 cfs 0.040 af	
SubcatchmentS13:	Runoff Area=4,314 sf 53.64% Impervious Runoff Depth=3.25" Tc=6.0 min CN=81 Runoff=0.38 cfs 0.027 af	
SubcatchmentS14:	Runoff Area=2,371 sf 64.02% Impervious Runoff Depth=3.65" Tc=6.0 min CN=85 Runoff=0.23 cfs 0.017 af	
SubcatchmentS15:	Runoff Area=44,214 sf 19.57% Impervious Runoff Depth=2.10" Tc=6.0 min CN=68 Runoff=2.44 cfs 0.177 af	
SubcatchmentS19:	Runoff Area=31,232 sf 23.42% Impervious Runoff Depth=2.26" Tc=6.0 min CN=70 Runoff=1.88 cfs 0.135 af	
SubcatchmentS2:	Runoff Area=0.550 ac 12.73% Impervious Runoff Depth=1.94" Tc=6.0 min CN=66 Runoff=1.21 cfs 0.089 af	
Subcatchment S20:	Runoff Area=11,551 sf 0.00% Impervious Runoff Depth=1.55" Tc=6.0 min CN=61 Runoff=0.45 cfs 0.034 af	
SubcatchmentS21:	Runoff Area=9,941 sf 67.95% Impervious Runoff Depth=3.75" Tc=6.0 min CN=86 Runoff=0.99 cfs 0.071 af	
Subcatchment S22: Stow Road South	Runoff Area=6,662 sf 15.01% Impervious Runoff Depth=2.97" Tc=6.0 min CN=78 Runoff=0.53 cfs 0.038 af	
Subcatchment S23: Stow Road South	Runoff Area=1,297 sf 23.36% Impervious Runoff Depth=3.16" Tc=6.0 min CN=80 Runoff=0.11 cfs 0.008 af	
SubcatchmentS3:	Runoff Area=6,554 sf 46.64% Impervious Runoff Depth=2.97" Flow Length=426' Tc=11.6 min CN=78 Runoff=0.44 cfs 0.037 af	
SubcatchmentS4:	Runoff Area=1,550 sf 34.97% Impervious Runoff Depth=2.61" Tc=6.0 min CN=74 Runoff=0.11 cfs 0.008 af	
SubcatchmentS5:	Runoff Area=2,245 sf 40.18% Impervious Runoff Depth=2.78" Tc=6.0 min CN=76 Runoff=0.17 cfs 0.012 af	

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 271

SubcatchmentSBS:	Runoff Area=6,892 sf 15.19% Impervious Runoff Depth=2.97" Tc=6.0 min CN=78 Runoff=0.55 cfs 0.039 af
	Avg. Flow Depth=0.52' Max Vel=6.08 fps Inflow=2.50 cfs 0.159 af L=72.0' S=0.0125 '/' Capacity=4.71 cfs Outflow=2.49 cfs 0.159 af
Reach 4R: 12.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.09' Max Vel=5.24 fps Inflow=0.18 cfs 0.015 af L=22.0' S=0.0682 '/' Capacity=10.99 cfs Outflow=0.18 cfs 0.015 af
	Avg. Flow Depth=0.82' Max Vel=1.95 fps Inflow=8.49 cfs 0.980 af =845.0' S=0.0100 '/' Capacity=11.78 cfs Outflow=7.79 cfs 0.980 af
Reach 6R: new 8.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.12' Max Vel=2.33 fps Inflow=0.10 cfs 0.013 af L=197.0' S=0.0100 '/' Capacity=1.43 cfs Outflow=0.10 cfs 0.013 af
Reach 7R: 12.0" Round Pipe n=0.014	Avg. Flow Depth=0.10' Max Vel=4.66 fps Inflow=0.18 cfs 0.015 af L=88.0' S=0.0795 '/' Capacity=9.33 cfs Outflow=0.18 cfs 0.015 af
Reach 8R: new 8.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.21' Max Vel=6.06 fps Inflow=0.56 cfs 0.040 af L=128.0' S=0.0353 '/' Capacity=2.68 cfs Outflow=0.55 cfs 0.040 af
Reach 9R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.16' Max Vel=3.38 fps Inflow=0.22 cfs 0.011 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=0.22 cfs 0.011 af
Reach 10R: new 18.0" Round Pipe n=0.011 I	Avg. Flow Depth=0.00' Max Vel=0.00 fps L=84.0' S=0.0400 '/' Capacity=24.83 cfs Outflow=0.00 cfs 0.000 af
Reach 11R: new 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.67' Max Vel=5.56 fps Inflow=2.53 cfs 0.167 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=1.78 cfs 0.167 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 13R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 14R: (new Reach) 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.06' Max Vel=2.00 fps Inflow=0.03 cfs 0.011 af L=33.0' S=0.0173 '/' Capacity=1.88 cfs Outflow=0.03 cfs 0.011 af
Reach 15R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.10' Max Vel=2.75 fps Inflow=0.09 cfs 0.007 af L=18.0' S=0.0167 '/' Capacity=1.84 cfs Outflow=0.09 cfs 0.007 af
Reach 16R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.05' Max Vel=1.88 fps Inflow=0.02 cfs 0.007 af L=36.0' S=0.0194 '/' Capacity=1.99 cfs Outflow=0.02 cfs 0.007 af
Reach 17R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.67' Max Vel=8.44 fps Inflow=4.19 cfs 0.359 af L=67.0' S=0.0328 '/' Capacity=2.59 cfs Outflow=2.66 cfs 0.359 af
Reach 18R: New 8.0" Round Pipe n=0.011	Avg. Flow Depth=0.03' Max Vel=1.31 fps Inflow=0.01 cfs 0.002 af L=16.0' S=0.0200 '/' Capacity=2.02 cfs Outflow=0.01 cfs 0.002 af

Prepared by SCCM-01	osed Conditions_09102018 Type III 24-hr 25-YR Rainfall=5.30" Printed 9/10/2018 Printed 9/10/2018 2012 HydroCAD Software Solutions LLC Page 272
Reach 19R: (new Reach) 8.0" Round Pip	Avg. Flow Depth=0.22' Max Vel=9.35 fps Inflow=0.94 cfs 0.058 af be n=0.011 L=47.0' S=0.0781 '/' Capacity=3.99 cfs Outflow=0.94 cfs 0.058 af
Reach 20R: 12" RCP pipe 12.0" Round Pip	Avg. Flow Depth=0.30' Max Vel=5.32 fps Inflow=1.06 cfs 0.076 af be n=0.013 L=22.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=1.06 cfs 0.076 af
Reach 21R: (new Reach) 8.0" Round Pip	Avg. Flow Depth=0.20' Max Vel=2.27 fps Inflow=0.20 cfs 0.022 af oe n=0.011 L=50.0' S=0.0050 '/' Capacity=1.01 cfs Outflow=0.20 cfs 0.022 af
Reach CB1: CB1 12.0" Round Pip	Avg. Flow Depth=0.30' Max Vel=8.03 fps Inflow=1.60 cfs 0.121 af be n=0.011 L=27.0' S=0.0370 '/' Capacity=8.10 cfs Outflow=1.60 cfs 0.121 af
Reach CP1:	Inflow=1.61 cfs 0.119 af Outflow=1.61 cfs 0.119 af
Reach CP2:	Inflow=20.15 cfs 2.982 af Outflow=20.15 cfs 2.982 af
Reach PS1:	Avg. Flow Depth=0.43' Max Vel=4.55 fps Inflow=3.47 cfs 0.322 af n=0.035 L=228.0' S=0.0658 '/' Capacity=20.22 cfs Outflow=3.46 cfs 0.322 af
Reach PS10A:	Avg. Flow Depth=0.08' Max Vel=1.80 fps Inflow=0.18 cfs 0.015 af n=0.035 L=18.0' S=0.0833 '/' Capacity=261.94 cfs Outflow=0.18 cfs 0.015 af
Reach PS10B:	Avg. Flow Depth=0.09' Max Vel=1.70 fps Inflow=0.18 cfs 0.015 af n=0.035 L=42.0' S=0.0714 '/' Capacity=242.51 cfs Outflow=0.18 cfs 0.015 af
Reach PS2:	Avg. Flow Depth=0.15' Max Vel=2.24 fps Inflow=0.33 cfs 0.025 af n=0.035 L=31.0' S=0.0645 '/' Capacity=20.02 cfs Outflow=0.33 cfs 0.025 af
Reach PS3:	Avg. Flow Depth=0.18' Max Vel=2.68 fps Inflow=0.56 cfs 0.040 af n=0.035 L=58.0' S=0.0690 '/' Capacity=20.70 cfs Outflow=0.56 cfs 0.040 af
Reach PS4:	Avg. Flow Depth=0.19' Max Vel=1.77 fps Inflow=0.38 cfs 0.027 af n=0.035 L=34.0' S=0.0294 '/' Capacity=13.52 cfs Outflow=0.38 cfs 0.027 af
Reach PS6: (new Reach)	Avg. Flow Depth=0.47' Max Vel=2.02 fps Inflow=1.88 cfs 0.135 af n=0.035 L=398.0' S=0.0118 '/' Capacity=8.56 cfs Outflow=1.71 cfs 0.135 af
Reach PS7: (new Reach)	Avg. Flow Depth=0.38' Max Vel=3.78 fps Inflow=2.62 cfs 0.159 af n=0.035 L=303.0' S=0.0528 '/' Capacity=81.69 cfs Outflow=2.50 cfs 0.159 af
Reach PS8: (new Reach)	Avg. Flow Depth=0.69' Max Vel=3.94 fps Inflow=8.54 cfs 0.966 af n=0.023 L=40.0' S=0.0112 '/' Capacity=80.78 cfs Outflow=8.52 cfs 0.966 af
Reach PS9: (new Reach)	Avg. Flow Depth=0.33' Max Vel=2.11 fps Inflow=1.07 cfs 0.076 af n=0.035 L=75.0' S=0.0200 '/' Capacity=11.15 cfs Outflow=1.06 cfs 0.076 af
Pond 1P: (new Pond)	Peak Elev=301.74' Inflow=0.78 cfs 0.065 af 18.0" Round Culvert n=0.011 L=85.0' S=0.0412 '/' Outflow=0.78 cfs 0.065 af
Pond 2P: (new Pond)	Peak Elev=298.53' Inflow=2.48 cfs 0.232 af 18.0" Round Culvert n=0.011 L=47.0' S=0.0362 '/' Outflow=2.48 cfs 0.232 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 273

Pond 3P: MH2B	Peak Elev=284.79' Inflow=7.05 cfs 0.859 af 24.0" Round Culvert n=0.011 L=72.0' S=0.0200 '/' Outflow=7.05 cfs 0.859 af
Pond 4P: Constructed Wetla Pri	nd Peak Elev=260.59' Storage=23,598 cf Inflow=13.82 cfs 1.381 af mary=8.87 cfs 1.380 af Secondary=0.00 cfs 0.000 af Outflow=8.87 cfs 1.380 af
Pond 5P: MH2A	Peak Elev=278.85' Inflow=7.92 cfs 0.917 af 24.0" Round Culvert n=0.011 L=60.0' S=0.0200 '/' Outflow=7.92 cfs 0.917 af
Pond 20P: (new Pond)	Peak Elev=266.08' Inflow=8.15 cfs 0.936 af 24.0" Round Culvert n=0.011 L=160.0' S=0.0200 '/' Outflow=8.15 cfs 0.936 af
Pond BS: Bus Station RG	Peak Elev=257.57' Storage=2,058 cf Inflow=2.15 cfs 0.160 af Outflow=2.11 cfs 0.117 af
Pond CB2: (new Pond)	Peak Elev=262.35' Inflow=0.37 cfs 0.030 af 12.0" Round Culvert n=0.011 L=10.0' S=0.0100 '/' Outflow=0.37 cfs 0.030 af
Pond CB3: (new Pond)	Peak Elev=277.47' Inflow=0.24 cfs 0.019 af 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.24 cfs 0.019 af
Pond CB4: (new Pond)	Peak Elev=294.18' Inflow=0.71 cfs 0.052 af 12.0" Round Culvert n=0.011 L=7.0' S=0.0286 '/' Outflow=0.71 cfs 0.052 af
Pond CB5: (new Pond)	Peak Elev=294.50' Inflow=1.04 cfs 0.075 af 12.0" Round Culvert n=0.011 L=17.0' S=0.0235 '/' Outflow=1.04 cfs 0.075 af
Pond CULdeSAC: Cul-de-sa	c Peak Elev=299.89' Storage=2,146 cf Inflow=0.69 cfs 0.049 af Outflow=0.00 cfs 0.000 af
Pond MH1: (new Pond)	Peak Elev=262.65' Inflow=8.54 cfs 0.966 af 30.0" Round Culvert n=0.013 L=35.0' S=0.0100 '/' Outflow=8.54 cfs 0.966 af
Pond MH2: (new Pond)	Peak Elev=271.98' Inflow=8.15 cfs 0.936 af 24.0" Round Culvert n=0.011 L=125.0' S=0.0200 '/' Outflow=8.15 cfs 0.936 af
Pond MH3: (new Pond)	Peak Elev=290.41' Inflow=7.05 cfs 0.848 af 24.0" Round Culvert n=0.011 L=33.0' S=0.0200 '/' Outflow=7.05 cfs 0.848 af
Pond MH4:	Peak Elev=300.21' Inflow=0.18 cfs 0.024 af 18.0" Round Culvert n=0.011 L=169.0' S=0.0200 '/' Outflow=0.18 cfs 0.024 af
Pond MH5:	Peak Elev=301.31' Inflow=0.18 cfs 0.015 af 18.0" Round Culvert n=0.011 L=56.0' S=0.0107 '/' Outflow=0.18 cfs 0.015 af
Pond MH6: CB6	Peak Elev=294.05' Inflow=5.26 cfs 0.615 af 24.0" Round Culvert n=0.011 L=101.0' S=0.0200 '/' Outflow=5.26 cfs 0.615 af
Pond RG10:	Peak Elev=306.87' Storage=430 cf Inflow=0.17 cfs 0.017 af Outflow=0.02 cfs 0.007 af

Pine Hill Proposed Proposed Conditi Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD	-	Type III 24-hr 25-YR Rainfall=5.30" Printed 9/10/2018 C Page 274
Pond RG11:	Peak Elev=306.89'	Storage=243 cf Inflow=0.18 cfs 0.013 af Outflow=0.09 cfs 0.007 af
Pond RG12:	Peak Elev=310.2	28' Storage=1 cf Inflow=0.56 cfs 0.040 af Outflow=0.56 cfs 0.040 af
Pond RG13:	Peak Elev=307.99'	Storage=620 cf Inflow=0.38 cfs 0.027 af Outflow=0.10 cfs 0.013 af
Pond RG14:	Peak Elev=305.03'	Storage=236 cf Inflow=0.23 cfs 0.017 af Outflow=0.22 cfs 0.011 af
Pond RG15:	Peak Elev=301.05'	Storage=524 cf Inflow=2.44 cfs 0.177 af Outflow=2.53 cfs 0.167 af
Pond RG16:	Peak Elev=301.17' S	Storage=1,017 cf Inflow=4.00 cfs 0.378 af Outflow=4.19 cfs 0.359 af
Pond RG19:	Peak Elev=296.01' S	Storage=1,484 cf Inflow=1.71 cfs 0.135 af Outflow=1.40 cfs 0.107 af
Pond RG20:	Peak Elev=295.06' S	Storage=1,017 cf Inflow=0.45 cfs 0.034 af Outflow=0.03 cfs 0.011 af
Pond RG21:	Peak Elev=291.75'	Storage=718 cf Inflow=0.99 cfs 0.071 af Outflow=0.94 cfs 0.058 af
Pond RG22:	Peak Elev=258.62'	Storage=737 cf Inflow=0.53 cfs 0.038 af Outflow=0.20 cfs 0.022 af
Pond RG23:	Peak Elev=257.89'	Storage=480 cf Inflow=0.25 cfs 0.030 af Outflow=0.07 cfs 0.019 af
Pond RG3:	Peak Elev=311.03'	Storage=339 cf Inflow=0.44 cfs 0.037 af Outflow=0.47 cfs 0.030 af
Pond RG4:	Peak Elev=305.29'	Storage=337 cf Inflow=0.11 cfs 0.008 af Outflow=0.00 cfs 0.000 af
Pond RG5:	Peak Elev=306.75'	Storage=420 cf Inflow=0.17 cfs 0.012 af Outflow=0.01 cfs 0.002 af

Total Runoff Area = 16.749 acRunoff Volume = 3.374 afAverage Runoff Depth = 2.42"86.64% Pervious = 14.511 ac13.36% Impervious = 2.238 ac

Summary for Subcatchment 1S: (new Subcat)

Runoff 0.33 cfs @ 12.09 hrs, Volume= 0.025 af, Depth= 1.86" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

(cfs)

0.2 **8** 0.18 0.16

> 0.14 0.12 0.1 0.08 0.06 0.04 0.02

> > Ó 2

4 6 8

10

12 14 16 18

20

22 24 26

Time (hours)

28 30

A	rea (sf)	CN D	escription									
	771	98 F	98 Paved parking & roofs									
	6,156	61 >	75% Gras	s cover, Go	ood, HSG E							
	6,927		Veighted A									
	6,156	-		rvious Area								
	771	1	1.13% Imp	pervious Ar	ea							
Тс	Length	Slope	Velocity	Capacity	Descriptio	n						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	I							
6.0					Direct Er	itry,						
			Su	bcatchm	ent 1S: (r	iew Si	ubcat	:)				
				Hydro	graph							
				+ +		++			+ + -	+		
0.36			.33 cfs			+ +		 	· + + -		Runoff	
0.34								Tync	simi s	24-hr	-	
0.32		$ \frac{1}{1} \frac{1}{1} -$		$-\frac{1}{1}\frac{1}{1}\frac{1}{1}$	$-\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1} = -\frac{1}{1}$		1		- I - I -	- I I	-	
0.3-												
0.28		Runoff Area=6,927 sf										
0.26	1 / I I		Runoff Volume=0.025 af									
0.26-0.24-	ו ו 	$ \frac{1}{1} \frac{1}{1} - \frac{1}{1} $			Ru		1					

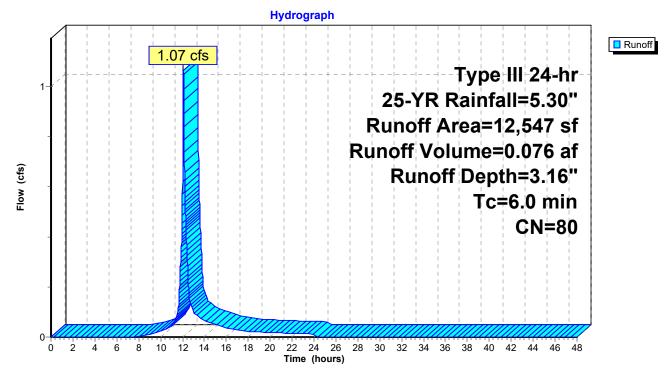
Runoff Depth=1.86"

32 34 36 38 40 42 44 46 48

Tc=6.0 min

CN=65

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00s/n 03895© 2012 HydroCAD Software Solutions LLCPage 276

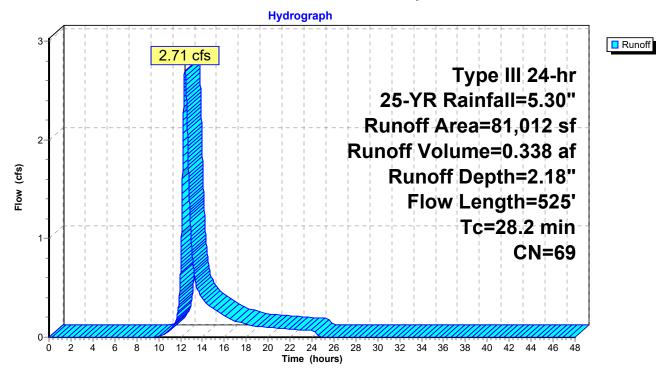

Summary for Subcatchment 2S: Road

Runoff = 1.07 cfs @ 12.09 hrs, Volume= 0.076 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

	A	rea (sf)	CN	Description						
*		4,975	74	>75% Gras	s cover, Go	lood, HSG C				
*		3,197	98	Impervious						
*		4,375	73	Woods, Fai	r, HSG C					
		12,547	80 Weighted Average							
		9,350		74.52% Pervious Area						
		3,197		25.48% Imp	pervious Ar	rea				
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	,	(cfs)	I I I I I I I I I I I I I I I I I I I				
	6.0					Direct Entry,				

Subcatchment 2S: Road


Summary for Subcatchment 3S: Undeveloped Area

Runoff = 2.71 cfs @ 12.41 hrs, Volume= 0.338 af, Depth= 2.18"

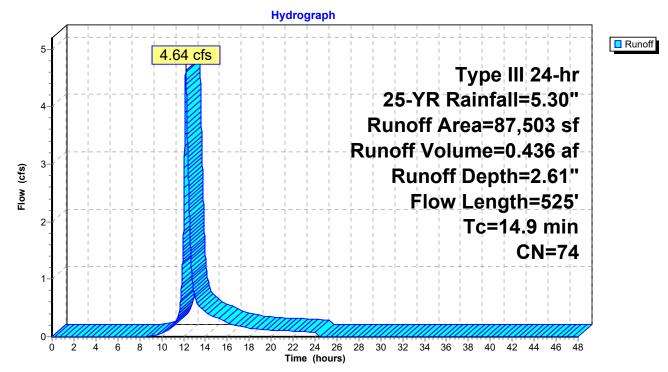
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

_	A	rea (sf)	CN	Description								
*		26,806	61	>75% grass cover, good, HSG B								
_		54,206	73	Woods, Fai	r, HSG Ć							
		81,012	69	Weighted A	verage							
	81,012 100.00% Pervious Area											
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
_	8.2	50	0.0605	, , , , , , , , , , , , , , , , , , ,	(0.0)	Sheet Flow,						
	20.0	475	0.0250			Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps						
	28.2	525	Total									

Subcatchment 3S: Undeveloped Area

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr 25-YR Rainfall=5.30"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 278

Summary for Subcatchment 4S:


Runoff = 4.64 cfs @ 12.20 hrs, Volume= 0.436 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

_	A	rea (sf)	CN	Description									
*		62,598	73	Noods, Fair, HSG C									
		2,061	98	Paved park	ing & roofs								
_		22,844	74	>75% Ġras	s cover, Go	bod, HSG C							
		87,503	74	Weighted Average									
		85,442		97.64% Pei	vious Area	l							
		2,061		2.36% Impe	ervious Are	a							
	Tc	Length	Slope	Velocity	Capacity	Description							
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	4.9	50	0.0300	0.17		Sheet Flow,							
						Grass: Short n= 0.150 P2= 3.00"							
	10.0	475	0.0250	0.79		Shallow Concentrated Flow,							
_						Woodland Kv= 5.0 fps							
	110	525	Total										

14.9 525 Total

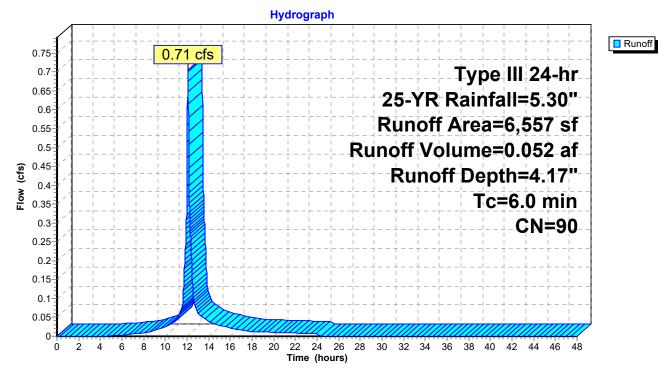
Subcatchment 4S:

Summary for Subcatchment 5S:

Runoff = 0.37 cfs @ 12.08 hrs, Volume= 0.030 af, Depth= 5.06"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

A	<u>rea (sf)</u> 3,065		Descrip Paved		na &	roo	fs													
	3,065		100.00					ea												
Tc (min)	Length (feet)	Slope (ft/ft)			Cap	oacit (cfs		Descr	iptio	on										
6.0								Direc	t Er	ntry	,									
					:	Sub	ca	tchm	en	t 5	S:									
						Hyd	rogı	raph												
0.4 0.38 0.36 0.34 0.28 0.26 0.24 0.22 0.22 0.22 0.18 0.16 0.14 0.12 0.11 0.08 0.06 0.04 0.02			0.37 cf:	S					Ru	R	un off	of Ve	R f A olu	aiı tre tm De	nfa a= e=	ill all= 3,(c).(th= 6.	=5. 06 03 =5.	30 5 s 0 a 06 mi)" sf af)"	Runo
0-	0 2 4	68	í 12 1	4 16	18			24 26 (hours)	28	30	32	34	36	38	40	42	44	46	48	

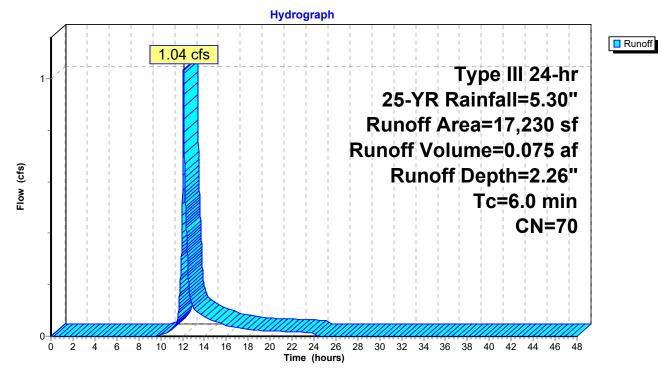

Summary for Subcatchment 7S: (new Subcat)

Runoff = 0.71 cfs @ 12.08 hrs, Volume= 0.052 af, Depth= 4.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

	A	rea (sf)	CN	Description								
*		5,183	98	Impervious								
*		1,374	61	>75% grass	75% grass cover, good, HSG B							
		6,557			Veighted Average							
		1,374		20.95% Pervious Area								
		5,183		79.05% Imp	pervious Ar	ea						
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
	6.0					Direct Entry,						

Subcatchment 7S: (new Subcat)

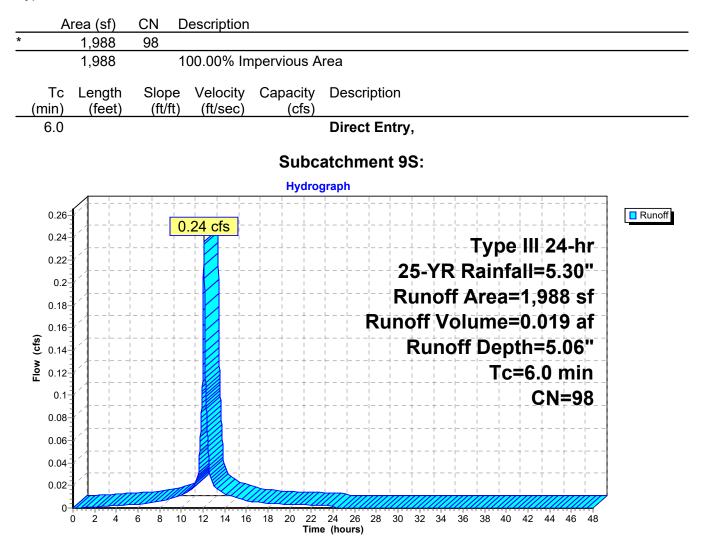

Summary for Subcatchment 8S: (new Subcat)

Runoff = 1.04 cfs @ 12.09 hrs, Volume= 0.075 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

_	A	rea (sf)	CN	Description								
*		4,188	98	Impervious								
*		13,042	61	>75% grass	75% grass cover, good, HSG B							
		17,230 13,042 4,188		Weighted A 75.69% Pei 24.31% Imp	vious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description						
	6.0					Direct Entry,						

Subcatchment 8S: (new Subcat)

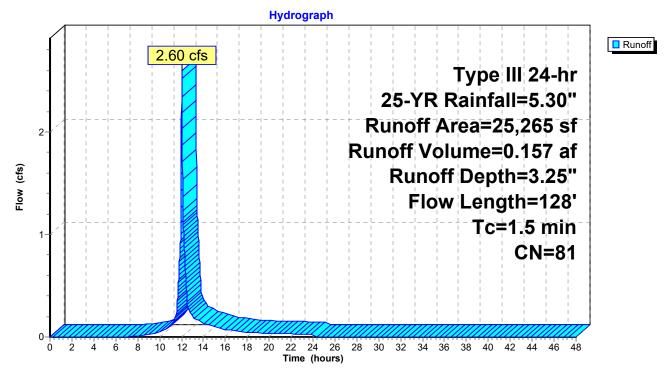


Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 282

Summary for Subcatchment 9S:

Runoff = 0.24 cfs @ 12.08 hrs, Volume= 0.019 af, Depth= 5.06"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

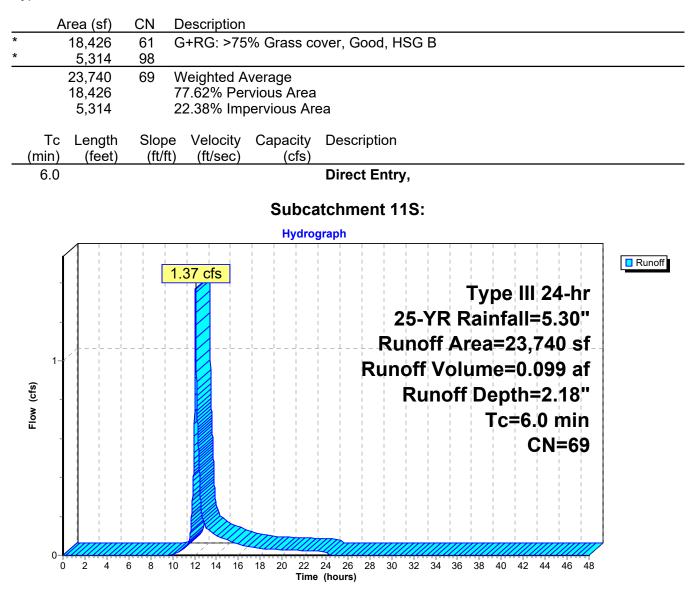

Summary for Subcatchment 10S: (new Subcat)

Runoff = 2.60 cfs @ 12.02 hrs, Volume= 0.157 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

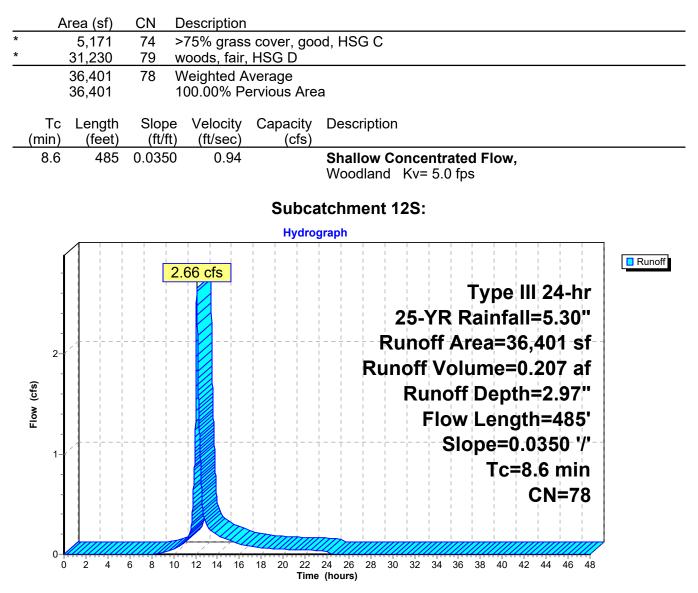
<i>F</i>	Area (sf)	CN E	Description									
	7,231	98 F	Paved parking & roofs									
	18,034	74 >	75% Grass cover, Good, HSG C									
	25,265	81 V	Weighted Average									
	18,034	7	1.38% Per	vious Area								
	7,231	2	8.62% Imp	pervious Are	ea							
Tc (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
0.7	50	0.0200	1.16		Sheet Flow,							
0.8	78	0.0500	1.57		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps							
1.5	128	Total										

Subcatchment 10S: (new Subcat)

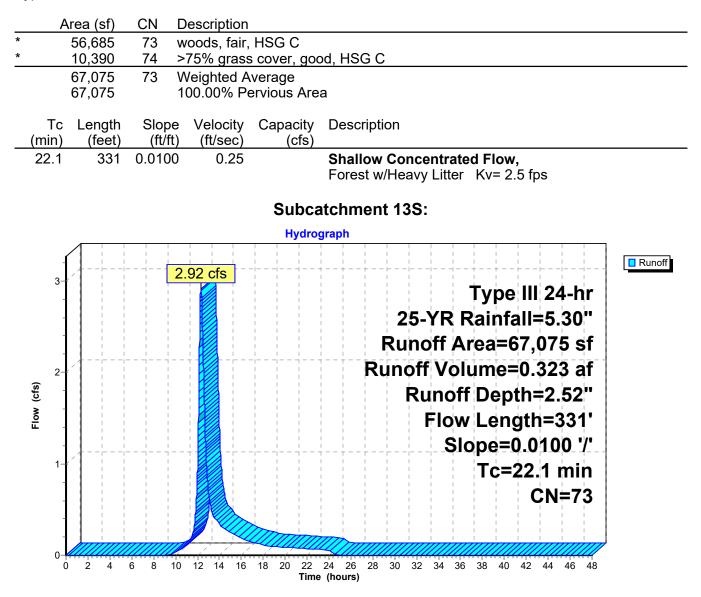


Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 284

Summary for Subcatchment 11S:


Runoff = 1.37 cfs @ 12.09 hrs, Volume= 0.099 af, Depth= 2.18"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

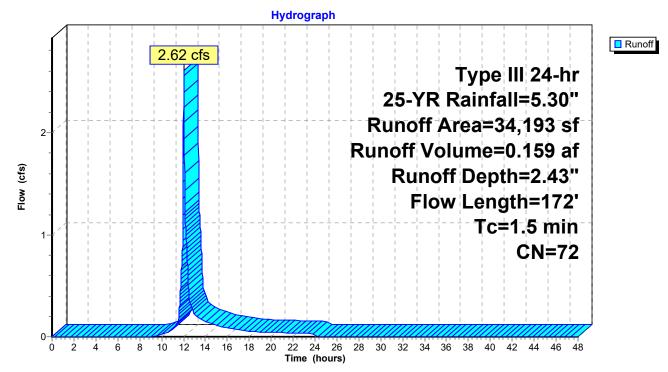

Summary for Subcatchment 12S:

Runoff = 2.66 cfs @ 12.12 hrs, Volume= 0.207 af, Depth= 2.97"

Summary for Subcatchment 13S:

Runoff = 2.92 cfs @ 12.31 hrs, Volume= 0.323 af, Depth= 2.52"

Summary for Subcatchment 14S:


Runoff = 2.62 cfs @ 12.02 hrs, Volume= 0.159 af, Depth= 2.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

	A	rea (sf)	CN	Description		
*		23,718	61	>75% grass	s cover, goo	od, HSG B
*		9,784	98	0		
*		691	60	woods, fair,	HSG B	
		34,193	72	Weighted A	verage	
		24,409		71.39% Pei	vious Area	
		9,784		28.61% Imp	pervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)	
	0.4	47	0.1000	2.18		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.00"
	1.1	125	0.0700	1.85		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	15	170	Total			

1.5 172 Total

Subcatchment 14S:

Summary for Subcatchment 15S:

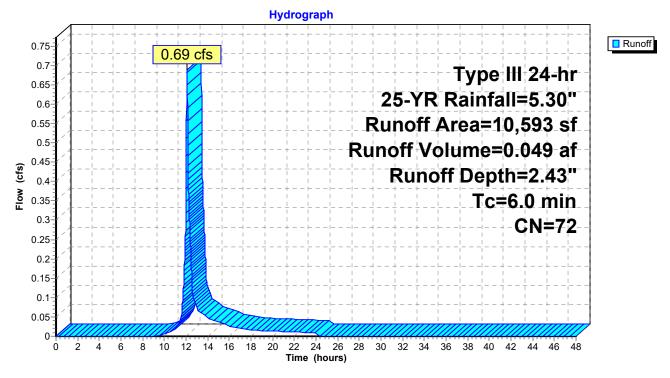
Runoff = 0.62 cfs @ 13.43 hrs, Volume= 0.162 af, Depth= 2.52"

	Δ	rea (sf)	CN	Description		
*		30,286		woods, fair,	HSG C	
*		3,402	74			good, HSG C
		33,688	73	Weighted A	verage	
		33,688		100.00% P	ervious Are	rea
	Тс	Length	Slope	e Velocity	Capacity	ty Description
	(min)	(feet)	(ft/ft		(cfs)	
1	05.1	1,115	0.0050	0.18		Shallow Concentrated Flow,
						Forest w/Heavy Litter Kv= 2.5 fps
					Subc	catchment 15S:
			1 1 1	1 1 1	Hydro	Irograph
		$\left\{ \left \left \left \left \left \left \left \left \left \left \left \left \left $				
	0.65			0.62 cfs	i i i +	
	0.6		+		+ - + -	Type III 24-hr
	0.55] /] /			· · · · ·	25-YR Rainfall=5.30"
	0.5		i i i 444		i i i 	Runoff Area=33,688 sf
	0.45					Runoff Volume=0.162-af
	≨ 0.4∙					
	(5) 0.35 0.35					Runoff Depth=2.52"
i	0.3-					Flow Length=1,115'
	0.25					Slope=0.0050 '/'
	0.2					Tc=105.1 min
	0.15					CN=73
	0.1		+		++-	
	0.05					
	0-					
		0 2 4	68	10 12 14 16		22 24 26 28 30 32 34 36 38 40 42 44 46 48 Fime (hours)

Summary for Subcatchment 16S:

Runoff = 0.56 cfs @ 12.08 hrs, Volume= 0.045 af, Depth= 5.06"

	<u>rea (sf)</u> 4,678	<u>CN</u> D 98	escription														
	4,678	1	00.00% In	npervious	s Ar	ea											
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capaci (cfs		Descri	iptio	on									
6.0						Direct	: Er	ntry	,								
				Sub	cat	tchme	ent	16	S:								
						raph											
0.6			.56 cfs		L 	 	 		 	 	 	 	 _	 	 	 	
0.55					L 	l I	 		L 	L 	 1	Γνι	pe		24	4-r	nr
0.5					·	' I I	' ! !	2	5-\	' R				all=	T	T	
0.45						 		Rı	un	of	f A	re	a=	:4,(67	8.9	sf
0.4							Ru	inc		1			1				
0.35					 	 	 	F	Ru	no	ff_	De	ae	th=	= 5.	06	5
0.35- 0.3-		i i i i + -			 	; ; ; 	 	 	 	 +	 	1	1.7	= 6.	1	1	1
0.25					 	 	 		 	 	 	 	 	1	1	=9	1
0.2					 L	 	 		 	 	 	 	 _	. •	/ I U 		
0.15					 	 	 			 	 	 	 		 	 	
0.1-					I I I		I I	 	1	 	I I	I I	 	 	1	 	
0.05							 		! 	 	 	 		 	T I I	 	
0-	0 2 4	6 8 10	12 14 16	18 20	22	24 26	28	30	32	34	36	38	40	42	44	46	48

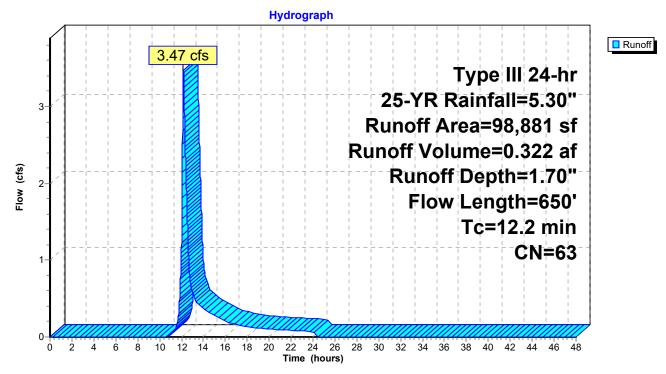

Summary for Subcatchment CUL: (new Subcat)

Runoff = 0.69 cfs @ 12.09 hrs, Volume= 0.049 af, Depth= 2.43"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

	A	rea (sf)	CN	Description		
*		3,132	98			
*		7,461	61	G+RG: >75	% grass co	over, good, HSG B
		10,593 7,461 3,132		Weighted A 70.43% Pei 29.57% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment CUL: (new Subcat)

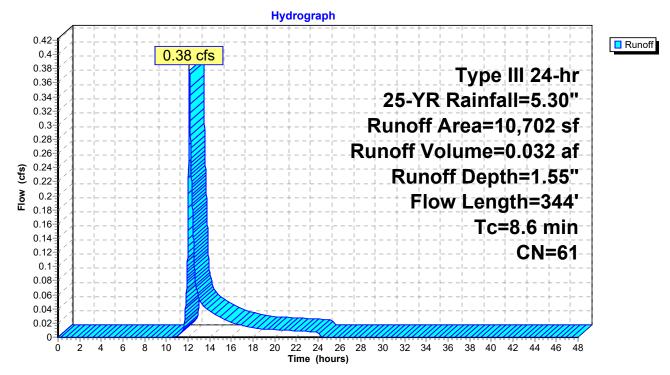

Summary for Subcatchment P1:

Runoff = 3.47 cfs @ 12.18 hrs, Volume= 0.322 af, Depth= 1.70"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

	A	rea (sf)	CN E	Description		
		93,901	61 >	75% Gras	s cover, Go	ood, HSG B
*		4,980	98 ir	npervious		
		98,881	63 V	Veighted A	verage	
		93,901	9	4.96% Per	vious Area	
		4,980	5	.04% Impe	ervious Area	а
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.7	50	0.0700	0.11		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.00"
	4.5	600	0.1010	2.22		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	12.2	650	Total			

Subcatchment P1:

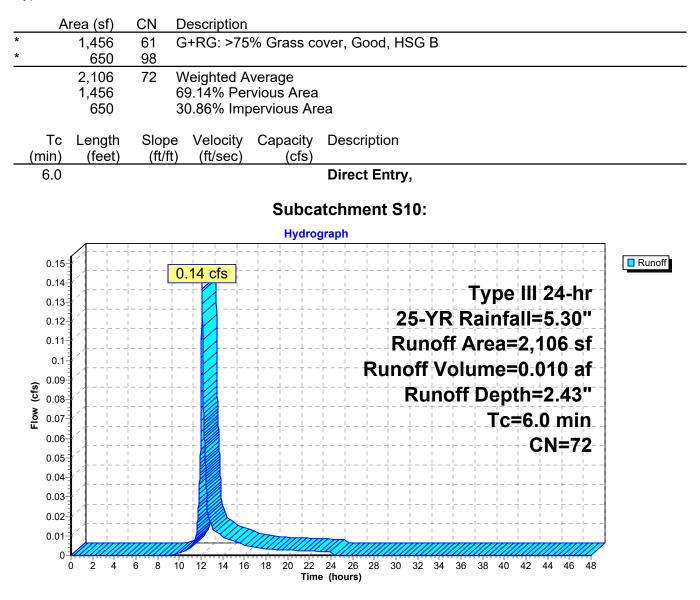

Summary for Subcatchment P2:

Runoff = 0.38 cfs @ 12.13 hrs, Volume= 0.032 af, Depth= 1.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

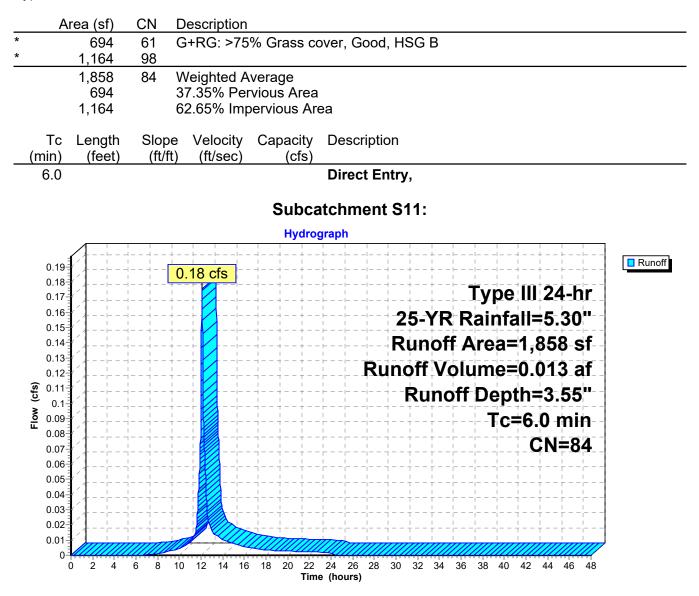
_	A	rea (sf)	CN E	Description		
*		10,702	61 (G+RG: >75	% Grass co	over, Good, HSG B
		10,702	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	50	0.1000	0.12		Sheet Flow,
	1.0	138	0.2200	2.35		Woods: Light underbrush n= 0.400 P2= 3.00"
	1.0	130	0.2200	2.55		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	0.9	156	0.1700	2.89		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	8.6	344	Total			

Subcatchment P2:


Summary for Subcatchment S1:

Runoff = 0.18 cfs @ 12.08 hrs, Volume= 0.015 af, Depth= 4.95"

А	rea (sf)	CN E	Descriptio	n														
	61 1,478	61 > 98	>75% Gra	ass co	ver, G	ood, HS	SGE	3										
	1,539 61 1,478	3	Veighted 3.96% Pe 96.04% Ir	rvious	Area	rea												
Tc (min)	Length (feet)	Slope (ft/ft)	Velocit (ft/sec		pacity (cfs)	Desc	ripti	on										
6.0						Direc	t E	ntry	',									
					Subo	atchn	nen	t S	1.									
						graph			••									
0.2-			· -		++- ++-		_		<u> </u>	<u> </u>				 	 			Runoff
0.19-).18 cfs				 _!		 	 		 .	 _				 _ !	
0.18- 0.17-			L				_	= 	1 – – !	⊥ !	L	Гу	pe	+HH	- 2 4	4-r	1 r	
0.17-					+- 		-! !	2	5-`	ΥR	R	air	nfa	all=	=5.	30)'''	
0.15-		+ -	+ /		i i ++-		-i	1	1	1	L	1	1	1	1	1	1	
0.14-					+ + -		-		+	+		re		+ - •	+	+	-	
0.13-	Ì/+				+ +		Rι	ind	þff	Vo	þlu	im	e=	:0.(01	5-a	af	
0.12- 0.11- 0.11- 0.1- 0.09-					$\dot{\dot{\tau}} = -\dot{\dot{\tau}} =$ $\dot{\dot{\tau}} = -\dot{\dot{\tau}} =$		-i -¦		Ru	nc)ff	De	ep:	th=	=4.	95	5'''	
8 0.1-	() 				$\frac{1}{1} \frac{1}{1}$		-1		<u> </u> 	$\frac{1}{1} = -$		1	1.	=6 .	1	1	1	
0.09- 0.08-	[/{								1 – – 1	1 – – 1		¦ ∎ ∣		1	1	1	1	
0.07-									 	ī] [N	=9)7	
0.06-		+ -		 	 + + -	 -	 _	 	 +	 +	 ⊢ – –	 	 -	 +	 +	 +	-	
0.05-		+ -			+ + -	_ ⊢ ⊢ _	-		+	+	 	 	-	+	+	+	-	
0.04		+-			++-		-		+	+	 	 		+	+	+	-	
0.03-	▮/+	+-			++-				+	+				+	+	+	-	
0.02- 0.01-					++-		-¦		+ 1	+ 1			-i	<u>+</u>	+ 1	 1	-¦	
0-	0 2 4	6 8 10) 12 14	16 18	20 22	24 26	28	30	32	34	36	38	40	42	44	46	48	
	v 2 1	0 0 10		10 10		ne (hours)		00	02	07	00	00	70	74	77	40	40	


Summary for Subcatchment S10:

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.010 af, Depth= 2.43"

Summary for Subcatchment S11:

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 0.013 af, Depth= 3.55"

Summary for Subcatchment S12:

Runoff = 0.56 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 2.26"

A	Area (sf)	CN	Descriptio	n															
	2,175	98					_												
	7,092		<u>G+RG: >7</u>			over	, Go	bod	, HS	G	B								
	9,267 7,092		Weighted 76.53% P																
	2,175		23.47% Ir																
Tc (min)	Length (feet)	Slope (ft/ft			pacity (cfs)	De	scri	ptic	on										
6.0						Dir	rect	Er	ıtry,										
					Subca				64	າ.									
							-	ent	21	Ζ:									
			1	1	Hydro	graph	ו				1	I	1	1	1	1	1	1	
0.6		JJ J 	0.56 cfs		⊥ ⊥ 			 			L 	L 	 	- 	1 	⊥ 	L	- 	📘 Runof
0.55		J = - J = - <mark> </mark> 		J 	⊥ ⊥ 			 			L 	L 	Γνι	he	 	24	4-ł	nr	
0.5					+ + ! !				24	5_\	/R		_			=5.	T		
0.45					$\frac{1}{1} \frac{1}{1}$			 	Rι		T				T	T	T		
0.4		+ +			$\frac{1}{1} \frac{1}{1}$														
	1,4⊢	+			 + 	 		RU	no		1			1	1	1	1		
్ర	: _ <u> </u>	 + 			 	- 		 		Ru	no)ff_	De	p	th=	₹2.	26	5	
0.3					 + +	- 	1	 	+		 + 	 ⊢ – – 	1	C	= 6.	0-	mi	n	
0.25	1,4						1	 			 	 	 	 	- 0	N	=7	'0	
0.2	1,4		· L	 		 	 	 			 	 	 	 _	 	∣ ⊥	 	 -	
0.15						 	 	 			 	 	 	 	 	 <u> </u>	 	 -	
0.1								 	 		 	 	 	 	 			- 	
0.05											 	 	, 					 	
0	$\begin{bmatrix} 1\\ 0\\ 2\\ 4\end{bmatrix}$	6 8	10 12 14		20 22	24	26	28	30	32	24	36	38	40	42	44	46	48	
	U 2 4	0 0	10 12 14	10 10		e (ho		20	50	52	J -1	50	00	-0	74	+	-0	-0	

Summary for Subcatchment S13:

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.027 af, Depth= 3.25"

	A	rea (sf)	CN	Desc	criptio	on																	
		2,314	98						-														
		2,000	61	>75%					Go	od,	HS	G E	}										
		4,314	81	Weig																			
		2,000		46.3																			
		2,314		53.64	4% I	mp	ervio	ous	Are	а													
	Тс	Length	Slop		elocit		Cap			De	scr	iptio	on										
(mi		(feet)	(ft/f	t) (1	ft/seo	c)		(c	s)														
6	6.0									Di	rect	t Er	ntry	,									
							S	Suk	oca	tch	me	ent	S 1	3:									
								Ну	drog	rapl	า												
(0.42-			+ + -	-	-		+	+		 	 	·	+	+		·	-	+	+	+	-	
	0.4			0.38	cfs	.					, 		 		_ 					- 			Runoff
	0.38	(/	4 		<u> </u>	<u> </u>					<u> </u> 	<u> </u> 	•	Īvī	hΔ		2	1_k	hr-	
	0.36	(1 L 	/			1	<u> </u>		 	 		L	⊥ 	1			1	1	1	1	
	0.34 0.32			+ +- + 	/	-		+	+		 	 	-2	5-`	YR	R	aiı	nfa	all=	‡5 .	.30)¦''	
,	0.32			+ + +		-		+	+		 	 	R	In	of	ĒΔ	r۵	a=	4,	21	Δ.ς	zf.	
(0.28				/			, ,															
(0.26	()			/			- 	<u> </u>			Ru	nc) ff	V	ρlι	im	e=	:0.(02	7-a	af	
(ts)	0.24	· /			/	-i		<u> </u>	<u> </u>			i		Dii	nc	ff		h	th=	- - 2	26	;m	
Flow (cfs)	0.22			+ L 	//	-	- 	↓	+		 	 	 	NU		/11_ 	1	1 -	1	1	1	1	
<u>s</u>	0.2 0.18			+ +		-		+	+		 	 	+ · 	+	+	⊢ – – I	1	C	=6 .	0	mi	n	
,	0.16			+ +		-		+	+		 	 	+ ·	+	+	 		-	+	+	+	-	
	0.14]	I			!	!		T	T	[<u> </u>	≯IN	=8		
	0.12			· ·	0			<u> </u>	<u> </u>		 	 	 	<u> </u>		 			<u> </u>	<u> </u>	Ļ		
	0.1	()+	!	L	/			 	<u>+</u>		 	 	 	 	 	 			<u></u>	<u>+</u>	Ļ		
(0.08	()+		- 	//				+		 	 	 	+				-	+	÷	+	-	
	0.06	()+		+ + /		-		+	+				·	+	+	⊢ – –			+	+	+		
	0.04	/		+ +		T			+					+	+					+			
(0.02					4	///	\square	////												////	·///	1
	⊢0 () 2 4	6 8	10 12	2 14	16	18	20	22 Time	24 (ho	26 Urs)	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S14:

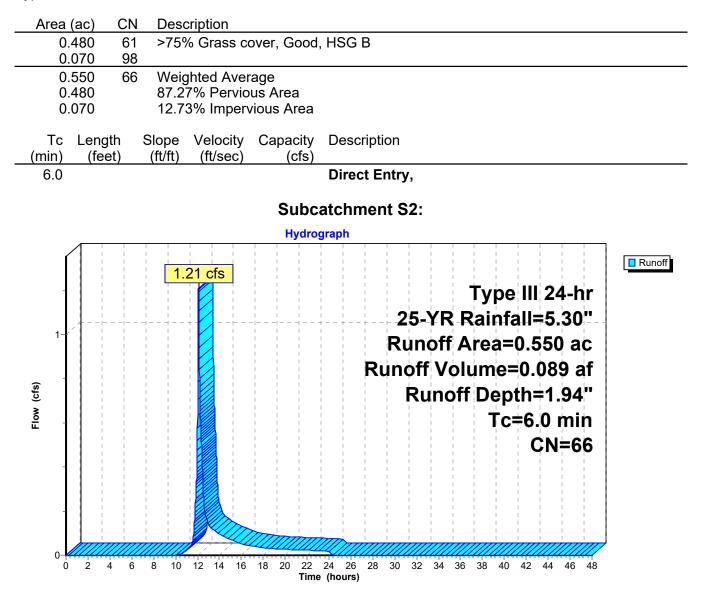
Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.017 af, Depth= 3.65"

А	rea (sf)	CN	Description															
	1,518	98				_				_								
	853		G+RG: >75		s cove	er, Go	ood,	, HS	SG	B								
	2,371		Weighted A															
	853		35.98% Pe															
	1,518		64.02% Im	pervious	Area													
Тс	Length	Slope		Capaci	ty D)escri	iptic	n										
(min)	(feet)	(ft/ft) (ft/sec)	(cf	s)													
6.0					C)irect	En	try,	,									
				Sub	cato	:hme	ent	S1	4:									
				Нус	drogra	ph		-										
	/									+	 		- 	+	+	+	-	
0.25-		<mark> </mark>	0.23 cfs							<u> </u>	L		! ·	<u> </u>	<u> </u>	$\frac{1}{1}$	- !	Runof
0.24- 0.23-					r F - L L _	_			r — — ·	+ L	 L	 =		 	+ L _ -	+ • -•-	- 	
0.23					 ⊢ – ⊢ –		 			 +	 ⊢ – –	l y	pe		24	1-r	۲	
0.21-	= / !							2	5_\	/R	R	air	hfs	11=	:5	30	m	
-0.2 -0.19	//	!+-+								L		Ē		1	L	L		
0.18-		+						Rı	JN	of	FΑ	re	a=	2,:	37	1-8	\$f	
0.17- 0.16-		'			 		Ru	nc	ff	V	- 	m		0.0	1	7-9	f	
0 15	()						NU			<u>+</u> `				+	<u> </u>			
0.14-		+ 			+ - -	-	 		Ru	nc	ff	De	p	th=	:3.	65	5	
(SL) 0.13 0.14 0.13 0.13 0.12		+						+		 +	 	1		=6.	1	1	1	
- 0.11	//	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$	$ \frac{1}{1}$			- <mark> </mark>				<u> </u> – –			-U-	-0.	U	<u>-</u>		
0.1- 0.09-	[/[+-+			+ -	_	 			+	⊢ – – └	 	 	<u>†</u> C	N	=8	5	
0.09	//				+ + -	-	+	+		+	 	 	·	+	+	+	-	
0.07-	//									<u> </u>					<u> </u>	<u> </u>		
0.06- 0.05-	1/1	!					 			+	 	 	· · · · ·	+	+	+ !		
0.04-	//				+	-				+	 		-	+	+	+		
0.03-	1/1									<u> </u> 				<u> </u> ·	<u> </u> 	$\frac{1}{1} = -$		
0.02- 0.01-	[/			TITI			 			+	⊢ – – I	 	· ·	+ ·	+	⊥ 	- I 	
0-				····		/////	///	44	44	///	///	///	Щ.	///	///	Щ.	Щ	
	0 2 4	6 8	10 12 14 16		22 24 Time (I		28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S15:

Runoff = 2.44 cfs @ 12.09 hrs, Volume= 0.177 af, Depth= 2.10"

Area (s	f) CN Description	
* 8,65 * 35,56		
33,30 44,21 35,56 8,65	4 68 Weighted Average 61 80.43% Pervious Area	
Tc Leng (min) (fee		
6.0	Direct Entry,	
	Subcatchment S15:	
	Hydrograph	
Flow (cfs)	2.44 cfs Type III 24-hr 25-YR Rainfall=5.30" Runoff Area=44,214 sf Runoff Volume=0.177 af Runoff Depth=2.10" Tc=6.0 min Tc=6.0 min	unoff
	CN=68	
0- 11-11-11-1 0 2	4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)	

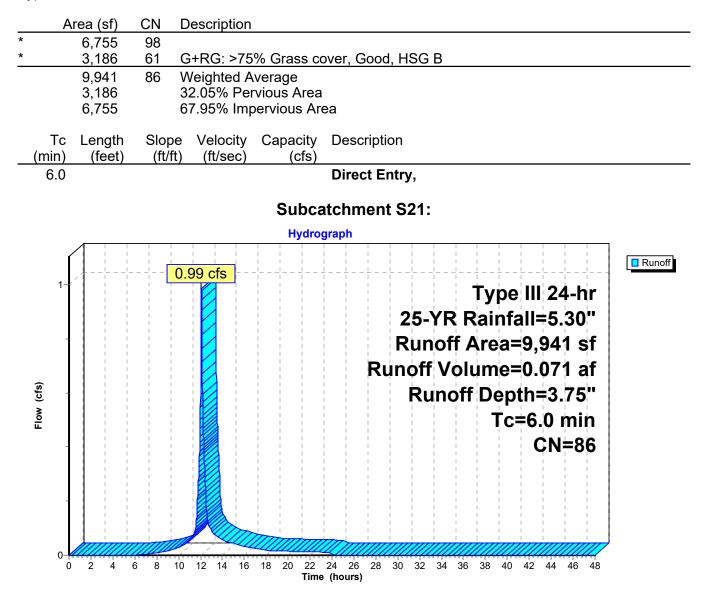

Summary for Subcatchment S19:

Runoff = 1.88 cfs @ 12.09 hrs, Volume= 0.135 af, Depth= 2.26"

A	rea (sf)	CN	Description										
*	7,316	98											
	<u>23,916</u> 31,232		<u>>75% Gras</u> Weighted A		000, H	SGE	5						
	23,916		76.58% Pe	vious Area									
	7,316		23.42% lmp	pervious A	rea								
Tc	Length	Slope		Capacity	Desc	criptio	on						
<u>(min)</u> 6.0	(feet)	(ft/ft)) (ft/sec)	(cfs)	Dire	ct Fr	ntrv						
0.0					Dire		ıcı y ,						
				Subc	atchn	nent	S19):					
				Hydro	ograph								_
ĺ					· + +			·		· - +			Runoff
2-*			I.88 cfs										
-												24-hr	
-							1	1	I I	1	- I I	5.30"	
-									1 I.			32 sf	
						Ru	nof	fV	olui	ne:	=0.1	35 af	
- ⊢1 –1						 	R	unc	off [)ep	th=2	2.26"	
8 1- ⊫										Тс	=6.0	min	
												N=70	
0-													,
0	2 4	6 8 10	0 12 14 16	18 20 22 Tim	24 26 (hours)		30 32	2 34	36 3	8 40	42 44	4 46 48	

Summary for Subcatchment S2:

Runoff = 1.21 cfs @ 12.09 hrs, Volume= 0.089 af, Depth= 1.94"

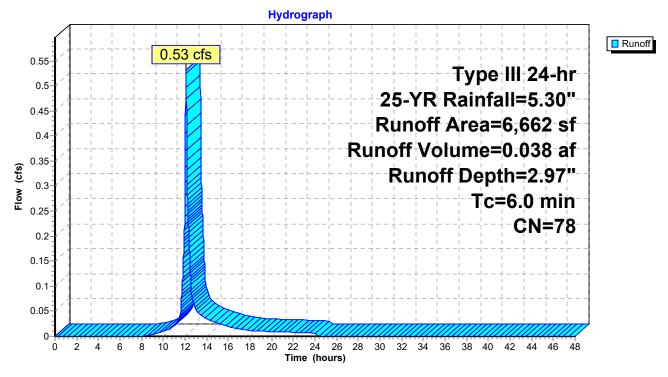

Summary for Subcatchment S20:

Runoff = 0.45 cfs @ 12.10 hrs, Volume= 0.034 af, Depth= 1.55"

	11,551	61	G+RG: >	75% Gr	ass co	over, G	ood,	HSC	GΒ								
	11,551		100.00%	Perviou	is Are	а											
Tc nin)	Length (feet)	Slop (ft/f			acity (cfs)	Descr	iptic	n									
6.0						Direc	t En	try,									
				S	ubca	tchm	ent	S20):								
					Hydro	graph											
0.5- 0.48-					+ +		- <u> </u> 			- - -	- - 	-1 -! -!	+ +	+ - +		- - -	📘 Run
0.46 0.44			0.45 cfs		<u> </u> +		 	+ -	$-\frac{1}{1}$ -		Τv	be		24	4-ł	 1r	
0.42 0.4	<^ }+ <		+ +		 +	· <mark> </mark> ·	-¦ -!+ -!	25	-YF				<u> </u>	T	T		
0.38	<pre>/</pre>		Τ - -		T <u>+</u>		' F	Run	off	Ar	ea	=1	, 1,1	55	1-9	sf	
0.34 0.32 0.3-					+ +			nof			1						
	/ /				 +			R	ūn	off	De	эp	th=	±1.	55	5	
0.24 0.22	 				 +		- -	+ -	$-\frac{1}{1}$	- -	1	C	=6.	0	mi	n	
0.2- 0.18-	()			;;; !;		· ·		+ -	· - + -	- - 	-¦ -	-i -i	- C	ÌN	=6	1	
0.16 0.14 0.12					† 			+ - 	- + - - <u>+</u> - I	 - L	-	-1	+ -	+ 		- - !	
0.12-0.1-0.1-					+ +			+-	- + -	- - -				+		- 	
0.06-0.04-					 +			+ -	$\frac{1}{1}$ - $\frac{1}{1}$ -		-		$\frac{1}{1}$	$\frac{1}{1} = -$ +	+	- -	
0.02				YIII		11) m		-	////		-	-	-	-	-	-	

Summary for Subcatchment S21:

Runoff = 0.99 cfs @ 12.09 hrs, Volume= 0.071 af, Depth= 3.75"

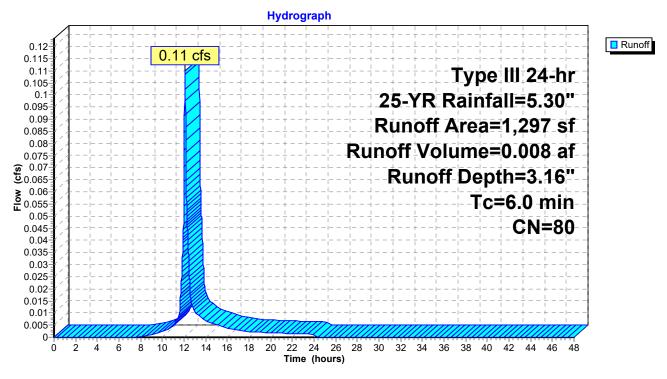

Summary for Subcatchment S22: Stow Road South

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.038 af, Depth= 2.97"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

_	A	rea (sf)	CN	Description							
*		5,662	74	G+RG: >75% Grass cover, Good, HSG C							
*		1,000	98								
		6,662 5,662 1,000		Weighted A 84.99% Pei 15.01% Imp	vious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment S22: Stow Road South

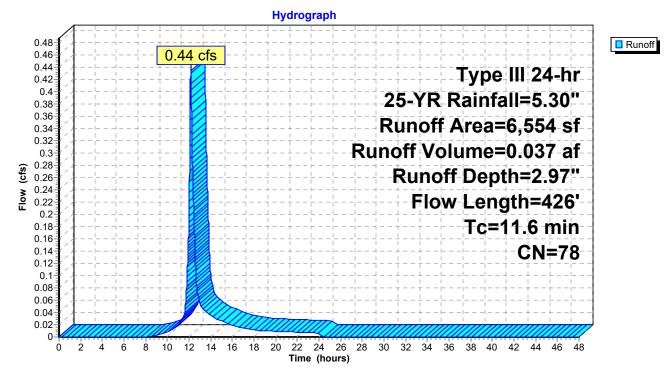

Summary for Subcatchment S23: Stow Road South

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"

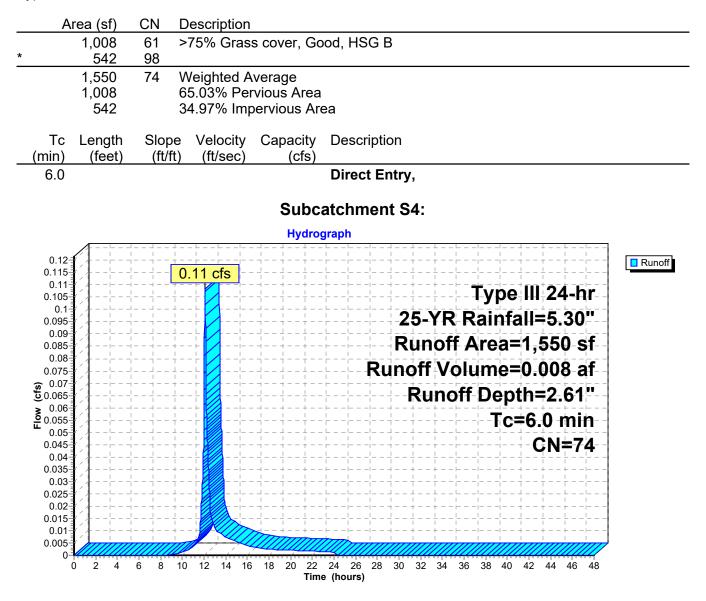
	A	rea (sf)	CN	Description							
*		994	74	G+RG: >75% Grass cover, Good, HSG C							
*		303	98								
		1,297 994 303			verage vious Area pervious Ar						
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
	6.0					Direct Entry,					

Subcatchment S23: Stow Road South

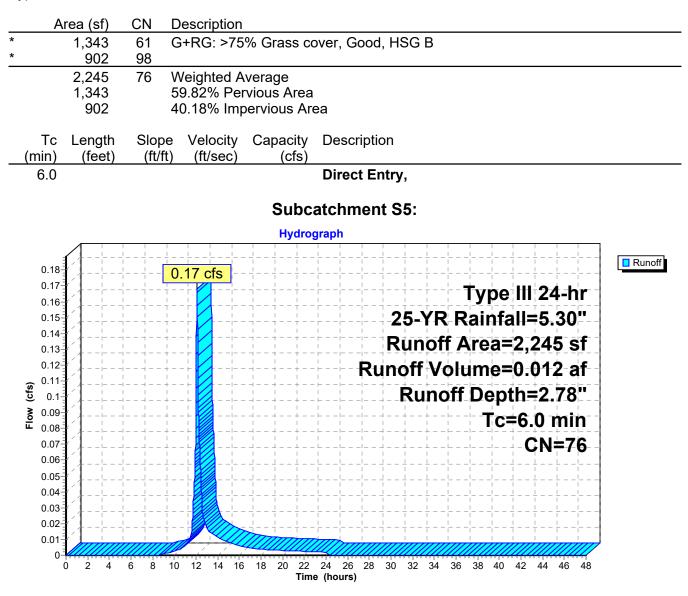

Summary for Subcatchment S3:

Runoff = 0.44 cfs @ 12.16 hrs, Volume= 0.037 af, Depth= 2.97"

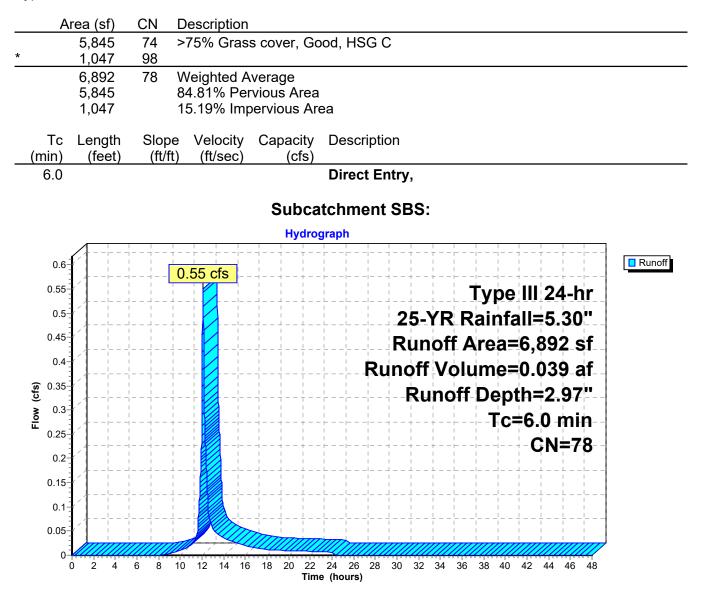
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 25-YR Rainfall=5.30"


	A	rea (sf)	CN E	escription							
*		3,497	61 0	G+RG: >75% Grass cover, Good, HSG B							
*		3,057	98								
		6,554	78 V	78 Weighted Average							
		3,497	5	53.36% Pervious Area							
		3,057	4	46.64% Impervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	3.7	50	0.0600	0.22		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.00"					
	7.9	376	0.0130	0.80		Shallow Concentrated Flow,					
_						Short Grass Pasture Kv= 7.0 fps					
	11.6	426	Total								

Subcatchment S3:


Summary for Subcatchment S4:

Runoff = 0.11 cfs @ 12.09 hrs, Volume= 0.008 af, Depth= 2.61"


Summary for Subcatchment S5:

0.17 cfs @ 12.09 hrs, Volume= Runoff 0.012 af, Depth= 2.78" =

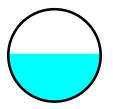
Summary for Subcatchment SBS:

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.039 af, Depth= 2.97"

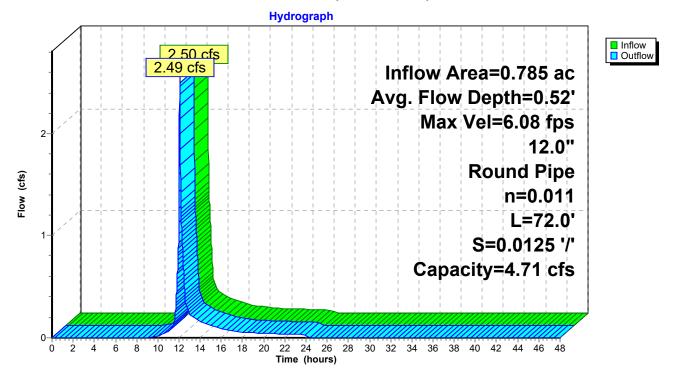
Summary for Reach 1R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS7 OUTLET depth by 0.16' @ 12.08 hrs

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 2.43" for 25-YR event


 Inflow =
 2.50 cfs @
 12.06 hrs, Volume=
 0.159 af

 Outflow =
 2.49 cfs @
 12.07 hrs, Volume=
 0.159 af, Atten= 0%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.08 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.15 fps, Avg. Travel Time= 0.6 min

Peak Storage= 30 cf @ 12.07 hrs Average Depth at Peak Storage= 0.52' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.71 cfs

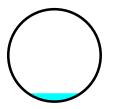
12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0125 '/' Inlet Invert= 261.00', Outlet Invert= 260.10'

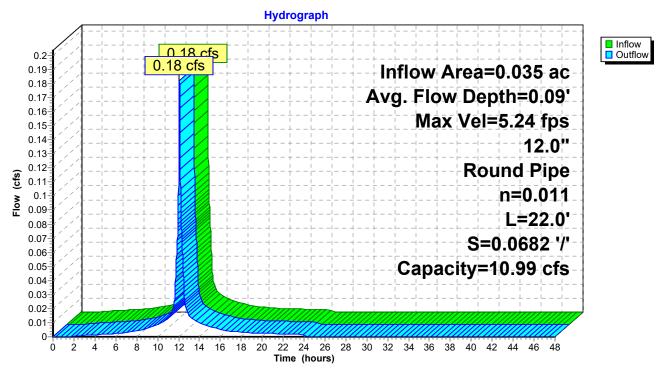
Reach 1R: (new Reach)

Summary for Reach 4R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10A OUTLET depth by 0.01' @ 23.84 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 4.95" for 25-YR event


 Inflow =
 0.18 cfs @ 12.09 hrs, Volume=
 0.015 af


 Outflow =
 0.18 cfs @ 12.09 hrs, Volume=
 0.015 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.76 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.99 cfs

12.0" Round Pipe n= 0.011 Length= 22.0' Slope= 0.0682 '/' Inlet Invert= 315.00', Outlet Invert= 313.50'

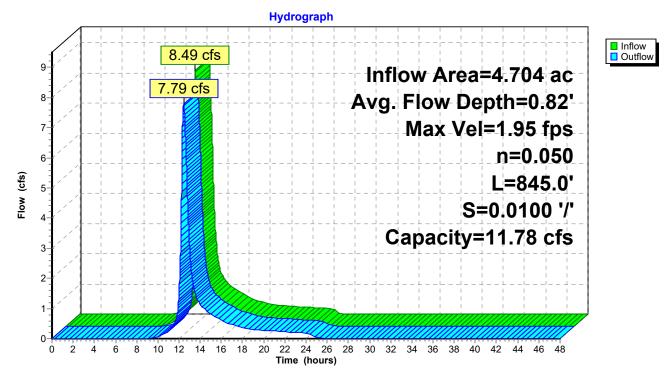
Reach 4R:

Summary for Reach 5R: Intermittent Stream

 Inflow Area =
 4.704 ac,
 1.01% Impervious, Inflow Depth =
 2.50" for 25-YR event


 Inflow =
 8.49 cfs @
 12.20 hrs, Volume=
 0.980 af

 Outflow =
 7.79 cfs @
 12.43 hrs, Volume=
 0.980 af, Atten= 8%, Lag= 13.9 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.95 fps, Min. Travel Time= 7.2 min Avg. Velocity = 0.50 fps, Avg. Travel Time= 28.1 min

Peak Storage= 3,373 cf @ 12.31 hrs Average Depth at Peak Storage= 0.82' Bank-Full Depth= 1.00' Flow Area= 5.3 sf, Capacity= 11.78 cfs

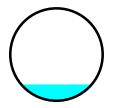
8.00' x 1.00' deep Parabolic Channel, n= 0.050 High grass Length= 845.0' Slope= 0.0100 '/' Inlet Invert= 260.00', Outlet Invert= 251.55'

Reach 5R: Intermittent Stream

Summary for Reach 6R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.099 ac, 53.64% Impervious, Inflow Depth =
 1.58" for 25-YR event


 Inflow =
 0.10 cfs @
 12.48 hrs, Volume=
 0.013 af

 Outflow =
 0.10 cfs @
 12.53 hrs, Volume=
 0.013 af, Atten= 2%, Lag= 2.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.33 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 2.8 min

Peak Storage= 8 cf @ 12.50 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.43 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 197.0' Slope= 0.0100 '/' Inlet Invert= 304.20', Outlet Invert= 302.23'

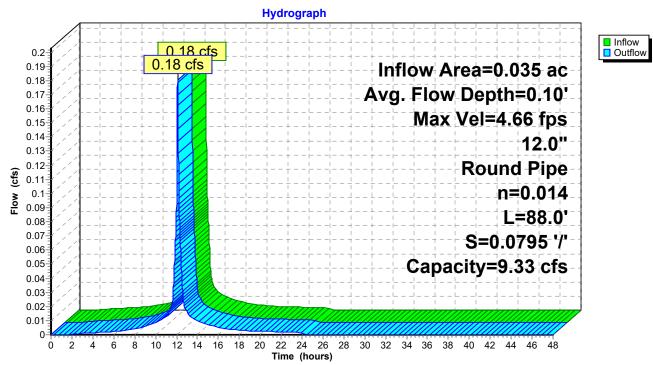
Reach 6R: new

Summary for Reach 7R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10B OUTLET depth by 0.01' @ 12.14 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 4.95" for 25-YR event


 Inflow =
 0.18 cfs @ 12.10 hrs, Volume=
 0.015 af


 Outflow =
 0.18 cfs @ 12.11 hrs, Volume=
 0.015 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.66 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.57 fps, Avg. Travel Time= 0.9 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 9.33 cfs

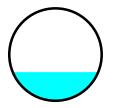
12.0" Round Pipe n= 0.014 Concrete pipe, finished Length= 88.0' Slope= 0.0795 '/' Inlet Invert= 310.50', Outlet Invert= 303.50'

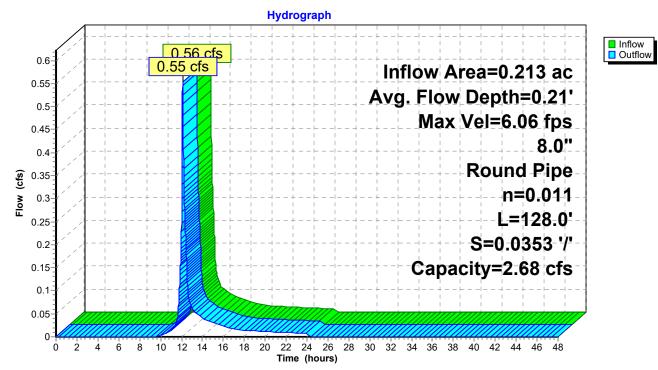
Reach 7R:

Summary for Reach 8R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 2.26" for 25-YR event


 Inflow =
 0.56 cfs @
 12.10 hrs, Volume=
 0.040 af


 Outflow =
 0.55 cfs @
 12.11 hrs, Volume=
 0.040 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.06 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.24 fps, Avg. Travel Time= 1.0 min

Peak Storage= 12 cf @ 12.11 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.68 cfs

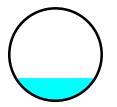
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 128.0' Slope= 0.0353 '/' Inlet Invert= 306.75', Outlet Invert= 302.23'

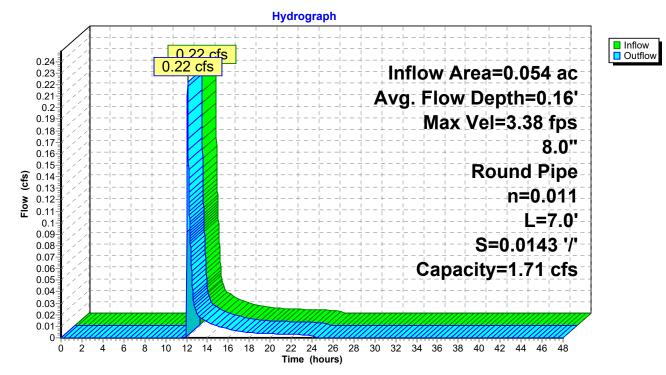
Reach 8R: new

Summary for Reach 9R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.054 ac, 64.02% Impervious, Inflow Depth =
 2.53" for 25-YR event


 Inflow =
 0.22 cfs @
 12.11 hrs, Volume=
 0.011 af


 Outflow =
 0.22 cfs @
 12.11 hrs, Volume=
 0.011 af, Atten= 0%, Lag= 0.1 min

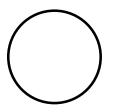
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.38 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.11 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

Reach 9R: new

Summary for Reach 10R: new


[43] Hint: Has no inflow (Outflow=Zero)

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 24.83 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 84.0' Slope= 0.0400 '/' Inlet Invert= 301.30', Outlet Invert= 297.94'

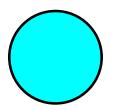
Hydrograph Outflow Avg. Flow Depth=0.00' Max Vel=0.00 fps 18.0" **Round Pipe** Flow (cfs) n=0.011 L=84.0' S=0.0400 '/' Capacity=24.83 cfs 0.00 cfs 0-4 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 Time (hours)

Reach 10R: new

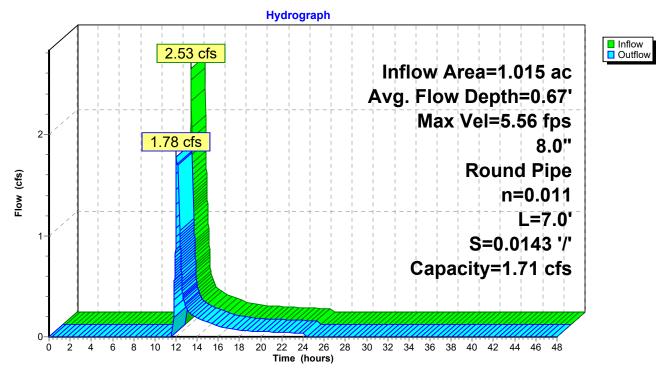
Summary for Reach 11R: new

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 148% of Manning's capacity[76] Warning: Detained 0.005 af (Pond w/culvert advised)

 Inflow Area =
 1.015 ac, 19.57% Impervious, Inflow Depth =
 1.98" for 25-YR event


 Inflow =
 2.53 cfs @
 12.10 hrs, Volume=
 0.167 af

 Outflow =
 1.78 cfs @
 12.04 hrs, Volume=
 0.167 af, Atten= 30%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.56 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.59 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.05 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

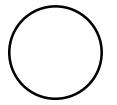
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

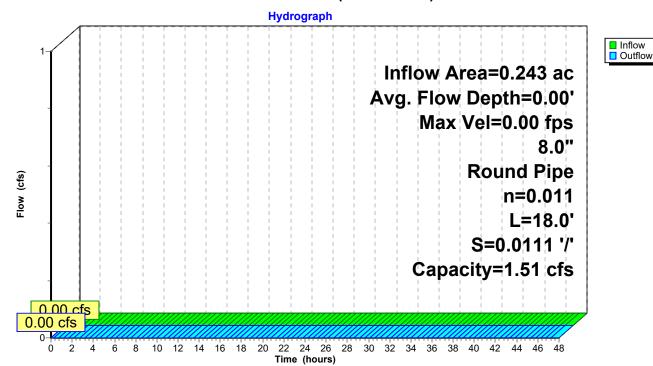
Reach 11R: new

Summary for Reach 12R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.243 ac, 29.57% Impervious, Inflow Depth =
 0.00" for 25-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

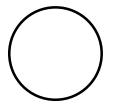
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 297.30', Outlet Invert= 297.10'

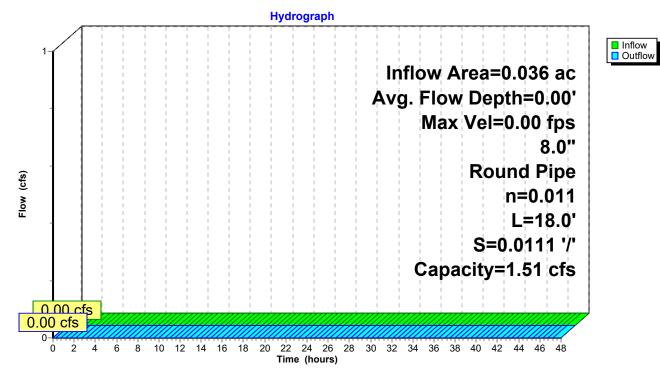
Reach 12R: (new Reach)

Summary for Reach 13R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.036 ac, 34.97% Impervious, Inflow Depth =
 0.00" for 25-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

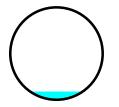
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 301.30', Outlet Invert= 301.10'

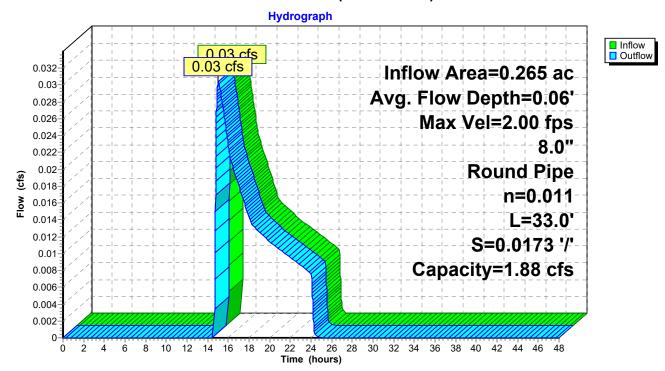
Reach 13R: New

Summary for Reach 14R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.265 ac,
 0.00% Impervious,
 Inflow Depth =
 0.51"
 for 25-YR event


 Inflow =
 0.03 cfs @
 15.02 hrs,
 Volume=
 0.011 af


 Outflow =
 0.03 cfs @
 15.03 hrs,
 Volume=
 0.011 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.00 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.52 fps, Avg. Travel Time= 0.4 min

Peak Storage= 1 cf @ 15.03 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.88 cfs

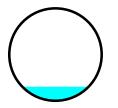
8.0" Round Pipe n= 0.011 Length= 33.0' Slope= 0.0173 '/' Inlet Invert= 290.30', Outlet Invert= 289.73'

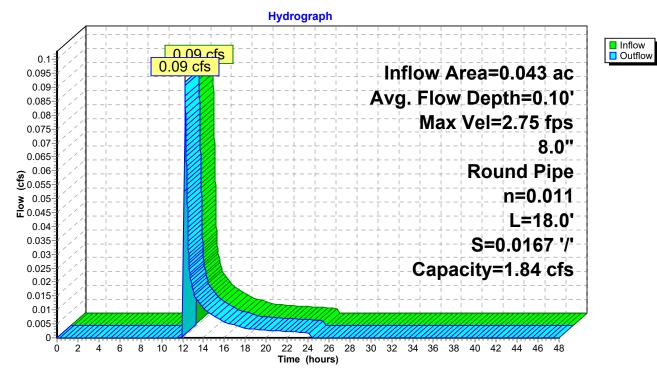
Reach 14R: (new Reach)

Summary for Reach 15R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.043 ac, 62.65% Impervious, Inflow Depth =
 2.03" for 25-YR event


 Inflow =
 0.09 cfs @
 12.23 hrs, Volume=
 0.007 af


 Outflow =
 0.09 cfs @
 12.23 hrs, Volume=
 0.007 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.75 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 0.3 min

Peak Storage= 1 cf @ 12.23 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.84 cfs

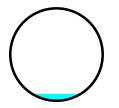
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 18.0' Slope= 0.0167 '/' Inlet Invert= 302.30', Outlet Invert= 302.00'

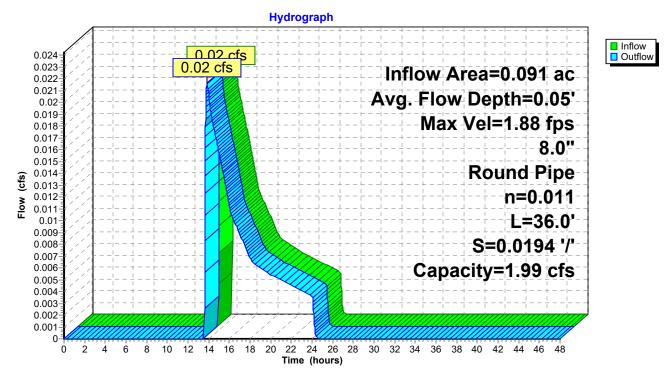
Reach 15R: New

Summary for Reach 16R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.091 ac, 45.76% Impervious, Inflow Depth =
 0.96" for 25-YR event


 Inflow =
 0.02 cfs @
 13.84 hrs, Volume=
 0.007 af


 Outflow =
 0.02 cfs @
 13.85 hrs, Volume=
 0.007 af, Atten= 0%, Lag= 0.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.88 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 0.4 min

Peak Storage= 0 cf @ 13.84 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.99 cfs

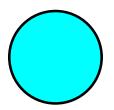
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 36.0' Slope= 0.0194 '/' Inlet Invert= 302.00', Outlet Invert= 301.30'

Reach 16R: New

Summary for Reach 17R: New

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 162% of Manning's capacity[76] Warning: Detained 0.021 af (Pond w/culvert advised)

 Inflow Area =
 2.675 ac,
 4.94% Impervious, Inflow Depth =
 1.61" for 25-YR event


 Inflow =
 4.19 cfs @
 12.19 hrs, Volume=
 0.359 af

 Outflow =
 2.66 cfs @
 12.09 hrs, Volume=
 0.359 af, Atten= 37%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.44 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.24 fps, Avg. Travel Time= 0.3 min

Peak Storage= 23 cf @ 12.10 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.59 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 67.0' Slope= 0.0328 '/' Inlet Invert= 298.00', Outlet Invert= 295.80'

Hydrograph Inflow
Outflow 4.19 cfs Inflow Area=2.675 ac Avg. Flow Depth=0.67' 4 Max Vel=8.44 fps 8.0" 3-2.66 cfs **Round Pipe** Flow (cfs) n=0.011 2-L=67.0' S=0.0328 '/' Capacity=2.59 cfs 1

Reach 17R: New

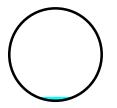
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

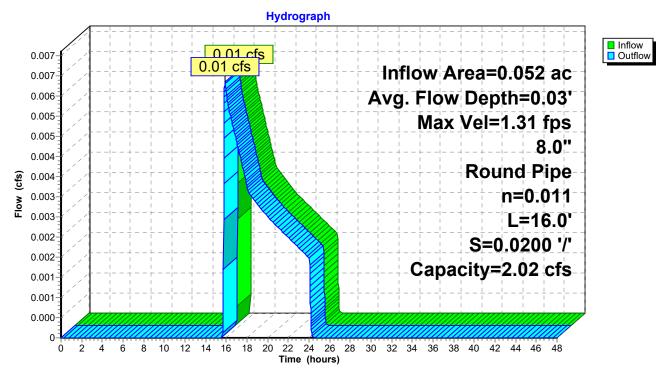
New

Summary for Reach 18R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.052 ac, 40.18% Impervious, Inflow Depth =
 0.55" for 25-YR event


 Inflow =
 0.01 cfs @
 15.87 hrs, Volume=
 0.002 af


 Outflow =
 0.01 cfs @
 15.87 hrs, Volume=
 0.002 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.31 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.06 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 15.87 hrs Average Depth at Peak Storage= 0.03' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.02 cfs

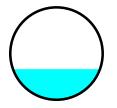
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 16.0' Slope= 0.0200 '/' Inlet Invert= 301.30', Outlet Invert= 300.98'

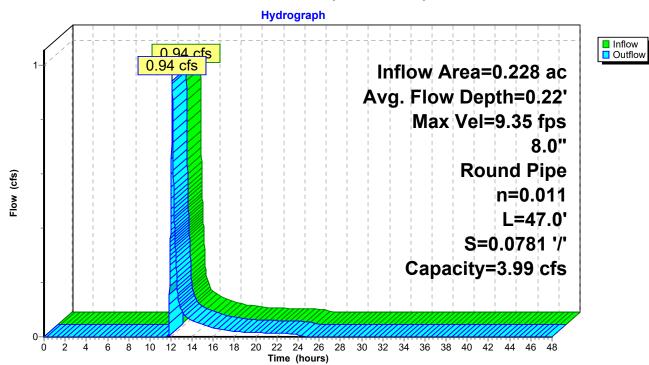
Reach 18R: New

Summary for Reach 19R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.228 ac, 67.95% Impervious, Inflow Depth =
 3.04" for 25-YR event


 Inflow =
 0.94 cfs @
 12.11 hrs, Volume=
 0.058 af


 Outflow =
 0.94 cfs @
 12.11 hrs, Volume=
 0.058 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 9.35 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.32 fps, Avg. Travel Time= 0.2 min

Peak Storage= 5 cf @ 12.11 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.99 cfs

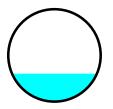
8.0" Round Pipe n= 0.011 Length= 47.0' Slope= 0.0781 '/' Inlet Invert= 287.00', Outlet Invert= 283.33'

Reach 19R: (new Reach)

Summary for Reach 20R: 12" RCP pipe

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach PS9 outlet invert by 0.30' @ 12.11 hrs

 Inflow Area =
 0.288 ac, 25.48% Impervious, Inflow Depth = 3.16" for 25-YR event


 Inflow =
 1.06 cfs @ 12.10 hrs, Volume=
 0.076 af

 Outflow =
 1.06 cfs @ 12.11 hrs, Volume=
 0.076 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.32 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.84 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.11 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

12.0" Round Pipe n= 0.013 Length= 22.0' Slope= 0.0227 '/' Inlet Invert= 257.75', Outlet Invert= 257.25'

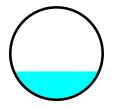
Hydrograph Inflow
Outflow 1.06 cfs 1.06 cfs Inflow Area=0.288 ac Avg. Flow Depth=0.30' 1 Max Vel=5.32 fps 12.0" **Round Pipe** Flow (cfs) n=0.013 L=22.0' S=0.0227 '/' Capacity=5.37 cfs 0 2 6 8 10 12 14 16 18 22 24 26 28 ò 4 20 30 32 34 36 38 40 42 44 46 48 Time (hours)

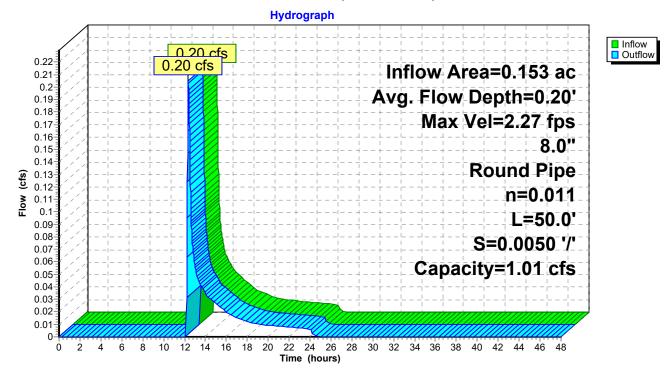
Reach 20R: 12" RCP pipe

Summary for Reach 21R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.153 ac, 15.01% Impervious, Inflow Depth =
 1.73" for 25-YR event


 Inflow =
 0.20 cfs @
 12.35 hrs, Volume=
 0.022 af


 Outflow =
 0.20 cfs @
 12.36 hrs, Volume=
 0.022 af, Atten= 0%, Lag= 0.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.27 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 0.8 min

Peak Storage= 5 cf @ 12.36 hrs Average Depth at Peak Storage= 0.20' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.01 cfs

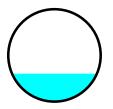
8.0" Round Pipe n= 0.011 Length= 50.0' Slope= 0.0050 '/' Inlet Invert= 254.00', Outlet Invert= 253.75'

Reach 21R: (new Reach)

Summary for Reach CB1: CB1

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 20R outlet invert by 0.05' @ 12.10 hrs

 Inflow Area =
 0.395 ac, 45.72% Impervious, Inflow Depth =
 3.67" for 25-YR event


 Inflow =
 1.60 cfs @
 12.10 hrs, Volume=
 0.121 af

 Outflow =
 1.60 cfs @
 12.10 hrs, Volume=
 0.121 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.47 fps, Avg. Travel Time= 0.2 min

Peak Storage= 5 cf @ 12.10 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.10 cfs

12.0" Round Pipe n= 0.011 Length= 27.0' Slope= 0.0370 '/' Inlet Invert= 257.00', Outlet Invert= 256.00'

Reach CB1: CB1 Hydrograph Inflow Area=0.395 ac Avg. Flow Depth=0.30' Max Vel=8.03 fps 12.0'' Round Pipe n=0.011

22 24 26 28

Time (hours)

20

0

ò

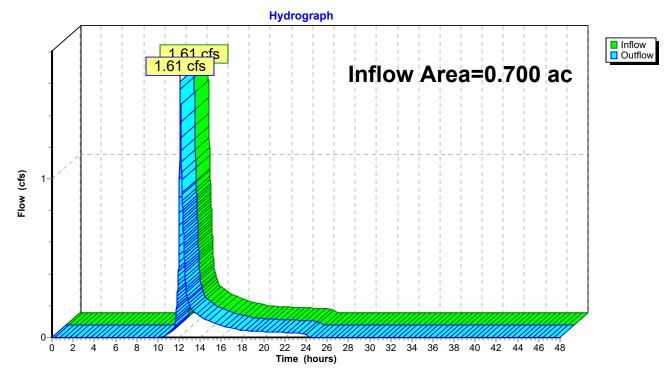
2 4 6 8

10 12 14 16 18

L=27.0'

S=0.0370 '/'

Capacity=8.10 cfs

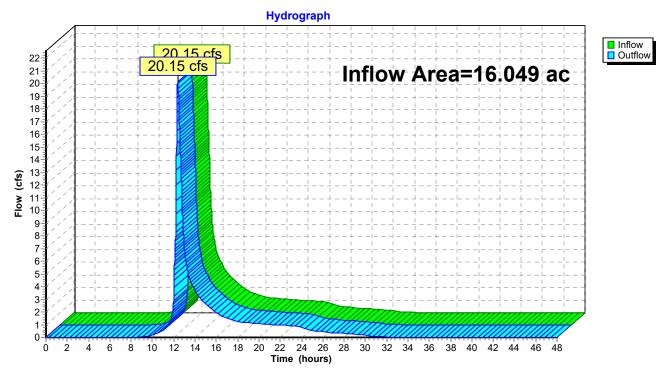

30 32 34 36 38 40 42 44 46 48

Summary for Reach CP1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.700 ac, 20.01% Impervious, Inflow Depth = 2.04" for 25-YR event	
Inflow	=	1.61 cfs @ 12.11 hrs, Volume= 0.119 af	
Outflow	=	1.61 cfs @ 12.11 hrs, Volume= 0.119 af, Atten= 0%, Lag= 0.0 m	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs


Reach CP1:

Summary for Reach CP2:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	16.049 ac, 13.07% Impervious, Inflow De	epth = 2.23" for 25-YR event
Inflow	=	20.15 cfs @ 12.36 hrs, Volume=	2.982 af
Outflow	=	20.15 cfs @ 12.36 hrs, Volume=	2.982 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Reach CP2:

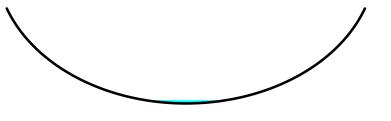
Summary for Reach PS1:

Inflow Area = 2.270 ac. 5.04% Impervious, Inflow Depth = 1.70" for 25-YR event 3.47 cfs @ 12.18 hrs, Volume= Inflow 0.322 af = 3.46 cfs @ 12.20 hrs, Volume= Outflow = 0.322 af, Atten= 0%, Lag= 1.4 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.55 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 2.1 min Peak Storage= 173 cf @ 12.19 hrs Average Depth at Peak Storage= 0.43' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.22 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 228.0' Slope= 0.0658 '/' Inlet Invert= 316.00', Outlet Invert= 301.00' Reach PS1: Hydrograph Inflow 3.47 cfs Outflow 3.46 cfs Inflow Area=2.270 ac Avg. Flow Depth=0.43' 3 Max Vel=4.55 fps n=0.035 Flow (cfs) L=228.0' 2 S=0.0658 '/' Capacity=20.22 cfs 1 0 2 10 12 14 16 18 Ó 4 6 8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

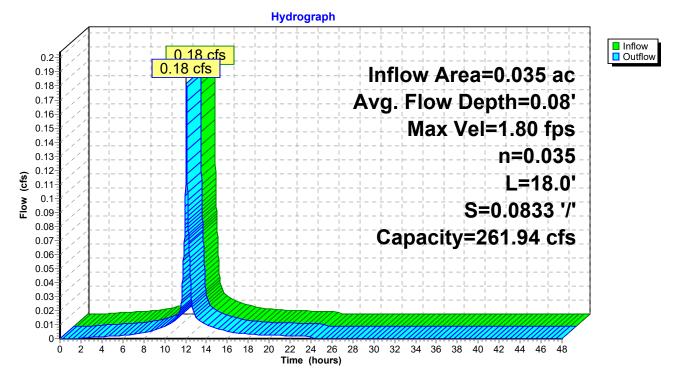
Time (hours)

Summary for Reach PS10A:

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth = 4.95" for 25-YR event


 Inflow =
 0.18 cfs @ 12.08 hrs, Volume=
 0.015 af

 Outflow =
 0.18 cfs @ 12.09 hrs, Volume=
 0.015 af, Atten= 0%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.80 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.83 fps, Avg. Travel Time= 0.4 min

Peak Storage= 2 cf @ 12.09 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 261.94 cfs

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 18.0' Slope= 0.0833 '/' Inlet Invert= 316.50', Outlet Invert= 315.00'

Reach PS10A:

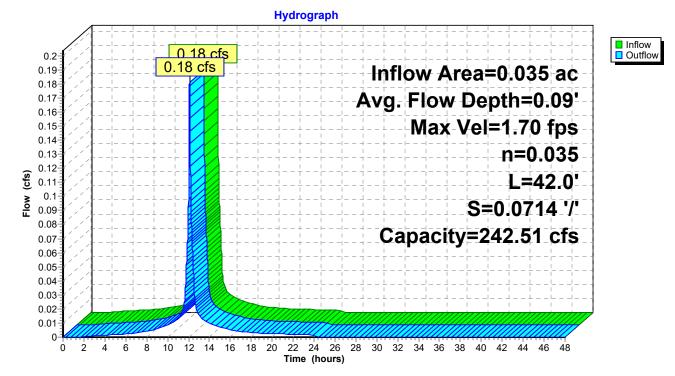
Summary for Reach PS10B:

[61] Hint: Exceeded Reach 4R outlet invert by 0.09' @ 12.09 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 4.95" for 25-YR event

 Inflow =
 0.18 cfs @
 12.09 hrs, Volume=
 0.015 af

 Outflow =
 0.18 cfs @
 12.10 hrs, Volume=
 0.015 af, Atten= 0%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.70 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.77 fps, Avg. Travel Time= 0.9 min

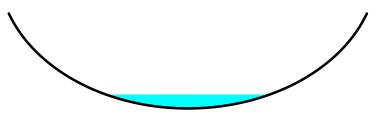
Peak Storage= 4 cf @ 12.09 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 242.51 cfs

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 42.0' Slope= 0.0714 '/' Inlet Invert= 313.50', Outlet Invert= 310.50'

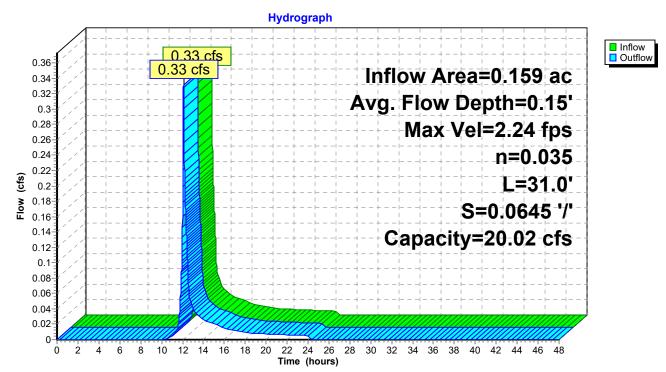
Reach PS10B:

Summary for Reach PS2:

 Inflow Area =
 0.159 ac, 11.13% Impervious, Inflow Depth =
 1.86" for 25-YR event


 Inflow =
 0.33 cfs @
 12.09 hrs, Volume=
 0.025 af

 Outflow =
 0.33 cfs @
 12.10 hrs, Volume=
 0.025 af, Atten= 0%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.24 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 0.6 min

Peak Storage= 5 cf @ 12.10 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.02 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 31.0' Slope= 0.0645 '/' Inlet Invert= 303.00', Outlet Invert= 301.00'

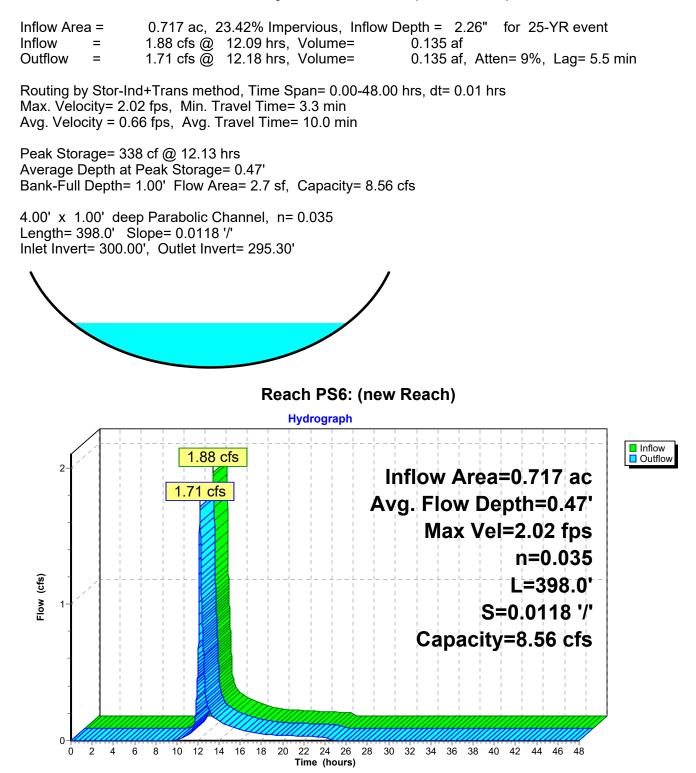
Reach PS2:

Summary for Reach PS3:

0.213 ac, 23.47% Impervious, Inflow Depth = 2.26" for 25-YR event

Inflow Area =

Inflow 0.56 cfs @ 12.09 hrs, Volume= 0.040 af = Outflow 0.56 cfs @ 12.10 hrs, Volume= = 0.040 af, Atten= 0%, Lag= 0.6 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.68 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 1.0 min Peak Storage= 12 cf @ 12.10 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.70 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 58.0' Slope= 0.0690 '/' Inlet Invert= 313.00', Outlet Invert= 309.00' Reach PS3: Hydrograph Inflow 0.56 cfs Outflow 0.6 0.56 cfs Inflow Area=0.213 ac 0.55 Avg. Flow Depth=0.18' 0.5 Max Vel=2.68 fps 0.45 n=0.035 0.4 Flow (cfs) 0.35 L=58.0' 0.3 S=0.0690 '/' 0.25 Capacity=20.70 cfs 0.2 0.15 0.1 0.05 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)


Summary for Reach PS4:

0.099 ac, 53.64% Impervious, Inflow Depth = 3.25" for 25-YR event

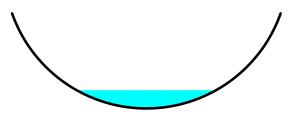
Inflow Area =

Inflow 0.38 cfs @ 12.09 hrs, Volume= 0.027 af = 0.38 cfs @ 12.10 hrs, Volume= Outflow = 0.027 af, Atten= 0%, Lag= 0.5 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.77 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.60 fps, Avg. Travel Time= 0.9 min Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 13.52 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 34.0' Slope= 0.0294 '/' Inlet Invert= 307.00', Outlet Invert= 306.00' Reach PS4: Hydrograph Inflow 0.42 0.38 cfs Outflow 0.4 0.38 cfs Inflow Area=0.099 ac 0.38 0.36 Avg. Flow Depth=0.19' 0.34 0.32 Max Vel=1.77 fps 0.3 0.28 n=0.035 0.26 (c) 0.24 0.22 0.24 L=34.0' Flow 0.2 S=0.0294 '/' 0.18 0.16 Capacity=13.52 cfs 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

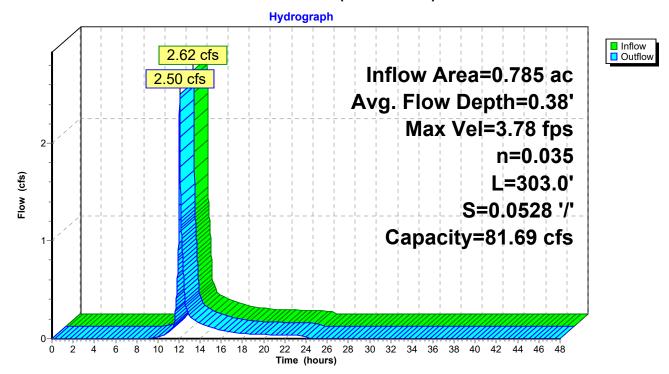
Summary for Reach PS6: (new Reach)

Summary for Reach PS7: (new Reach)

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 2.43" for 25-YR event


 Inflow =
 2.62 cfs @
 12.02 hrs, Volume=
 0.159 af

 Outflow =
 2.50 cfs @
 12.06 hrs, Volume=
 0.159 af, Atten= 4%, Lag= 2.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.78 fps, Min. Travel Time= 1.3 min Avg. Velocity = 1.29 fps, Avg. Travel Time= 3.9 min

Peak Storage= 201 cf @ 12.04 hrs Average Depth at Peak Storage= 0.38' Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 81.69 cfs

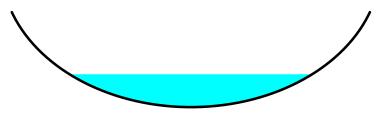
6.00' x 2.00' deep Parabolic Channel, n= 0.035 Length= 303.0' Slope= 0.0528 '/' Inlet Invert= 277.00', Outlet Invert= 261.00'

Reach PS7: (new Reach)

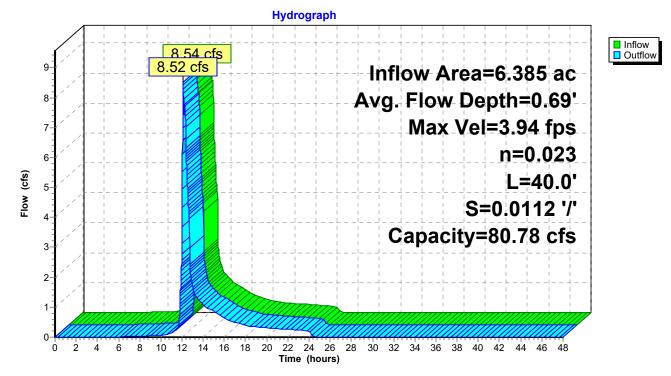
Summary for Reach PS8: (new Reach)

[79] Warning: Submerged Pond MH1 Primary device # 1 INLET by 0.34'

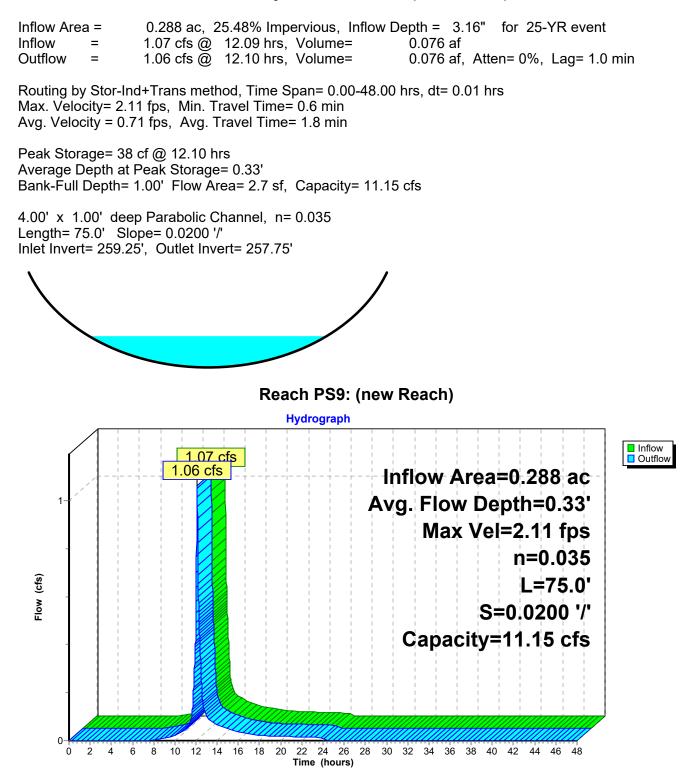
 Inflow Area =
 6.385 ac, 20.41% Impervious, Inflow Depth =
 1.82" for 25-YR event


 Inflow =
 8.54 cfs @
 12.09 hrs, Volume=
 0.966 af

 Outflow =
 8.52 cfs @
 12.10 hrs, Volume=
 0.966 af, Atten= 0%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.94 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.17 fps, Avg. Travel Time= 0.6 min

Peak Storage= 87 cf @ 12.10 hrs Average Depth at Peak Storage= 0.69' Bank-Full Depth= 2.00' Flow Area= 10.7 sf, Capacity= 80.78 cfs

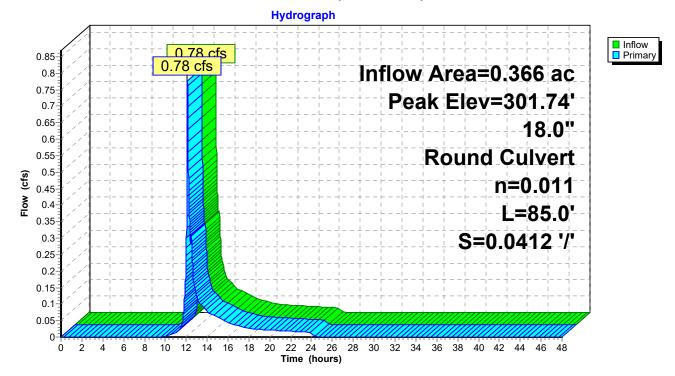

8.00' x 2.00' deep Parabolic Channel, n= 0.023 Length= 40.0' Slope= 0.0112 '/' Inlet Invert= 260.95', Outlet Invert= 260.50'

Reach PS8: (new Reach)

Summary for Reach PS9: (new Reach)

Summary for Pond 1P: (new Pond)

[57] Hint: Peaked at 301.74' (Flood elevation advised)[63] Warning: Exceeded Reach 9R INLET depth by 3.60' @ 12.04 hrs


Inflow Area =	0.366 ac, 37.66% Impervious, Inflow E	Depth = 2.12" for 25-YR event
Inflow =	0.78 cfs @ 12.11 hrs, Volume=	0.065 af
Outflow =	0.78 cfs @_ 12.11 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.0 min
Primary =	0.78 cfs @ 12.11 hrs, Volume=	0.065 af

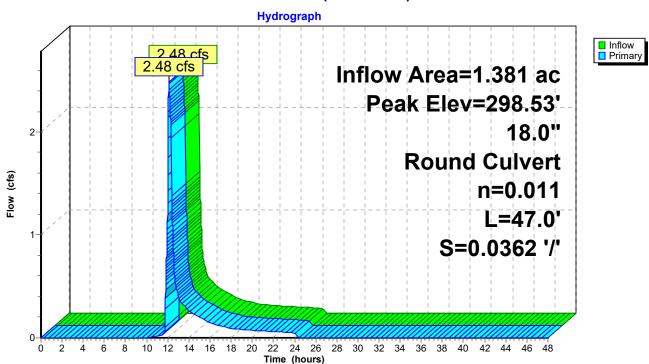
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.74' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.30'	18.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.30' / 297.80' S= 0.0412 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.77 cfs @ 12.11 hrs HW=301.74' (Free Discharge) **1=Culvert** (Inlet Controls 0.77 cfs @ 1.79 fps)

Pond 1P: (new Pond)

Summary for Pond 2P: (new Pond)


[57] Hint: Peaked at 298.53' (Flood elevation advised)
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.03' @ 12.36 hrs
[79] Warning: Submerged Pond 1P Primary device # 1 OUTLET by 0.73'

Inflow Area =	1.381 ac, 24.37% Impervious, Inflow	Depth = 2.02" for 25-YR event
Inflow =	2.48 cfs @ 12.11 hrs, Volume=	0.232 af
Outflow =	2.48 cfs @ 12.11 hrs, Volume=	0.232 af, Atten= 0%, Lag= 0.0 min
Primary =	2.48 cfs @ 12.11 hrs, Volume=	0.232 af

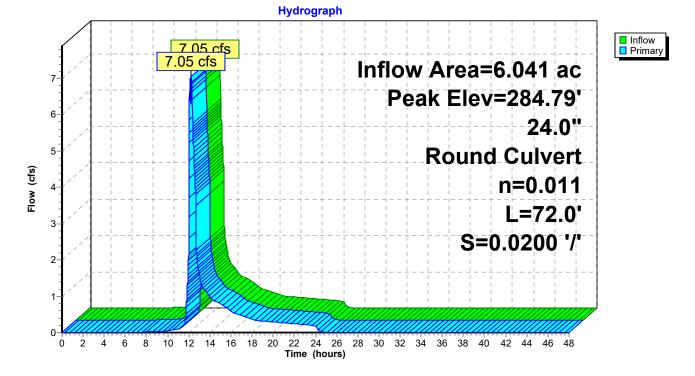
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 298.53' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	297.70'	18.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 297.70' / 296.00' S= 0.0362 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=2.48 cfs @ 12.11 hrs HW=298.53' (Free Discharge) —1=Culvert (Inlet Controls 2.48 cfs @ 2.46 fps)

Pond 2P: (new Pond)

Summary for Pond 3P: MH2B


[57] Hint: Peaked at 284.79' (Flood elevation advised)

Inflow Area =	6.041 ac, 17.09% Impervious, Inflow D	epth = 1.71" for 25-YR event
Inflow =	7.05 cfs @ 12.26 hrs, Volume=	0.859 af
Outflow =	7.05 cfs @ 12.26 hrs, Volume=	0.859 af, Atten= 0%, Lag= 0.0 min
Primary =	7.05 cfs @ 12.26 hrs, Volume=	0.859 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 284.79' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	283.44'	24.0" Round 2B L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.44' / 282.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=7.04 cfs @ 12.26 hrs HW=284.79' (Free Discharge) ←1=2B (Inlet Controls 7.04 cfs @ 3.12 fps)

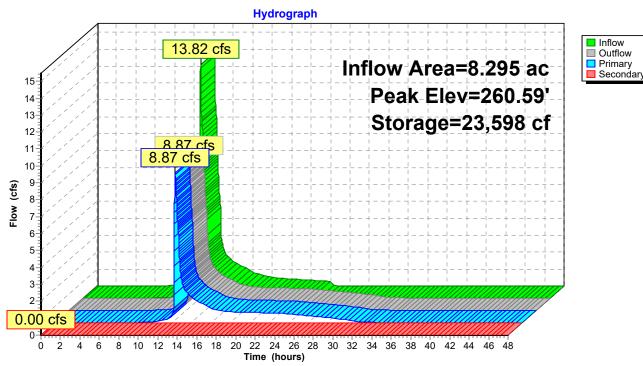
Pond 3P: MH2B

Summary for Pond 4P: Constructed Wetland

[62] Hint: Exceeded Reach 1R OUTLET depth by 0.24' @ 12.57 hrs [61] Hint: Exceeded Reach PS8 outlet invert by 0.09' @ 12.36 hrs

Inflow Area =	8.295 ac, 21.89% Impervious, Inflow	Depth = 2.00" for 25-YR event
Inflow =	13.82 cfs @ 12.09 hrs, Volume=	1.381 af
Outflow =	8.87 cfs @_ 12.36 hrs, Volume=	1.380 af, Atten= 36%, Lag= 16.0 min
Primary =	8.87 cfs @_ 12.36 hrs, Volume=	1.380 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 258.30' Surf.Area= 5,072 sf Storage= 7,845 cf Peak Elev= 260.59' @ 12.36 hrs Surf.Area= 8,491 sf Storage= 23,598 cf (15,753 cf above start)


Plug-Flow detention time= 286.0 min calculated for 1.200 af (87% of inflow) Center-of-Mass det. time= 178.0 min (1,033.4 - 855.4)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	254.00'	37,03	B7 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
- 1	0	5. 6		0	
Elevatio		Irf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
254.0	00	729	0	0	
255.0	00	972	851	851	
256.0	00	1,244	1,108	1,959	
257.0	00	1,541	1,393	3,351	
258.0	00	4,558	3,050	6,401	
258.3	30	5,072	1,445	7,845	
259.0	00	6,345	3,996	11,841	
260.0	00	7,660	7,003	18,843	
261.0	00	9,072	8,366	27,209	
262.0	00	10,584	9,828	37,037	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	258.30'	30.0" Round	l Culvert	
	,		L= 30.0' CP	P, mitered to cor	nform to fill, Ke= 0.700
			Inlet / Outlet I	nvert= 258.30' /	258.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Co	rrugated PE. sm	ooth interior, Flow Area= 4.91 sf
#2	Device 1	260.30'			Grate C= 0.600
				ir flow at low hea	
#3	Device 1	258.30'	0.5" Vert. Or	ifice/Grate X 2.0	00 columns
				5.0" cc spacing	
#4	Device 1	258.30'		rifice/Grate C	
				ir flow at low hea	
#5	Secondary	260.90'			road-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
					70 2.67 2.66 2.67 2.66 2.64
			Cool: (English	.,	10 E.01 E.00 E.01 E.00 E.01

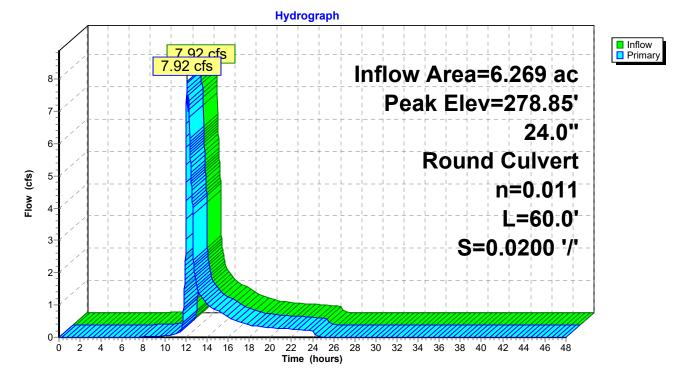
Primary OutFlow Max=8.81 cfs @ 12.36 hrs HW=260.59' (Free Discharge) 1=Culvert (Passes 8.81 cfs of 19.41 cfs potential flow) 2=Orifice/Grate (Weir Controls 8.11 cfs @ 1.76 fps) -3=Orifice/Grate (Orifice Controls 0.07 cfs @ 6.11 fps)

4=Orifice/Grate (Orifice Controls 0.64 cfs @ 7.28 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=258.30' (Free Discharge) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: Constructed Wetland

Summary for Pond 5P: MH2A


[57] Hint: Peaked at 278.85' (Flood elevation advised)

Inflow Area =	6.269 ac, 18.94% Impervious, Inflow	Depth = 1.76" for 25-YR event
Inflow =	7.92 cfs @ 12.10 hrs, Volume=	0.917 af
Outflow =	7.92 cfs @ 12.10 hrs, Volume=	0.917 af, Atten= 0%, Lag= 0.0 min
Primary =	7.92 cfs @ 12.10 hrs, Volume=	0.917 af

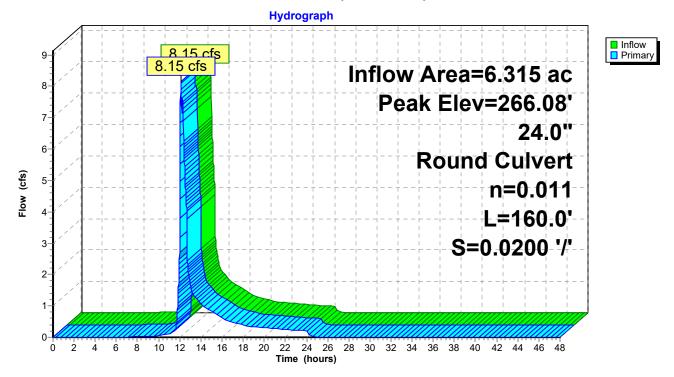
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 278.85' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.40'	24.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.40' / 276.20' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=7.91 cfs @ 12.10 hrs HW=278.85' (Free Discharge) **1=Culvert** (Inlet Controls 7.91 cfs @ 3.24 fps)

Pond 5P: MH2A

Summary for Pond 20P: (new Pond)


[57] Hint: Peaked at 266.08' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 1.78" for 25-YR event
Inflow =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af
Outflow =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af, Atten= 0%, Lag= 0.0 min
Primary =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 266.08' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	264.60'	24.0" Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 264.60' / 261.40' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=8.15 cfs @ 12.10 hrs HW=266.08' (Free Discharge) -1=Culvert (Inlet Controls 8.15 cfs @ 3.27 fps)

Pond 20P: (new Pond)

Summary for Pond BS: Bus Station RG

[63] Warning: Exceeded Reach CB1 INLET depth by 0.30' @ 24.71 hrs

Inflow Area =	0.554 ac, 36.99% Impervious, Inflow D	Depth = 3.47" for 25-YR event
Inflow =	2.15 cfs @ 12.10 hrs, Volume=	0.160 af
Outflow =	2.11 cfs @ 12.11 hrs, Volume=	0.117 af, Atten= 2%, Lag= 0.9 min
Primary =	2.11 cfs @ 12.11 hrs, Volume=	0.117 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.57' @ 12.11 hrs Surf.Area= 0 sf Storage= 2,058 cf

Plug-Flow detention time= 154.1 min calculated for 0.117 af (73% of inflow) Center-of-Mass det. time= 61.9 min (863.1 - 801.2)

Volume	Inv	/ert Avai	il.Storage	Storage Description
#1	254	.47'	2,201 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cum	n.Store
(fee	feet) (cubic-feet)		(cubi	ic-feet)
254.4	54.47 0			0
254.80 122			122	
255.05 92			214	
256.0)5	367		581
256.3	30	92		673
257.3	30	1,222		1,895
257.8	30	306		2,201
Device	Routing	l In	vert Outl	et Devices
#1	Primary	257	.30' 18.0	"Horiz. Orifice/Grate C= 0.600
			Limi	ited to weir flow at low heads
Drimony OutElow Max- 2 11 of $(0, 12, 14, hrs. H)M=257, 57! (Free Discharge)$				

Primary OutFlow Max=2.11 cfs @ 12.11 hrs HW=257.57' (Free Discharge) —1=Orifice/Grate (Weir Controls 2.11 cfs @ 1.68 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 25-YR Rainfall=5.30" Prepared by SCCM-01 Printed 9/10/2018 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 357

Hydrograph InflowPrimary 2.15 cfs 2.11 cfs Inflow Area=0.554 ac Peak Elev=257.57' 2-Storage=2,058 cf Flow (cfs) 1

24 26 28 30 32 34 36 38 40 42 44 46 48

0-

ò

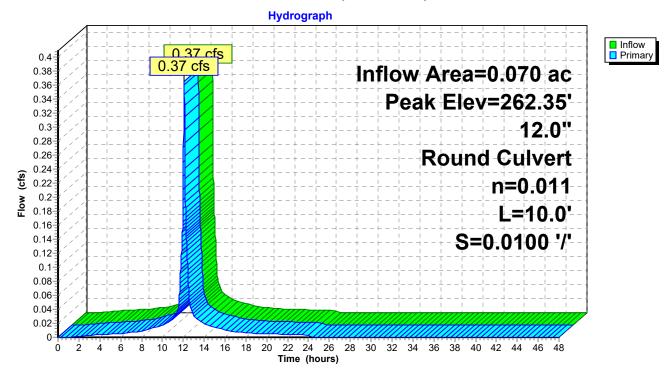
2

4 6 8 10 12 14 16 18 20

22 Time (hours)

Pond BS: Bus Station RG

Summary for Pond CB2: (new Pond)


[57] Hint: Peaked at 262.35' (Flood elevation advised)

Inflow Area =	0.070 ac,100.00% Impervious, Inflow	Depth = 5.06" for 25-YR event
Inflow =	0.37 cfs @ 12.08 hrs, Volume=	0.030 af
Outflow =	0.37 cfs @ 12.08 hrs, Volume=	0.030 af, Atten= 0%, Lag= 0.0 min
Primary =	0.37 cfs @ 12.08 hrs, Volume=	0.030 af

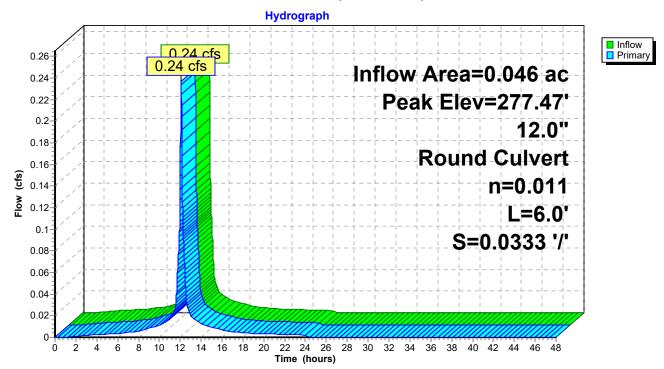
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.35' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	262.00'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 262.00' / 261.90' S= 0.0100 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.36 cfs @ 12.08 hrs HW=262.34' (Free Discharge) ←1=Culvert (Barrel Controls 0.36 cfs @ 2.26 fps)

Pond CB2: (new Pond)

Summary for Pond CB3: (new Pond)


[57] Hint: Peaked at 277.47' (Flood elevation advised)

Inflow Area =	0.046 ac,100.00% Impervious, Inflow	Depth = 5.06" for 25-YR event
Inflow =	0.24 cfs @ 12.08 hrs, Volume=	0.019 af
Outflow =	0.24 cfs @ 12.08 hrs, Volume=	0.019 af, Atten= 0%, Lag= 0.0 min
Primary =	0.24 cfs @ 12.08 hrs, Volume=	0.019 af

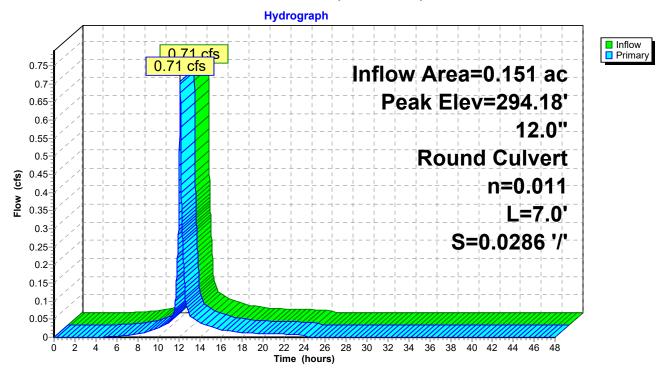
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 277.47' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.20'	12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.20' / 277.00' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.24 cfs @ 12.08 hrs HW=277.47' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.24 cfs @ 1.39 fps)

Pond CB3: (new Pond)

Summary for Pond CB4: (new Pond)


[57] Hint: Peaked at 294.18' (Flood elevation advised)

Inflow Area =	0.151 ac, 79.05% Impervious, Inflow	Depth = 4.17" for 25-YR event
Inflow =	0.71 cfs @ 12.08 hrs, Volume=	0.052 af
Outflow =	0.71 cfs @ 12.08 hrs, Volume=	0.052 af, Atten= 0%, Lag= 0.0 min
Primary =	0.71 cfs @ 12.08 hrs, Volume=	0.052 af

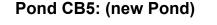
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.18' @ 12.08 hrs

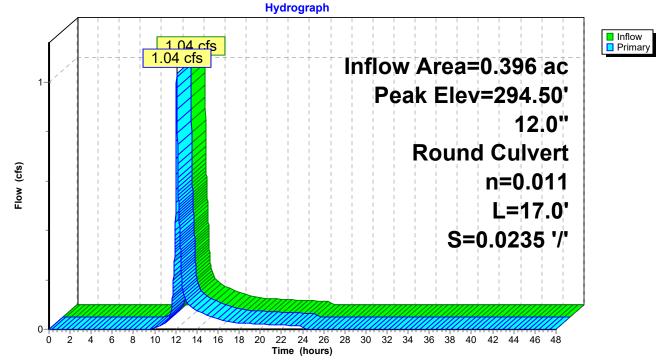
Device	Routing	Invert	Outlet Devices
#1	Primary	293.70'	12.0" Round Culvert L= 7.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.70' / 293.50' S= 0.0286 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.71 cfs @ 12.08 hrs HW=294.18' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.71 cfs @ 1.87 fps)

Pond CB4: (new Pond)

Summary for Pond CB5: (new Pond)


[57] Hint: Peaked at 294.50' (Flood elevation advised)

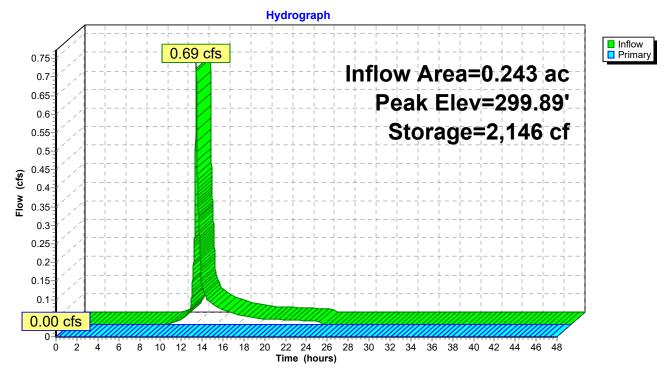

Inflow Area =	0.396 ac, 24.31% Impervious, Inflow	Depth = 2.26" for 25-YR event
Inflow =	1.04 cfs @ 12.09 hrs, Volume=	0.075 af
Outflow =	1.04 cfs @ 12.09 hrs, Volume=	0.075 af, Atten= 0%, Lag= 0.0 min
Primary =	1.04 cfs @ 12.09 hrs, Volume=	0.075 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.50' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	293.90'	12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.90' / 293.50' S= 0.0235 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=1.03 cfs @ 12.09 hrs HW=294.50' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.03 cfs @ 2.09 fps)

Summary for Pond CULdeSAC: Cul-de-sac


Inflow Area	a =	0.243 ac, 29.57% Impervious, Inflow Depth = 2.43" for 25-YR event
Inflow	=	0.69 cfs @ 12.09 hrs, Volume= 0.049 af
Outflow	=	0.00 cfs $\hat{@}$ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 299.89' @ 24.34 hrs Surf.Area= 0 sf Storage= 2,146 cf Flood Elev= 300.00' Surf.Area= 0 sf Storage= 2,622 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

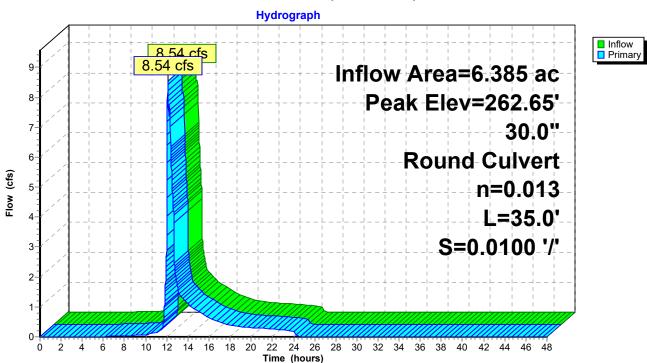
Volume	In	vert Ava	il.Storage	Storage Description
#1	297	.92'	4,394 cf	Custom Stage DataListed below
Elevatio	n	Inc.Store	Cum	n.Store
(fee		(cubic-feet)	-	ic-feet)
297.9	2	0		0
298.2	5	283		283
298.5	0	213		496
299.5	0	850		1,346
299.7	5	213		1,559
300.2	5	2,126		3,685
300.5	0	709		4,394
Device	Routing	g In	vert Outl	let Devices
#1	Primary	/ 300	.25' 12.0)" Horiz. Orifice/Grate C= 0.600
			Limi	ited to weir flow at low heads
. .				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=297.92' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs)

Pond CULdeSAC: Cul-de-sac

Summary for Pond MH1: (new Pond)

[57] Hint: Peaked at 262.65' (Flood elevation advised)[79] Warning: Submerged Pond 20P Primary device # 1 OUTLET by 1.24'


[81] Warning: Exceeded Pond CB2 by 0.36' @ 12.26 hrs

Inflow Area =	6.385 ac, 20.41% Impervious, Inflow D	Depth = 1.82" for 25-YR event
Inflow =	8.54 cfs @ 12.09 hrs, Volume=	0.966 af
Outflow =	8.54 cfs @ 12.09 hrs, Volume=	0.966 af, Atten= 0%, Lag= 0.0 min
Primary =	8.54 cfs @ 12.09 hrs, Volume=	0.966 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.65' @ 12.09 hrs

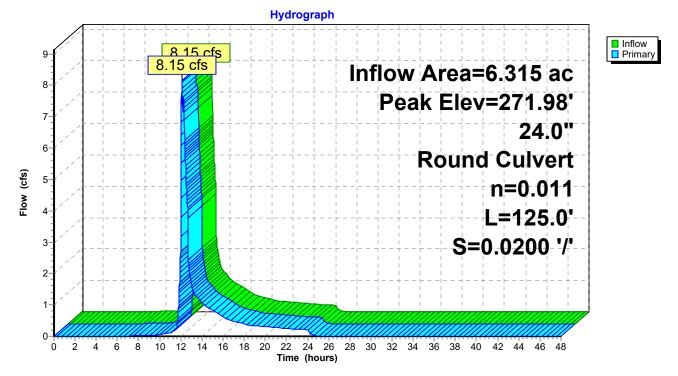
Device	Routing	Invert	Outlet Devices
#1	Primary	261.30'	30.0" Round Culvert L= 35.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 261.30' / 260.95' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=8.51 cfs @ 12.09 hrs HW=262.64' (Free Discharge) **1=Culvert** (Barrel Controls 8.51 cfs @ 4.59 fps)

Pond MH1: (new Pond)

Summary for Pond MH2: (new Pond)

[57] Hint: Peaked at 271.98' (Flood elevation advised)


Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 1.78" for 25-YR event
Inflow =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af
Outflow =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af, Atten= 0%, Lag= 0.0 min
Primary =	8.15 cfs @ 12.10 hrs, Volume=	0.936 af

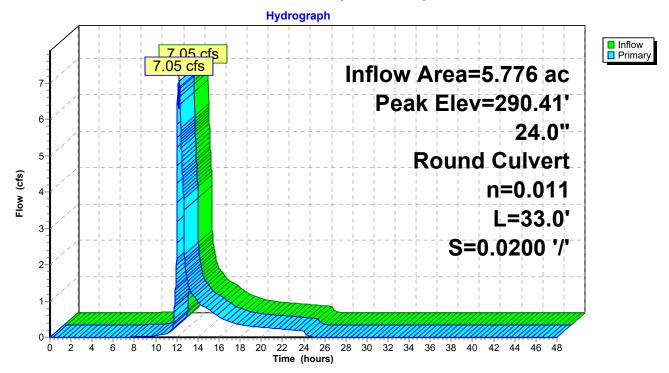
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 271.98' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	270.50'	24.0" Round Culvert L= 125.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.50' / 268.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=8.15 cfs @ 12.10 hrs HW=271.98' (Free Discharge) -1=Culvert (Inlet Controls 8.15 cfs @ 3.27 fps)

Pond MH2: (new Pond)

Summary for Pond MH3: (new Pond)


[57] Hint: Peaked at 290.41' (Flood elevation advised)

Inflow Area =	5.776 ac, 17.87% Impervious, Inflow	Depth = 1.76" for 25-YR event
Inflow =	7.05 cfs @ 12.26 hrs, Volume=	0.848 af
Outflow =	7.05 cfs @ 12.26 hrs, Volume=	0.848 af, Atten= 0%, Lag= 0.0 min
Primary =	7.05 cfs @ 12.26 hrs, Volume=	0.848 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 290.41' @ 12.26 hrs

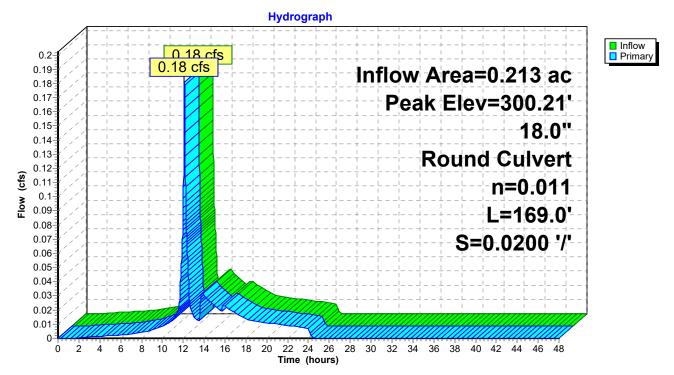
Device	Routing	Invert	Outlet Devices
#1	Primary	289.06'	24.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 289.06' / 288.40' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 3.14 sf

Primary OutFlow Max=7.04 cfs @ 12.26 hrs HW=290.41' (Free Discharge) **1=Culvert** (Inlet Controls 7.04 cfs @ 3.12 fps)

Pond MH3: (new Pond)

Summary for Pond MH4:

[57] Hint: Peaked at 300.21' (Flood elevation advised)


Inflow Area =	0.213 ac, 50.94% Impervious, Inflow	Depth = 1.36" for 25-YR event
Inflow =	0.18 cfs @ 12.11 hrs, Volume=	0.024 af
Outflow =	0.18 cfs @ 12.11 hrs, Volume=	0.024 af, Atten= 0%, Lag= 0.0 min
Primary =	0.18 cfs @ 12.11 hrs, Volume=	0.024 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.21' @ 12.11 hrs

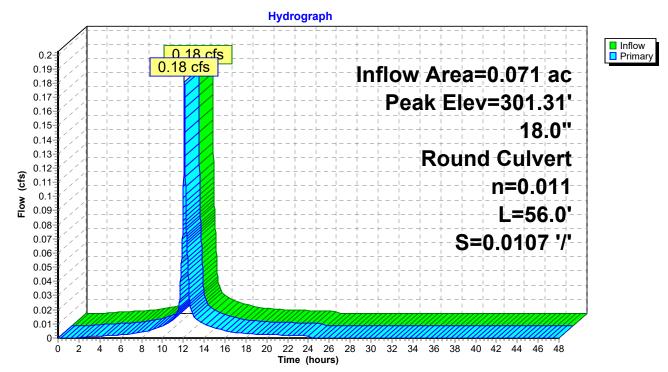
Device	Routing	Invert	Outlet Devices
#1	Primary	300.00'	18.0" Round Culvert L= 169.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 296.62' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.18 cfs @ 12.11 hrs HW=300.21' (Free Discharge) **1=Culvert** (Inlet Controls 0.18 cfs @ 1.22 fps)

Pond MH4:

Summary for Pond MH5:

[57] Hint: Peaked at 301.31' (Flood elevation advised) [63] Warning: Exceeded Reach 13R INLET depth by 0.01' @ 12.11 hrs


Inflow Area =	0.071 ac, 65.39% Impervious, Inflow I	Depth = 2.46" for 25-YR event
Inflow =	0.18 cfs @ 12.11 hrs, Volume=	0.015 af
Outflow =	0.18 cfs @ 12.11 hrs, Volume=	0.015 af, Atten= 0%, Lag= 0.0 min
Primary =	0.18 cfs @ 12.11 hrs, Volume=	0.015 af

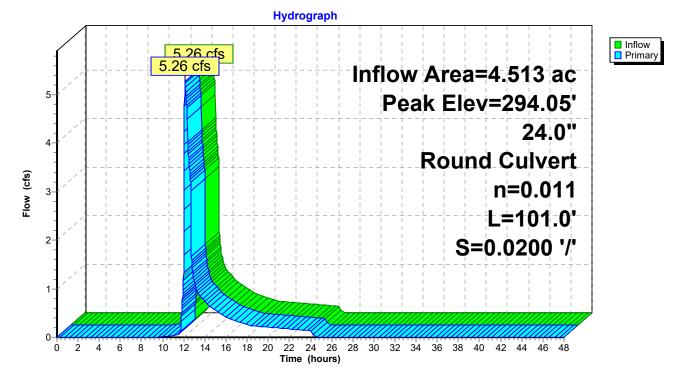
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.31' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.10'	18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.10' / 300.50' S= 0.0107 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.18 cfs @ 12.11 hrs HW=301.31' (Free Discharge) **1=Culvert** (Inlet Controls 0.18 cfs @ 1.22 fps)

Pond MH5:

Summary for Pond MH6: CB6


[57] Hint: Peaked at 294.05' (Flood elevation advised)

Inflow Area =	4.513 ac, 14.39% Impervious, Inflow	Depth = 1.63" for 25-YR event
Inflow =	5.26 cfs @ 12.10 hrs, Volume=	0.615 af
Outflow =	5.26 cfs @ 12.10 hrs, Volume=	0.615 af, Atten= 0%, Lag= 0.0 min
Primary =	5.26 cfs @ 12.10 hrs, Volume=	0.615 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.05' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	292.92'	24.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 292.92' / 290.90' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

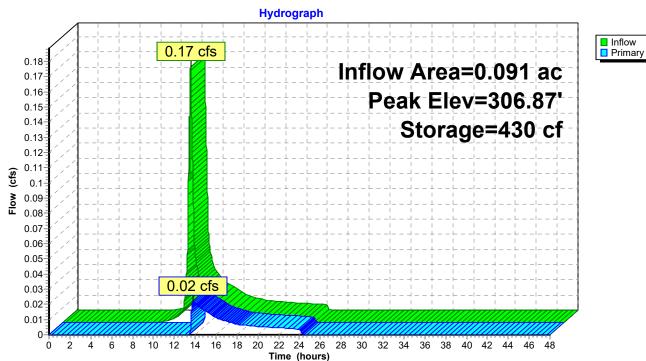
Primary OutFlow Max=5.26 cfs @ 12.10 hrs HW=294.05' (Free Discharge) ☐ 1=Culvert (Inlet Controls 5.26 cfs @ 2.86 fps)

Pond MH6: CB6

Summary for Pond RG10:

[63] Warning: Exceeded Reach 15R INLET depth by 4.55' @ 24.44 hrs

Inflow Area =	0.091 ac, 45.76% Impervious, Inflow Depth = 2.24" for 25-YR event
Inflow =	0.17 cfs @ 12.22 hrs, Volume= 0.017 af
Outflow =	0.02 cfs @ 13.84 hrs, Volume= 0.007 af, Atten= 87%, Lag= 97.0 min
Primary =	0.02 cfs @ 13.84 hrs, Volume= 0.007 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.87' @ 13.84 hrs Surf.Area= 0 sf Storage= 430 cf

Plug-Flow detention time= 309.6 min calculated for 0.007 af (43% of inflow) Center-of-Mass det. time= 171.3 min (1,036.4 - 865.1)

Volume	In	vert Av	ail.Stora	age	Storage Description
#1	303	.77'	509	9 cf	Custom Stage DataListed below
Elevatic	on	Inc.Store	9	Cum.S	Store
(fee	et)	(cubic-feet) ((cubic-	c-feet)
303.7	7	()		0
303.8	35	8	3		8
304.1	0	2	5		33
306.1	0	200)		233
306.3	35	2	5		258
306.8	35	167	7		425
307.1	0	84	1		509
Device	Routing	9	Invert	Outlet	et Devices
#1	Primary	/ 30		-	Horiz. Orifice/Grate C= 0.600 ed to weir flow at low heads
D				40.04	

Primary OutFlow Max=0.02 cfs @ 13.84 hrs HW=306.87' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.02 cfs @ 0.42 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 25-YR Rainfall=5.30" Prepared by SCCM-01 Printed 9/10/2018

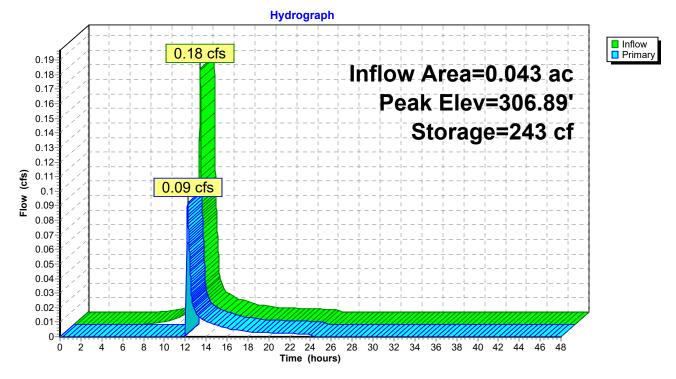
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 371

Pond RG10:

Summary for Pond RG11:

Inflow Area =	0.043 ac, 62.65% Impervious, Infl	ow Depth = 3.55" for 25-YR event
Inflow =	0.18 cfs @ 12.09 hrs, Volume=	0.013 af
Outflow =	0.09 cfs @ 12.23 hrs, Volume=	0.007 af, Atten= 48%, Lag= 8.3 min
Primary =	0.09 cfs @ 12.23 hrs, Volume=	0.007 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.89' @ 12.23 hrs Surf.Area= 0 sf Storage= 243 cf


Plug-Flow detention time= 198.2 min calculated for 0.007 af (57% of inflow) Center-of-Mass det. time= 91.3 min (899.6 - 808.2)

Volume	In	vert A	Avail.Sto	rage	Storage Description	
#1	303	.77'	28	31 cf	Custom Stage DataListed below	
				~		
Elevatio		Inc.Sto		-	n.Store	
(fee	et)	(cubic-fee	et)	(cubio	pic-feet)	
303.7	77		0		0	
303.8	35		5		5	
304.1	10		14		19	
306.1	10	1	10		129	
306.3	35		14		143	
306.8	35	9	92		235	
307.1	10		46		281	
Device	Routing	9	Invert	Outle	tlet Devices	
#1	Primary	/	306.85'	-	0" Horiz. Orifice/Grate C= 0.600	
				Limit	nited to weir flow at low heads	
D			00 - 5- 6	D 40 0	(2) has $100/2000 (Errs Discharms)$	
Primary OutFlow Max=0.09 cfs @ 12.23 hrs HW=306.89' (Free Discharge)						

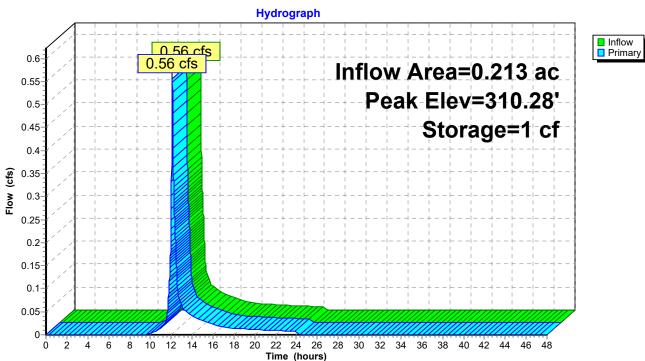
Primary OutFlow Max=0.09 cfs @ 12.23 hrs HW=306.89' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.09 cfs @ 0.67 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 25-YR Rainfall=5.30" Prepared by SCCM-01 Printed 9/10/2018 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Page 373

Pond RG11:

Summary for Pond RG12:

[62] Hint: Exceeded Reach PS3 OUTLET depth by 1.27' @ 0.00 hrs


Inflow Area =	0.213 ac, 23.47% Impervious, Inflow	Depth = 2.26" for 25-YR event
Inflow =	0.56 cfs @ 12.10 hrs, Volume=	0.040 af
Outflow =	0.56 cfs @ 12.10 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min
Primary =	0.56 cfs @ 12.10 hrs, Volume=	0.040 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.28' @ 12.10 hrs Surf.Area= 0 sf Storage= 1 cf

Plug-Flow detention time= 0.0 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 0.0 min (845.6 - 845.6)

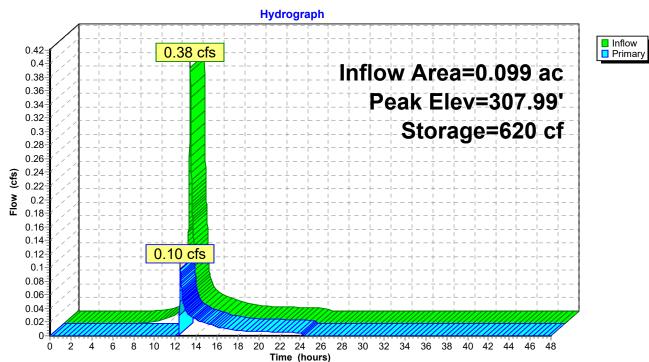
Volume	Inv	ert Avail.S	torage	Storage Description
#1	310.2	27'	760 cf	Custom Stage DataListed below
F lavestice	_	las Otens	0	
Elevatior		Inc.Store		n.Store
(feet	<u>(</u>)	cubic-feet)	(cubi	<u>c-feet)</u>
310.27	7	0		0
310.60	C	15		15
310.85	5	44		59
312.10	C	219		278
312.35	5	44		322
312.85	5	292		614
313.10	C	146		760
Device	Routing	Inve	rt Outl	et Devices
#1	Primary	309.75		"Horiz. Orifice/Grate X 0.50 C= 0.600 ted to weir flow at low heads
Drimony	OutFlow	Mov-1 29 of	● 12 4	10 hrs $HW = 310.28'$ (Free Discharge)

Primary OutFlow Max=1.38 cfs @ 12.10 hrs HW=310.28' (Free Discharge) —1=Orifice/Grate (Orifice Controls 1.38 cfs @ 1.75 fps)

Pond RG12:

Summary for Pond RG13:

[63] Warning: Exceeded Reach PS4 INLET depth by 0.95' @ 24.37 hrs


Inflow Area =	0.099 ac, 53.64% Impervious, Inflow Depth = 3.25" for 25-YR event
Inflow =	0.38 cfs @ 12.10 hrs, Volume= 0.027 af
Outflow =	0.10 cfs @ 12.48 hrs, Volume= 0.013 af, Atten= 74%, Lag= 23.2 min
Primary =	0.10 cfs @ 12.48 hrs, Volume= 0.013 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 307.99' @ 12.48 hrs Surf.Area= 0 sf Storage= 620 cf

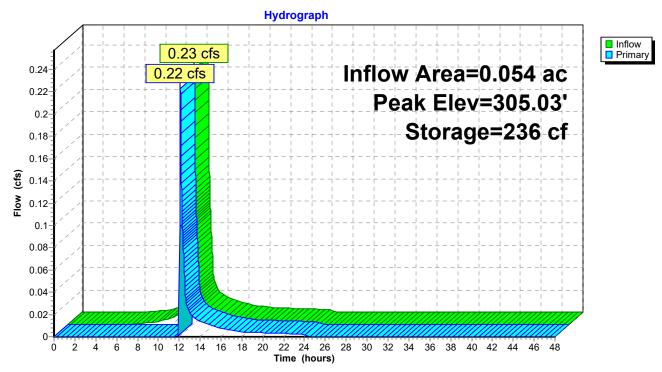
Plug-Flow detention time= 239.7 min calculated for 0.013 af (48% of inflow) Center-of-Mass det. time= 124.7 min (942.3 - 817.6)

Volume	Inve	rt Avail.Sto	rage Stor	age Description
#1	304.29)' 7(06 cf Cus	tom Stage DataListed below
-			0 0	
Elevation		Inc.Store	Cum.Stor	
(feet)	(ต	ubic-feet)	(cubic-feet	
304.29		0)
304.62		42	4	2
304.87		31	7	3
307.20		290	36	3
307.45		31	39	1
307.95		208	60	2
308.20		104	70	3
Device F	Routing	Invert	Outlet De	vices
#1 P	rimary	307.95'		iz. Orifice/Grate C= 0.600 weir flow at low heads

Primary OutFlow Max=0.09 cfs @ 12.48 hrs HW=307.99' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.09 cfs @ 0.68 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr 25-YR Rainfall=5.30"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 377

Pond RG13:

Summary for Pond RG14:


Inflow Area =	0.054 ac, 64.02% Impervious, Inflow I	Depth = 3.65" for 25-YR event
Inflow =	0.23 cfs @ 12.09 hrs, Volume=	0.017 af
Outflow =	0.22 cfs @ 12.11 hrs, Volume=	0.011 af, Atten= 3%, Lag= 1.3 min
Primary =	0.22 cfs @ 12.11 hrs, Volume=	0.011 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.03' @ 12.11 hrs Surf.Area= 0 sf Storage= 236 cf

Plug-Flow detention time= 155.9 min calculated for 0.011 af (69% of inflow) Center-of-Mass det. time= 62.0 min (867.2 - 805.3)

Volume	١nv	vert Ava	il.Storage	Storage Description		
#1	302.	54'	272 cf	Custom Stage DataListed below		
_						
Elevatio	on	Inc.Store	Cum	n.Store		
(fee	et) (cubic-feet)	(cubi	vic-feet)		
302.5	54	0		0		
302.6	62	5		5		
302.8	37	15		20		
304.2	20	82		102		
304.4	45	15		117		
304.9	95	103		220		
305.2	20	52		272		
Device	Routing	In	vert Outl	tlet Devices		
#1	Primary	304	-	0" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads		
Primary OutFlow Max=0.22 cfs @ 12.11 hrs. HW=305.03' (Free Discharge)						

Primary OutFlow Max=0.22 cfs @ 12.11 hrs HW=305.03' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.22 cfs @ 0.91 fps)

Pond RG14:

Summary for Pond RG15:

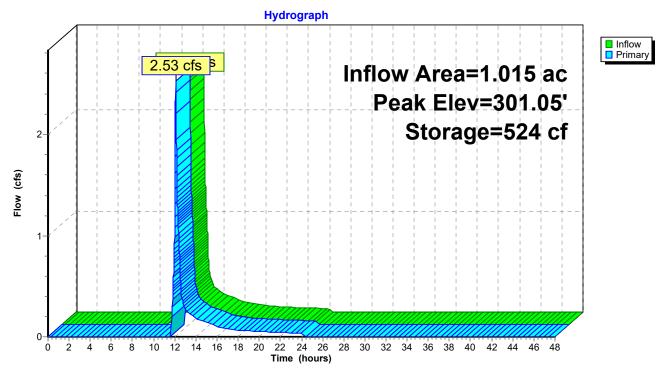
[93] Warning: Storage range exceeded by 0.05'

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[61] Hint: Exceeded Reach 10R outlet invert by 3.11' @ 12.10 hrs

Inflow Area =	1.015 ac, 19.57% Impervious, Inflow [Depth = 2.10" for 25-YR event
Inflow =	2.44 cfs @ 12.09 hrs, Volume=	0.177 af
Outflow =	2.53 cfs @ 12.10 hrs, Volume=	0.167 af, Atten= 0%, Lag= 0.4 min
Primary =	2.53 cfs @ 12.10 hrs, Volume=	0.167 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.05' @ 12.10 hrs Surf.Area= 0 sf Storage= 524 cf

Plug-Flow detention time= 41.3 min calculated for 0.167 af (94% of inflow) Center-of-Mass det. time= 11.6 min (861.1 - 849.6)

Volume	Inv	ert Avail	.Storage	Storage Description
#1	298.	00'	524 cf	Custom Stage DataListed below
Elevatio (fee		Inc.Store cubic-feet)	•••••	n.Store <u>c-feet)</u>
298.0	0	0		0
299.0	0	110		110
300.0	0	110		220
300.2	5	28		248
300.7	5	184		432
301.0	0	92		524
Device	Routing	Inv	ert Outl	et Devices
#1	Primary	300.		" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads

Primary OutFlow Max=2.52 cfs @ 12.10 hrs HW=301.05' (Free Discharge) ←1=Orifice/Grate (Weir Controls 2.52 cfs @ 1.79 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 381

Pond RG15:

Summary for Pond RG16:

[93] Warning: Storage range exceeded by 0.17'

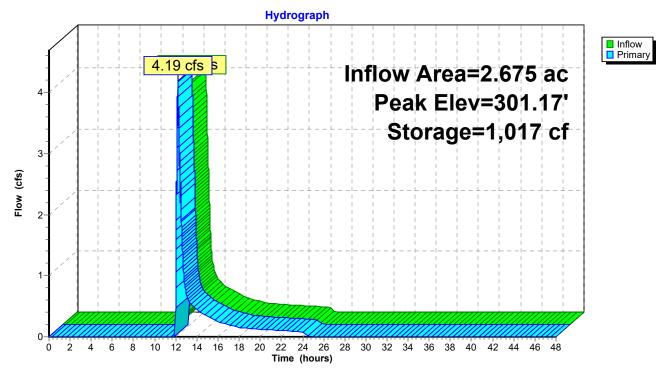
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[61] Hint: Exceeded Reach PS1 outlet invert by 0.17' @ 12.19 hrs

[62] Hint: Exceeded Reach PS2 OUTLET depth by 0.05' @ 12.21 hrs

Inflow Area =	2.675 ac,	4.94% Impervious, Inf	low Depth = 1.70 "	for 25-YR event
Inflow =	4.00 cfs @	12.20 hrs, Volume=	0.378 af	
Outflow =	4.19 cfs @	12.19 hrs, Volume=	0.359 af, Att	en= 0%, Lag= 0.0 min
Primary =	4.19 cfs @	12.19 hrs, Volume=	0.359 af	


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.17' @ 12.19 hrs Surf.Area= 0 sf Storage= 1,017 cf

Plug-Flow detention time= 38.9 min calculated for 0.359 af (95% of inflow) Center-of-Mass det. time= 11.0 min (881.0 - 869.9)

Volume	In	vert Ava	il.Storage	Storage Description
#1	298	.00'	1,017 cf	Custom Stage DataListed below
- 1			0	
Elevatio	on	Inc.Store	-	n.Store
(fee	et)	(cubic-feet)	(cubi	<u>c-feet)</u>
298.0	00	0		0
299.0	00	182		182
300.0	00	182		364
300.2	25	46		410
300.7	75	455		865
301.0	00	152		1,017
Device	Routing	g In	vert Outl	let Devices
#1	Primary	y 300		"Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads

Primary OutFlow Max=4.18 cfs @ 12.19 hrs HW=301.17' (Free Discharge) —1=Orifice/Grate (Weir Controls 4.18 cfs @ 2.12 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 383

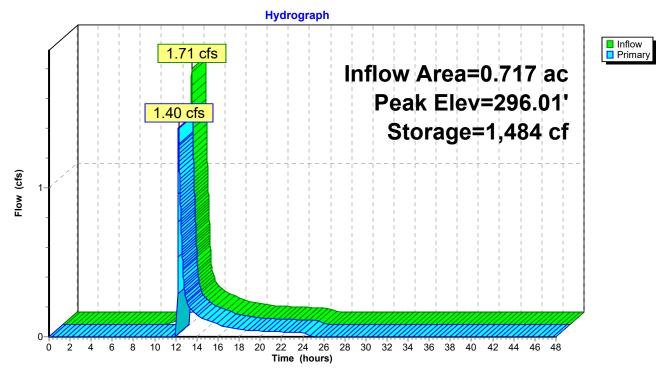
Pond RG16:

Summary for Pond RG19:

[93] Warning: Storage range exceeded by 0.01' [62] Hint: Exceeded Reach PS6 OUTLET depth by 0.45' @ 43.16 hrs

Inflow Area =	0.717 ac, 23.42% Impervious, Inflow D	epth = 2.26" for 25-YR event
Inflow =	1.71 cfs @ 12.18 hrs, Volume=	0.135 af
Outflow =	1.40 cfs @12.26 hrs, Volume=	0.107 af, Atten= 19%, Lag= 4.7 min
Primary =	1.40 cfs @ 12.26 hrs, Volume=	0.107 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 296.01' @ 12.26 hrs Surf.Area= 0 sf Storage= 1,484 cf


Plug-Flow detention time= 127.7 min calculated for 0.107 af (79% of inflow) Center-of-Mass det. time= 44.2 min (898.4 - 854.2)

Volume	Invert	Avail.Sto	rage Storage Description	
#1	293.50'	1,48	84 cf Custom Stage DataListed below	
Elevatio (fee		c.Store c-feet)	Cum.Store (cubic-feet)	
293.5 293.7 295.0	50 75 00	0 73 365	0 73 438	
295.2 295.7 296.0	75 00	73 730 243	511 1,241 1,484	
<u>Device</u> #1	Routing Primary	Invert 292.63'	Outlet Devices 8.0" Round Culvert L= 39.5' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 292.63' / 292.23' S= 0.0101 '/' Cc= 0.900 n= 0.011, Flow Area= 0.35 sf	
#2	Device 1	295.75'	12.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads	
1=Cu	Ilvert (Passes	s 1.39 cfs of	② 12.26 hrs HW=296.01' (Free Discharge) 2.32 cfs potential flow) role 1.30 cfc @ 1.68 fps)	

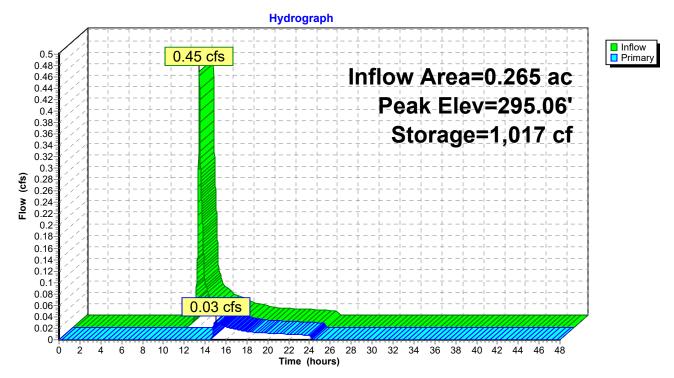
1-2=Orifice/Grate (Weir Controls 1.39 cfs @ 1.68 fps)

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 385

Pond RG19:

Summary for Pond RG20:

Inflow Area =	0.265 ac,	0.00% Impervious,	Inflow Depth = 1.55	' for 25-YR event
Inflow =	0.45 cfs @	12.10 hrs, Volume	= 0.034 af	
Outflow =	0.03 cfs @	15.02 hrs, Volume	= 0.011 af, A	tten= 93%, Lag= 175.5 min
Primary =	0.03 cfs @	15.02 hrs, Volume	= 0.011 af	


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 295.06' @ 15.02 hrs Surf.Area= 0 sf Storage= 1,017 cf

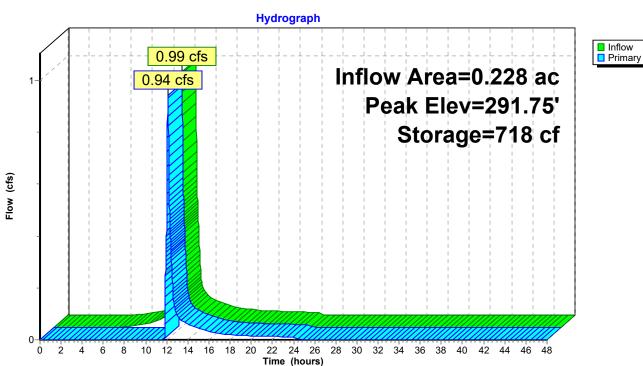
Plug-Flow detention time= 378.6 min calculated for 0.011 af (33% of inflow) Center-of-Mass det. time= 234.1 min (1,102.4 - 868.3)

Volume	Inv	vert Avai	I.Storage	Storage Description	
#1	292.	47'	1,191 cf	Custom Stage DataListed below	
Elevatio	on	Inc.Store	Cum	n.Store	
(fee		cubic-feet)		ic-feet)	
292.4	17	0		0	
292.5	55	18		18	
292.8	30	55		73	
294.3	30	330		403	
294.5		55		458	
295.0		550		1,008	
295.3	30	183		1,191	
Device	Routing	Inv	vert Outl	let Devices	
#1	Primary	295)" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads	
Primary	Primary OutFlow Max=0.02 cfs @ 15.02 hrs. HW=295.06' (Free Discharge)				

Primary OutFlow Max=0.02 cfs @ 15.02 hrs HW=295.06' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.02 cfs @ 0.37 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr 25-YR Rainfall=5.30"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 387

Pond RG20:

Summary for Pond RG21:


Inflow Area	=	0.228 ac, 67.95% Impervious, Inflow Depth = 3.75" for 25-Y	R event
Inflow	=	0.99 cfs @ 12.09 hrs, Volume= 0.071 af	
Outflow	=	0.94 cfs @ 12.11 hrs, Volume= 0.058 af, Atten= 5%, L	_ag= 1.5 min
Primary	=	0.94 cfs @12.11 hrs, Volume=0.058 af	
i iiiiai y			

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 291.75' @ 12.11 hrs Surf.Area= 0 sf Storage= 718 cf

Plug-Flow detention time= 117.3 min calculated for 0.058 af (81% of inflow) Center-of-Mass det. time= 44.0 min (846.3 - 802.2)

Volume	١n	/ert Ava	ail.Storage	Storage Description				
#1	289.	62'	749 cf	Custom Stage DataListed below				
			_					
Elevatio	on	Inc.Store	Cur	m.Store				
(fee	et) ((cubic-feet)	(cub	bic-feet)				
289.6	62	0		0				
289.9	95	65		65				
290.2	20	49		114				
291.2	20	195		309				
291.4	45	49		358				
291.5	55	228		586				
291.8	30	163		749				
Device	Routing	li I	nvert Ou	tlet Devices				
#1	Primary	29		.0" Horiz. Orifice/Grate C= 0.600 nited to weir flow at low heads				
			LIN					
Drimary		w Max=0.9/	l cfs @ 12	Primary OutFlow Max=0.94 cfs @ 12.11 hrs. $HW=201.75'$ (Free Discharge)				

Primary OutFlow Max=0.94 cfs @ 12.11 hrs HW=291.75' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.94 cfs @ 1.47 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 389

Pond RG21:

Summary for Pond RG22:

Inflow Area =	0.153 ac, 15.01% Impervious, Inflow D	epth = 2.97" for 25-YR event
Inflow =	0.53 cfs @ 12.09 hrs, Volume=	0.038 af
Outflow =	0.20 cfs @ 12.35 hrs, Volume=	0.022 af, Atten= 62%, Lag= 15.8 min
Primary =	0.20 cfs $\overline{@}$ 12.35 hrs, Volume=	0.022 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 258.62' @ 12.35 hrs Surf.Area= 0 sf Storage= 737 cf

Plug-Flow detention time= 203.1 min calculated for 0.022 af (58% of inflow) Center-of-Mass det. time= 93.6 min (918.2 - 824.5)

Volume	١n	vert Avail	.Storage	Storage Description	
#1	256.	22'	853 cf	Custom Stage DataListed below	
			_		
Elevatio	on	Inc.Store	Cum	n.Store	
(fee	et)	(cubic-feet)	(cubi	c-feet)	
256.2	22	0		0	
256.5	55	66		66	
256.8	30	49		115	
257.8	30	197		312	
258.0)5	49		361	
258.5	55	328		689	
258.8	30	164		853	
Device	Routing	Inv	ert Outle	et Devices	
#1	Primary	258.	55' 12.0	"Horiz. Orifice/Grate C= 0.600	
			Limi	ted to weir flow at low heads	
Primary	Primary OutFlow Max=0.20 cfs @ 12.35 hrs HW=258.62' (Free Discharge)				

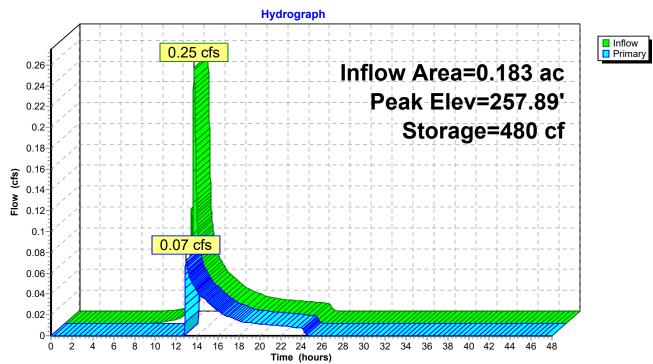
Primary OutFlow Max=0.20 cfs @ 12.35 hrs HW=258.62' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.20 cfs @ 0.88 fps) Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr25-YR Rainfall=5.30"Prepared by SCCM-01Printed9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 391

Hydrograph Inflow 0.53 cfs Primary Inflow Area=0.153 ac 0.55 0.5 Peak Elev=258.62' 0.45 Storage=737 cf 0.4 0.35 Flow (cfs) 0.3 0.25 0.20 cfs 0.2 0.15 0.1 0.05 0-2 10 12 14 16 18 20 4 6 8 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Pond RG22:

Summary for Pond RG23:

[63] Warning: Exceeded Reach 21R INLET depth by 3.85' @ 27.94 hrs


Inflow Area =	0.183 ac, 16.37% Impervious, Inflow Depth = 1.96" for 25-YR event
Inflow =	0.25 cfs @ 12.35 hrs, Volume= 0.030 af
Outflow =	0.07 cfs @ 12.94 hrs, Volume= 0.019 af, Atten= 70%, Lag= 35.1 min
Primary =	0.07 cfs @ 12.94 hrs, Volume= 0.019 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.89' @ 12.94 hrs Surf.Area= 0 sf Storage= 480 cf

Plug-Flow detention time= 213.7 min calculated for 0.019 af (64% of inflow) Center-of-Mass det. time= 93.3 min (986.3 - 893.0)

Volume	Inv	ert Avail.S	torage	Storage Description
#1	255.2	27'	568 cf	Custom Stage DataListed below
Elevatior	า	Inc.Store	Cum	n.Store
(feet)) (*	cubic-feet)	(cubi	c-feet)
255.27	7	0		0
255.60)	41		41
255.85	5	31		72
257.10)	155		227
257.35	5	31		258
257.85	5	207		465
258.10)	103		568
Device	Routing	Inver	t Outl	et Devices
#1	Primary	257.85	-	"Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads
				led to well how at how heads
	0		~ 40.0	

Primary OutFlow Max=0.07 cfs @ 12.94 hrs HW=257.89' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.07 cfs @ 0.62 fps)

Pond RG23:

Summary for Pond RG3:

[93] Warning: Storage range exceeded by 0.03'

- [88] Warning: Qout>Qin may require Finer Routing>1
- [85] Warning: Oscillations may require Finer Routing>1

Inflow Area	=	0.150 ac, 4	6.64% Impervious	, Inflow Depth =	2.97" f	for 25-YR event
Inflow	=	0.44 cfs @	12.16 hrs, Volum	e= 0.037	af	
Outflow	=	0.47 cfs @	12.17 hrs, Volum	e= 0.030	af, Atten	= 0%, Lag= 0.6 min
Primary	=	0.47 cfs @	12.17 hrs, Volum	e= 0.030	af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 311.03' @ 12.17 hrs Surf.Area= 0 sf Storage= 339 cf

Plug-Flow detention time= 111.3 min calculated for 0.030 af (82% of inflow) Center-of-Mass det. time= 37.7 min (867.4 - 829.7)

Volume	Invert	Avail.Stor	rage S	Storage Description
#1	309.50'	33	39 cf C	Custom Stage DataListed below
Elevation (feet) 309.50 309.75 310.25 310.50 311.00	(cubi	2.Store <u>c-feet)</u> 0 32 63 32 212		
Device F	Routing Primary	212 <u>Invert</u> 310.90'	Outlet I 4.0' Ior Head (1 2.50 3 Coef. (1	Devices ng x 4.0' breadth Broad-Crested Rectangular Weir (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 3.50 4.00 4.50 5.00 5.50 (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Primary OutFlow Max=0.47 cfs @ 12.17 hrs HW=311.03' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.47 cfs @ 0.87 fps)

Hydrograph Inflow Primary 0.5 0.47 cfs Inflow Area=0.150 ac s 0.45 Peak Elev=311.03' 0.4 Storage=339 cf 0.35 0.3 Flow (cfs) 0.25 0.2 0.15 0.1

Pond RG3:

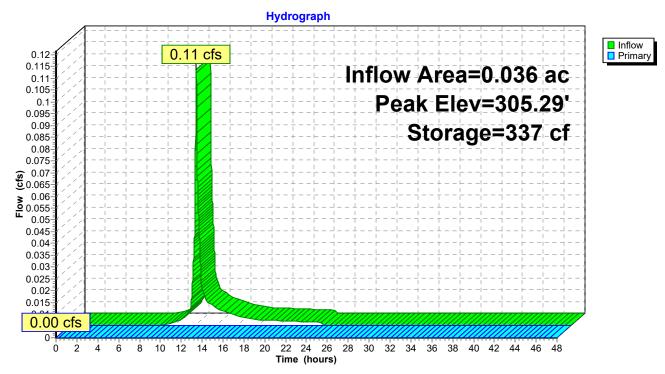
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

0.05

0-

Summary for Pond RG4:

Inflow Area	=	0.036 ac, 34.97% Impervious, Inflow Depth = 2.6	61" for 25-YR event
Inflow =	=	0.11 cfs @ 12.09 hrs, Volume= 0.008 af	
Outflow =	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af,	Atten= 100%, Lag= 0.0 min
Primary =	=	0.00 cfs @ 0.00 hrs, Volume= 0.000 af	_


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.29' @ 24.34 hrs Surf.Area= 0 sf Storage= 337 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

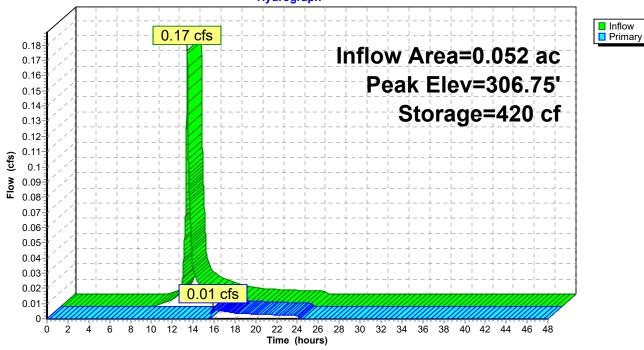
Volume	١n	/ert Avail	.Storage	Storage Description
#1	302.	42'	743 cf	Custom Stage DataListed below
F lavesti			0	- Otana
Elevatio		Inc.Store	-	n.Store
(fee	et)	(cubic-feet)	(cubi	<u>c-feet)</u>
302.4	42	0		0
302.7	75	39		39
303.0	00	29		68
306.0	00	352		420
306.2	25	29		449
306.7	75	196		645
307.0	00	98		743
Device	Routing	Inv	ert Outl	et Devices
#1	Primary	306.	75' 12.0	"Horiz. Orifice/Grate C= 0.600
			Limi	ted to weir flow at low heads
D		. Max_0 00 -		$\lambda h = 1 N - 200 A - (\Gamma = 2 D - h = h = h = h = h = h = h = h = h = h$

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.42' (Free Discharge)

Pond RG4:

Summary for Pond RG5:

Inflow Area =	0.052 ac, 40.18% Impervious, Inflow	Depth = 2.78" for 25-YR event
Inflow =	0.17 cfs @ 12.09 hrs, Volume=	0.012 af
Outflow =	0.01 cfs @ 15.87 hrs, Volume=	0.002 af, Atten= 96%, Lag= 226.7 min
Primary =	0.01 cfs @ 15.87 hrs, Volume=	0.002 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.75' @ 15.87 hrs Surf.Area= 0 sf Storage= 420 cf

Plug-Flow detention time= 464.3 min calculated for 0.002 af (20% of inflow) Center-of-Mass det. time= 319.5 min (1,149.1 - 829.6)

Volume	Inv	vert Av	/ail.Storag	ge Storage Description
#1	302	.67'	486	ocf Custom Stage DataListed below
Elevatio	on	Inc.Stor	e C	Cum.Store
(fee	et)	(cubic-feet) (c	cubic-feet)
302.6	67		C	0
302.7	75		7	7
303.0	00	2	C	27
306.0	00	23	9	266
306.2	25	2	C	286
306.7	75	13	3	419
307.0	00	6	7	486
Device	Routing		Invert C	Outlet Devices
#1	Primary	· 3	06.75' 1	12.0" Horiz. Orifice/Grate C= 0.600
			L	Limited to weir flow at low heads
Primary		Max=0 (0 cfs @ 1	15.87 brs HW=306.75' (Free Discharge)

Primary OutFlow Max=0.00 cfs @ 15.87 hrs HW=306.75' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.00 cfs @ 0.19 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 25-YR Rainfall=5.30" Prepared by SCCM-01 Printed 9/10/2018

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 399 Pond RG5: Hydrograph

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: (n	ew Subcat)	Runoff Area=6		ff Depth=2.95" 54 cfs 0.039 af
Subcatchment2S: Ro	bad	Runoff Area=12		ff Depth=4.51" 51 cfs 0.108 af
Subcatchment3S: Ur		Runoff Area=8 Flow Length=525'		
Subcatchment4S:	I	Runoff Area=8 Flow Length=525'		
Subcatchment 5S:		Runoff Area=3,0		ff Depth=6.56" 7 cfs 0.038 af
Subcatchment7S: (n	ew Subcat)	Runoff Area=6		ff Depth=5.63" 94 cfs 0.071 af
Subcatchment8S: (n	ew Subcat)	Runoff Area=17	•	ff Depth=3.45" 60 cfs 0.114 af
Subcatchment9S:		Runoff Area=1,9	•	ff Depth=6.56" 80 cfs 0.025 af
Subcatchment10S: (new Subcat)	Runoff Area=25 Flow Length=128		
Subcatchment11S:		Runoff Area=23		ff Depth=3.35" 4 cfs 0.152 af
Subcatchment 12S:	Flow Length=485	Runoff Area=3 5' Slope=0.0350 '/		
Subcatchment13S:	Flow Length=331'	Runoff Area=6 Slope=0.0100 '/'		
Subcatchment 14S:		Runoff Area=34 Flow Length=172		
Subcatchment15S:	Flow Length=1,115'	Runoff Area=3 Slope=0.0050 '/'		
Subcatchment16S:		Runoff Area=4,6		ff Depth=6.56" ′2 cfs_0.059 af
Subcatchment CUL: ((new Subcat)	Runoff Area=10		ff Depth=3.66" 04 cfs 0.074 af

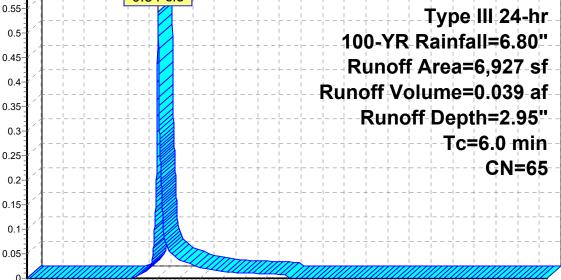
TIYUTOAD® 10.00 3/11 00000 @ 2012 TIYUTO	
SubcatchmentP1:	Runoff Area=98,881 sf 5.04% Impervious Runoff Depth=2.75" Flow Length=650' Tc=12.2 min CN=63 Runoff=5.85 cfs 0.521 af
Subcatchment P2:	Runoff Area=10,702 sf 0.00% Impervious Runoff Depth=2.56" Flow Length=344' Tc=8.6 min CN=61 Runoff=0.65 cfs 0.052 af
SubcatchmentS1:	Runoff Area=1,539 sf 96.04% Impervious Runoff Depth=6.44" Tc=6.0 min CN=97 Runoff=0.23 cfs 0.019 af
SubcatchmentS10:	Runoff Area=2,106 sf 30.86% Impervious Runoff Depth=3.66" Tc=6.0 min CN=72 Runoff=0.21 cfs 0.015 af
SubcatchmentS11:	Runoff Area=1,858 sf 62.65% Impervious Runoff Depth=4.95" Tc=6.0 min CN=84 Runoff=0.24 cfs 0.018 af
SubcatchmentS12:	Runoff Area=9,267 sf 23.47% Impervious Runoff Depth=3.45" Tc=6.0 min CN=70 Runoff=0.86 cfs 0.061 af
SubcatchmentS13:	Runoff Area=4,314 sf 53.64% Impervious Runoff Depth=4.62" Tc=6.0 min CN=81 Runoff=0.53 cfs 0.038 af
SubcatchmentS14:	Runoff Area=2,371 sf 64.02% Impervious Runoff Depth=5.06" Tc=6.0 min CN=85 Runoff=0.31 cfs 0.023 af
SubcatchmentS15:	Runoff Area=44,214 sf 19.57% Impervious Runoff Depth=3.25" Tc=6.0 min CN=68 Runoff=3.85 cfs 0.275 af
SubcatchmentS19:	Runoff Area=31,232 sf 23.42% Impervious Runoff Depth=3.45" Tc=6.0 min CN=70 Runoff=2.90 cfs 0.206 af
SubcatchmentS2:	Runoff Area=0.550 ac 12.73% Impervious Runoff Depth=3.05" Tc=6.0 min CN=66 Runoff=1.95 cfs 0.140 af
SubcatchmentS20:	Runoff Area=11,551 sf 0.00% Impervious Runoff Depth=2.56" Tc=6.0 min CN=61 Runoff=0.77 cfs 0.057 af
SubcatchmentS21:	Runoff Area=9,941 sf 67.95% Impervious Runoff Depth=5.17" Tc=6.0 min CN=86 Runoff=1.34 cfs 0.098 af
SubcatchmentS22: Stow Road South	Runoff Area=6,662 sf 15.01% Impervious Runoff Depth=4.29" Tc=6.0 min CN=78 Runoff=0.77 cfs 0.055 af
SubcatchmentS23: Stow Road South	Runoff Area=1,297 sf 23.36% Impervious Runoff Depth=4.51" Tc=6.0 min CN=80 Runoff=0.16 cfs 0.011 af
SubcatchmentS3:	Runoff Area=6,554 sf 46.64% Impervious Runoff Depth=4.29" Flow Length=426' Tc=11.6 min CN=78 Runoff=0.63 cfs 0.054 af
SubcatchmentS4:	Runoff Area=1,550 sf 34.97% Impervious Runoff Depth=3.87" Tc=6.0 min CN=74 Runoff=0.16 cfs 0.011 af
SubcatchmentS5:	Runoff Area=2,245 sf 40.18% Impervious Runoff Depth=4.08" Tc=6.0 min CN=76 Runoff=0.25 cfs 0.018 af

SubcatchmentSBS:	Runoff Area=6,892 sf 15.19% Impervious Runoff Depth=4.29" Tc=6.0 min CN=78 Runoff=0.79 cfs 0.057 af
	Avg. Flow Depth=0.68' Max Vel=6.68 fps Inflow=3.83 cfs 0.239 af =72.0' S=0.0125 '/' Capacity=4.71 cfs Outflow=3.81 cfs 0.239 af
	Avg. Flow Depth=0.10' Max Vel=5.65 fps Inflow=0.23 cfs 0.019 af 22.0' S=0.0682 '/' Capacity=10.99 cfs Outflow=0.23 cfs 0.019 af
	/g. Flow Depth=1.01' Max Vel=2.22 fps Inflow=12.78 cfs 1.466 af 5.0' S=0.0100 '/' Capacity=11.78 cfs Outflow=11.91 cfs 1.466 af
	Avg. Flow Depth=0.23' Max Vel=3.44 fps Inflow=0.38 cfs 0.024 af 197.0' S=0.0100 '/' Capacity=1.43 cfs Outflow=0.37 cfs 0.024 af
	Avg. Flow Depth=0.11' Max Vel=5.03 fps Inflow=0.23 cfs 0.019 af =88.0' S=0.0795 '/' Capacity=9.33 cfs Outflow=0.23 cfs 0.019 af
	Avg. Flow Depth=0.26' Max Vel=6.83 fps Inflow=0.86 cfs 0.061 af 128.0' S=0.0353 '/' Capacity=2.68 cfs Outflow=0.86 cfs 0.061 af
	Avg. Flow Depth=0.19' Max Vel=3.72 fps Inflow=0.31 cfs 0.018 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=0.31 cfs 0.018 af
Reach 10R: new 18.0" Round Pipe n=0.011 L=8	Avg. Flow Depth=0.00' Max Vel=0.00 fps 84.0' S=0.0400 '/' Capacity=24.83 cfs Outflow=0.00 cfs 0.000 af
	Avg. Flow Depth=0.67' Max Vel=5.57 fps Inflow=3.90 cfs 0.265 af L=7.0' S=0.0143 '/' Capacity=1.71 cfs Outflow=1.81 cfs 0.265 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af =18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af =18.0' S=0.0111 '/' Capacity=1.51 cfs Outflow=0.00 cfs 0.000 af
Reach 14R: (new Reach)A8.0" Round Pipen=0.011L=	Avg. Flow Depth=0.16' Max Vel=3.65 fps Inflow=0.23 cfs 0.033 af =33.0' S=0.0173 '/' Capacity=1.88 cfs Outflow=0.23 cfs 0.033 af
	Avg. Flow Depth=0.16' Max Vel=3.64 fps Inflow=0.24 cfs 0.012 af =18.0' S=0.0167 '/' Capacity=1.84 cfs Outflow=0.24 cfs 0.012 af
	Avg. Flow Depth=0.13' Max Vel=3.51 fps Inflow=0.17 cfs 0.017 af =36.0' S=0.0194 '/' Capacity=1.99 cfs Outflow=0.17 cfs 0.017 af
	Avg. Flow Depth=0.67' Max Vel=8.45 fps Inflow=6.80 cfs 0.592 af =67.0' S=0.0328 '/' Capacity=2.59 cfs Outflow=2.72 cfs 0.592 af
	Avg. Flow Depth=0.07' Max Vel=2.34 fps Inflow=0.04 cfs 0.008 af =16.0' S=0.0200 '/' Capacity=2.02 cfs Outflow=0.04 cfs 0.008 af

Pine Hill Proposed Proposed Conditions_09102018Type III 24-hr100-YR Rainfall=6.80"Prepared by SCCM-01Printed 9/10/2018HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLCPage 403			
Reach 19R: (new Reach) 8.0" Round Pi	Avg. Flow Depth=0.26' Max Vel=10.25 fps Inflow=1.32 cfs 0.085 af pe n=0.011 L=47.0' S=0.0781 '/' Capacity=3.99 cfs Outflow=1.31 cfs 0.085 af		
Reach 20R: 12" RCP pipe 12.0" Round Pi	Avg. Flow Depth=0.36' Max Vel=5.87 fps Inflow=1.50 cfs 0.108 af pe n=0.013 L=22.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=1.50 cfs 0.108 af		
Reach 21R: (new Reach) 8.0" Round Pi	Avg. Flow Depth=0.39' Max Vel=3.06 fps Inflow=0.64 cfs 0.039 af pe n=0.011 L=50.0' S=0.0050 '/' Capacity=1.01 cfs Outflow=0.64 cfs 0.039 af		
Reach CB1: CB1 12.0" Round Pi	Avg. Flow Depth=0.36' Max Vel=8.78 fps Inflow=2.20 cfs 0.167 af pe n=0.011 L=27.0' S=0.0370 '/' Capacity=8.10 cfs Outflow=2.20 cfs 0.167 af		
Reach CP1:	Inflow=2.51 cfs 0.187 af Outflow=2.51 cfs 0.187 af		
Reach CP2:	Inflow=30.78 cfs 4.573 af Outflow=30.78 cfs 4.573 af		
Reach PS1:	Avg. Flow Depth=0.55' Max Vel=5.30 fps Inflow=5.85 cfs 0.521 af n=0.035 L=228.0' S=0.0658 '/' Capacity=20.22 cfs Outflow=5.83 cfs 0.521 af		
Reach PS10A:	Avg. Flow Depth=0.09' Max Vel=1.94 fps Inflow=0.23 cfs 0.019 af n=0.035 L=18.0' S=0.0833 '/' Capacity=261.94 cfs Outflow=0.23 cfs 0.019 af		
Reach PS10B:	Avg. Flow Depth=0.10' Max Vel=1.83 fps Inflow=0.23 cfs 0.019 af n=0.035 L=42.0' S=0.0714 '/' Capacity=242.51 cfs Outflow=0.23 cfs 0.019 af		
Reach PS2:	Avg. Flow Depth=0.18' Max Vel=2.60 fps Inflow=0.54 cfs 0.039 af n=0.035 L=31.0' S=0.0645 '/' Capacity=20.02 cfs Outflow=0.54 cfs 0.039 af		
Reach PS3:	Avg. Flow Depth=0.22' Max Vel=3.06 fps Inflow=0.86 cfs 0.061 af n=0.035 L=58.0' S=0.0690 '/' Capacity=20.70 cfs Outflow=0.86 cfs 0.061 af		
Reach PS4:	Avg. Flow Depth=0.22' Max Vel=1.96 fps Inflow=0.53 cfs 0.038 af n=0.035 L=34.0' S=0.0294 '/' Capacity=13.52 cfs Outflow=0.53 cfs 0.038 af		
Reach PS6: (new Reach)	Avg. Flow Depth=0.58' Max Vel=2.31 fps Inflow=2.90 cfs 0.206 af n=0.035 L=398.0' S=0.0118 '/' Capacity=8.56 cfs Outflow=2.70 cfs 0.206 af		
Reach PS7: (new Reach)	Avg. Flow Depth=0.46' Max Vel=4.28 fps Inflow=3.97 cfs 0.239 af n=0.035 L=303.0' S=0.0528 '/' Capacity=81.69 cfs Outflow=3.83 cfs 0.239 af		
Reach PS8: (new Reach)	Avg. Flow Depth=0.82' Max Vel=4.40 fps Inflow=12.38 cfs 1.549 af n=0.023 L=40.0' S=0.0112 '/' Capacity=80.78 cfs Outflow=12.30 cfs 1.549 af		
Reach PS9: (new Reach)	Avg. Flow Depth=0.39' Max Vel=2.34 fps Inflow=1.51 cfs 0.108 af n=0.035 L=75.0' S=0.0200 '/' Capacity=11.15 cfs Outflow=1.50 cfs 0.108 af		
Pond 1P: (new Pond)	Peak Elev=301.86' Inflow=1.19 cfs 0.103 af 18.0" Round Culvert n=0.011 L=85.0' S=0.0412 '/' Outflow=1.19 cfs 0.103 af		
Pond 2P: (new Pond)	Peak Elev=298.61' Inflow=2.90 cfs 0.368 af 18.0" Round Culvert n=0.011 L=47.0' S=0.0362 '/' Outflow=2.90 cfs 0.368 af		

Pond 3P: MH2B	Peak Elev=285.19' Inflow=10.39 cfs 1.400 af 24.0" Round Culvert n=0.011 L=72.0' S=0.0200 '/' Outflow=10.39 cfs 1.400 af
Pond 4P: Constructed Wet	and Peak Elev=260.75' Storage=24,971 cf Inflow=19.47 cfs 2.163 af hary=16.48 cfs 2.162 af Secondary=0.00 cfs 0.000 af Outflow=16.48 cfs 2.162 af
Pond 5P: MH2A	Peak Elev=279.34' Inflow=11.68 cfs 1.485 af 24.0" Round Culvert n=0.011 L=60.0' S=0.0200 '/' Outflow=11.68 cfs 1.485 af
Pond 20P: (new Pond)	Peak Elev=266.60' Inflow=11.95 cfs 1.510 af 24.0" Round Culvert n=0.011 L=160.0' S=0.0200 '/' Outflow=11.95 cfs 1.510 af
Pond BS: Bus Station RG	Peak Elev=257.63' Storage=2,098 cf Inflow=2.99 cfs 0.224 af Outflow=2.95 cfs 0.180 af
Pond CB2: (new Pond)	Peak Elev=262.40' Inflow=0.47 cfs 0.038 af 12.0" Round Culvert n=0.011 L=10.0' S=0.0100 '/' Outflow=0.47 cfs 0.038 af
Pond CB3: (new Pond)	Peak Elev=277.51' Inflow=0.30 cfs 0.025 af 12.0" Round Culvert n=0.011 L=6.0' S=0.0333 '/' Outflow=0.30 cfs 0.025 af
Pond CB4: (new Pond)	Peak Elev=294.27' Inflow=0.94 cfs 0.071 af 12.0" Round Culvert n=0.011 L=7.0' S=0.0286 '/' Outflow=0.94 cfs 0.071 af
Pond CB5: (new Pond)	Peak Elev=294.69' Inflow=1.60 cfs 0.114 af 12.0" Round Culvert n=0.011 L=17.0' S=0.0235 '/' Outflow=1.60 cfs 0.114 af
Pond CULdeSAC: Cul-de-s	ac Peak Elev=300.14' Storage=3,230 cf Inflow=1.04 cfs 0.074 af Outflow=0.00 cfs 0.000 af
Pond MH1: (new Pond)	Peak Elev=262.99' Inflow=12.38 cfs 1.549 af 30.0" Round Culvert n=0.013 L=35.0' S=0.0100 '/' Outflow=12.38 cfs 1.549 af
Pond MH2: (new Pond)	Peak Elev=272.50' Inflow=11.95 cfs 1.510 af 24.0" Round Culvert n=0.011 L=125.0' S=0.0200 '/' Outflow=11.95 cfs 1.510 af
Pond MH3: (new Pond)	Peak Elev=290.81' Inflow=10.39 cfs 1.367 af 24.0" Round Culvert n=0.011 L=33.0' S=0.0200 '/' Outflow=10.39 cfs 1.367 af
Pond MH4:	Peak Elev=300.25' Inflow=0.26 cfs 0.044 af 18.0" Round Culvert n=0.011 L=169.0' S=0.0200 '/' Outflow=0.26 cfs 0.044 af
Pond MH5:	Peak Elev=301.34' Inflow=0.23 cfs 0.019 af 18.0" Round Culvert n=0.011 L=56.0' S=0.0107 '/' Outflow=0.23 cfs 0.019 af
Pond MH6: CB6	Peak Elev=294.11' Inflow=5.69 cfs 1.005 af 24.0" Round Culvert n=0.011 L=101.0' S=0.0200 '/' Outflow=5.69 cfs 1.005 af
Pond RG10:	Peak Elev=306.92' Storage=447 cf Inflow=0.44 cfs 0.027 af Outflow=0.17 cfs 0.017 af

Pine Hill Proposed Proposed Condition Prepared by SCCM-01 HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD	ions_09102018 Type III 24-hr 100-YR Rainfall=6.80" Printed 9/10/2018 Software Solutions LLC Page 405
Pond RG11:	Peak Elev=306.93' Storage=250 cf Inflow=0.24 cfs 0.018 af Outflow=0.24 cfs 0.012 af
Pond RG12:	Peak Elev=310.29' Storage=1 cf Inflow=0.86 cfs 0.061 af Outflow=0.86 cfs 0.061 af
Pond RG13:	Peak Elev=308.06' Storage=648 cf Inflow=0.53 cfs 0.038 af Outflow=0.38 cfs 0.024 af
Pond RG14:	Peak Elev=305.05' Storage=240 cf Inflow=0.31 cfs 0.023 af Outflow=0.31 cfs 0.018 af
Pond RG15:	Peak Elev=301.15' Storage=524 cf Inflow=3.85 cfs 0.275 af Outflow=3.90 cfs 0.265 af
Pond RG16:	Peak Elev=301.39' Storage=1,017 cf Inflow=6.75 cfs 0.612 af Outflow=6.80 cfs 0.592 af
Pond RG19:	Peak Elev=297.28' Storage=1,484 cf Inflow=2.70 cfs 0.206 af Outflow=2.76 cfs 0.178 af
Pond RG20:	Peak Elev=295.11' Storage=1,052 cf Inflow=0.77 cfs 0.057 af Outflow=0.23 cfs 0.033 af
Pond RG21:	Peak Elev=291.80' Storage=749 cf Inflow=1.34 cfs 0.098 af Outflow=1.32 cfs 0.085 af
Pond RG22:	Peak Elev=258.71' Storage=792 cf Inflow=0.77 cfs 0.055 af Outflow=0.64 cfs 0.039 af
Pond RG23:	Peak Elev=257.98' Storage=518 cf Inflow=0.76 cfs 0.050 af Outflow=0.48 cfs 0.039 af
Pond RG3:	Peak Elev=311.07' Storage=339 cf Inflow=0.63 cfs 0.054 af Outflow=0.65 cfs 0.047 af
Pond RG4:	Peak Elev=306.38' Storage=500 cf Inflow=0.16 cfs 0.011 af Outflow=0.00 cfs 0.000 af
Pond RG5:	Peak Elev=306.77' Storage=425 cf Inflow=0.25 cfs 0.018 af Outflow=0.04 cfs 0.008 af


Total Runoff Area = 16.749 acRunoff Volume = 5.062 afAverage Runoff Depth = 3.63"86.64% Pervious = 14.511 ac13.36% Impervious = 2.238 ac

Summary for Subcatchment 1S: (new Subcat)

Runoff = 0.54 cfs @ 12.09 hrs, Volume= 0.039 af, Depth= 2.95"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

Area	(sf)	CN D	escription									
7	771	98 P										
6,1	156	61 >	>75% Grass cover, Good, HSG B									
6,9	927	65 W	Weighted Average									
6,1	156	8	88.87% Pervious Area									
7	771	1	11.13% Impervious Area									
	ngth	Slope Velocity Capacity Description										
	feet)	(ft/ft)	(ft/sec)	(cfs)								
6.0					Direct Entry,							
			Su	bcatchm	ent 1S: (new	Subcat)						
_				Hydro	graph	•						
0.6			.54 cfs				Runoff					
0.55		Type III 24-hr										
0.5		100-YP Rainfall=6 80"										

22 24 26

Time (hours)

28

30 32 34 36 38 40 42 44 46 48

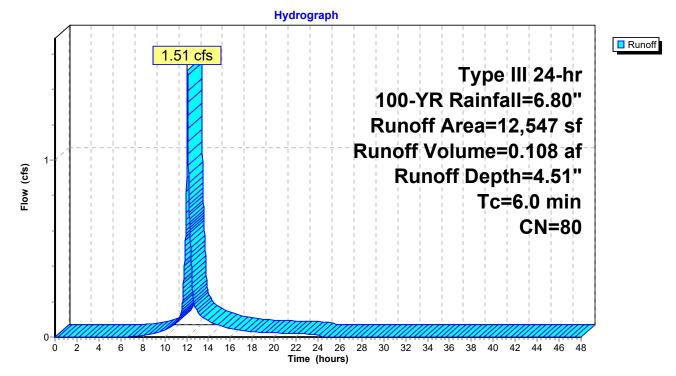
12 14 16 18 20

Flow (cfs)

2

4 6 8 10

Ò

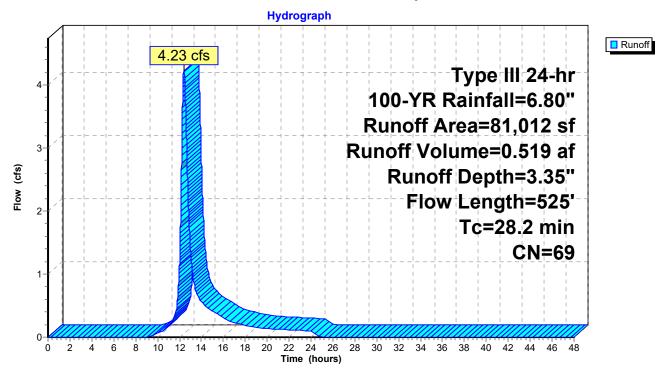

Summary for Subcatchment 2S: Road

Runoff = 1.51 cfs @ 12.09 hrs, Volume= 0.108 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

_	A	rea (sf)	CN	Description										
*		4,975	74	>75% Gras	>75% Grass cover, Good, HSG C									
*		3,197	98	Impervious	mpervious									
*		4,375	73	Woods, Fai	Voods, Fair, HSG C									
		12,547 9,350 3,197	80	Weighted A 74.52% Per 25.48% Imp	vious Area									
	Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description								
	6.0					Direct Entry,								

Subcatchment 2S: Road


Summary for Subcatchment 3S: Undeveloped Area

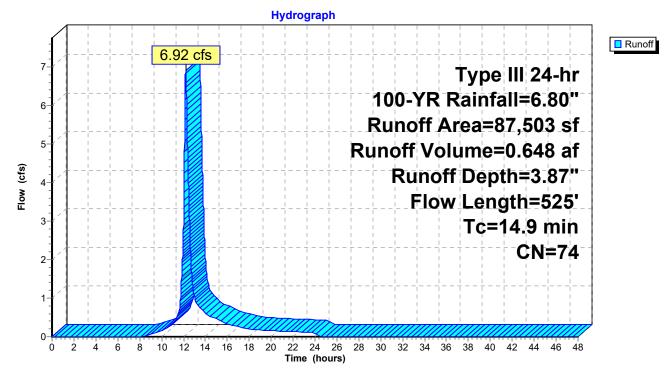
Runoff = 4.23 cfs @ 12.40 hrs, Volume= 0.519 af, Depth= 3.35"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

_	A	rea (sf)	CN I	Description								
*		26,806	61 :	>75% grass	s cover, goo	od, HSG B						
_		54,206	73	Voods, Fair, HSG C								
		81,012		Weighted A								
		81,012		100.00% Pe	ervious Are	а						
	_		~		• •	-						
	Tc	Length	Slope		Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	8.2	50	0.0605	0.10		Sheet Flow,						
						Woods: Light underbrush n= 0.400 P2= 3.00"						
	20.0	475	0.0250	0.40		Shallow Concentrated Flow,						
						Forest w/Heavy Litter Kv= 2.5 fps						
_	28.2	525	Total									

Subcatchment 3S: Undeveloped Area

Summary for Subcatchment 4S:


Runoff = 6.92 cfs @ 12.20 hrs, Volume= 0.648 af, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

	A	rea (sf)	CN	Description										
*		62,598	73	Woods, Fai	r, HSG C									
		2,061	98	Paved park	/ed parking & roofs									
_		22,844	74 :	>75% Ġras	5% Grass cover, Good, HSG C									
		87,503	74	Weighted Average										
		85,442	9	97.64% Pervious Area										
		2,061		2.36% Impe	ervious Are	а								
	Тс	Length	Slope	,	Capacity	Description								
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)									
	4.9	50	0.0300	0.17		Sheet Flow,								
						Grass: Short n= 0.150 P2= 3.00"								
	10.0	475	0.0250	0.79		Shallow Concentrated Flow,								
_						Woodland Kv= 5.0 fps								
	110	525	Total											

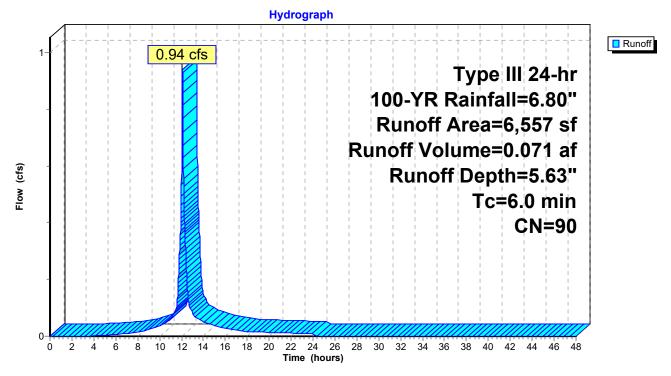
14.9 525 Total

Subcatchment 4S:

Summary for Subcatchment 5S:

Runoff = 0.47 cfs @ 12.08 hrs, Volume= 0.038 af, Depth= 6.56"

	3,065		escription aved park	ing & roofs												
	3,065	1	00.00% In	npervious A	rea											
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descr	iptio	n									
6.0					Direct	t Ent	t ry ,									
				Subc	atchm	ent	5 S:									
				Hydro	graph											
0.52 0.53 0.48 0.46 0.44 0.42 0.4 0.38 0.34 0.32 0.28 0.24 0.22 0.28 0.24 0.22 0.28 0.24 0.22 0.28 0.14 0.14 0.14 0.14 0.04 0.04 0.04 0.04			.47 cfs 				R ui nof	nof	R f A olu	aiı tre tm De	a= e=	all= :3,(:0.(th= =6.	=6. 06 03 =6.	80 5 s 8 a 56 mi)" sf af }"	Run
0	0 2 4	6 8 10	12 14 16		24 26 e (hours)	28 3	30 32	34	36	38	40	42	44	46	48	


Summary for Subcatchment 7S: (new Subcat)

Runoff = 0.94 cfs @ 12.08 hrs, Volume= 0.071 af, Depth= 5.63"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

	Ar	ea (sf)	CN	Description										
*		5,183	98	Impervious	1									
*		1,374	61	>75% grass	75% grass cover, good, HSG B									
		6,557 1,374 5,183	90	Weighted A 20.95% Per 79.05% Imp	vious Area									
(n	Tc nin)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description								
	6.0					Direct Entry,								

Subcatchment 7S: (new Subcat)

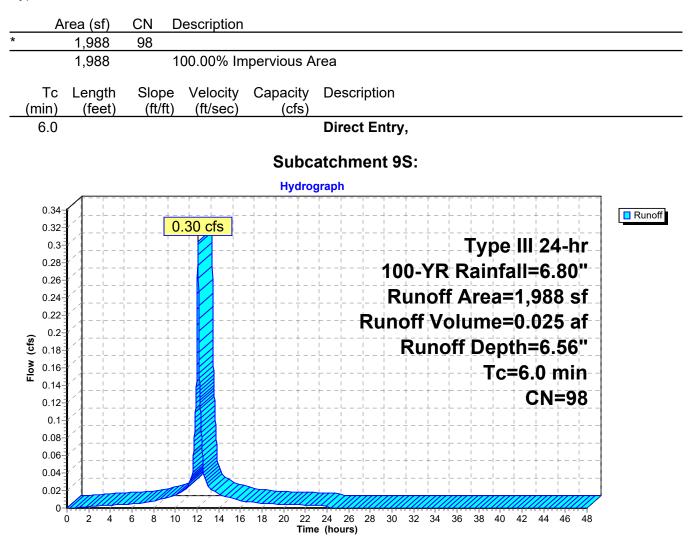
Summary for Subcatchment 8S: (new Subcat)

Runoff = 1.60 cfs @ 12.09 hrs, Volume= 0.114 af, Depth= 3.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

0 2 4 6 8

10 12 14 16 18 20

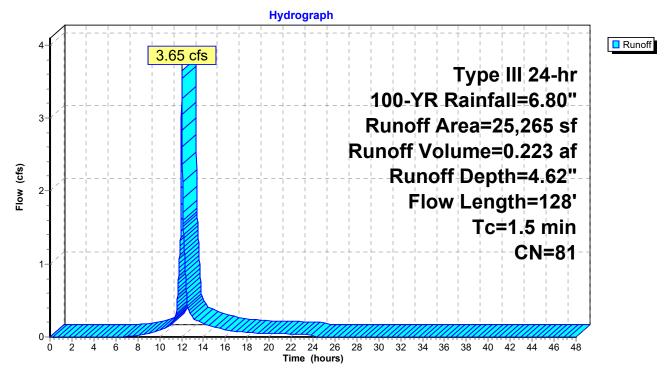

	Area (sf)	CN Description										
*	4,188	98 Impervious										
*	13,042	•	>75% grass cover, good, HSG B									
	17,230		Weighted Average									
	13,042	75.69% Pe										
	4,188	24.31% Im	pervious Area									
	Tc Length	Slope Velocity (ft/ft) (ft/sec)	Capacity Description (cfs)									
	(min) (feet) 6.0		Direct Entry,									
	0.0		Direct Littiy,									
	Subcatchment 8S: (new Subcat)											
	Hydrograph											
			Runoff									
		1.60 cfs										
			Type III 24-hr									
			100-YR Rainfall=6.80"									
			Runoff Area=17,230 sf									
			Runoff Volume=0.114 af									
	Flow (cfs)		Runoff Depth=3.45"									
	Mol 1		Tc=6.0 min									
			CN=70									

Time (hours)

22 24 26 28 30 32 34 36 38 40 42 44 46 48

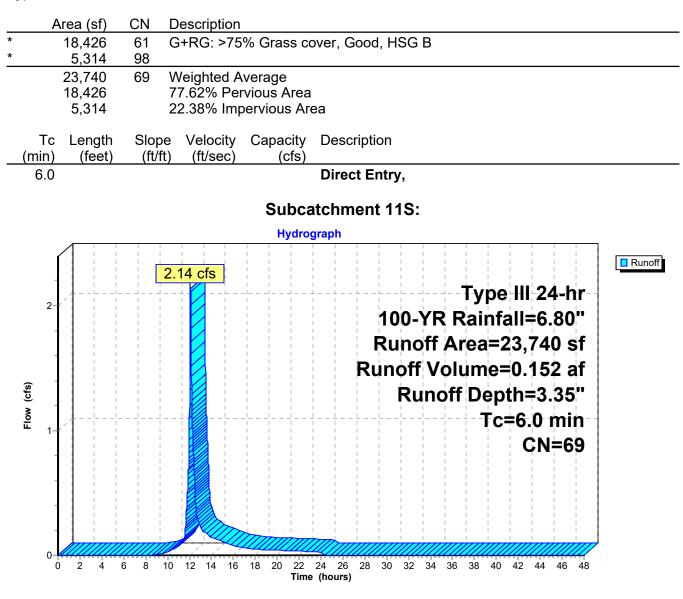
Summary for Subcatchment 9S:

Runoff = 0.30 cfs @ 12.08 hrs, Volume= 0.025 af, Depth= 6.56"

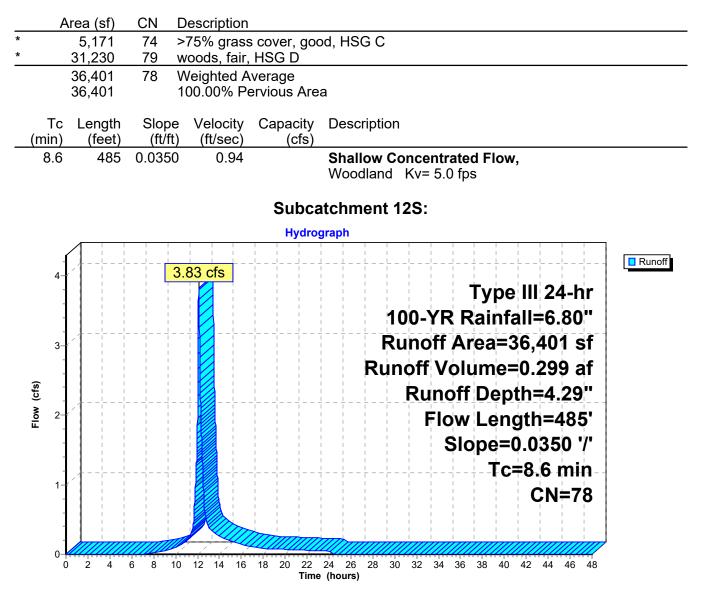

Summary for Subcatchment 10S: (new Subcat)

Runoff = 3.65 cfs @ 12.02 hrs, Volume= 0.223 af, Depth= 4.62"

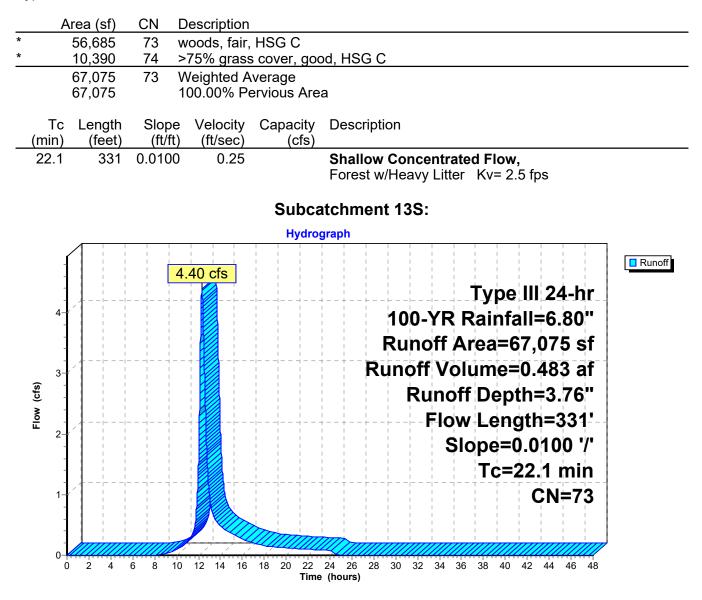
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"


 A	rea (sf)	CN E	Description									
	7,231	98 F	aved park	ing & roofs								
	18,034	74 >	4 >75% Grass cover, Good, HSG C									
	25,265	81 V	Veighted A	verage								
	18,034 71.38% Pervious Area											
	7,231	7,231 28.62% Impervious Area										
_												
Tc	Length	Slope	Velocity	Capacity	Description							
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
0.7	50	0.0200	1.16		Sheet Flow,							
					Smooth surfaces n= 0.011 P2= 3.00"							
0.8	78	0.0500	1.57		Shallow Concentrated Flow,							
					Short Grass Pasture Kv= 7.0 fps							
1.5	128	Total										

Subcatchment 10S: (new Subcat)


Summary for Subcatchment 11S:

Runoff = 2.14 cfs @ 12.09 hrs, Volume= 0.152 af, Depth= 3.35"

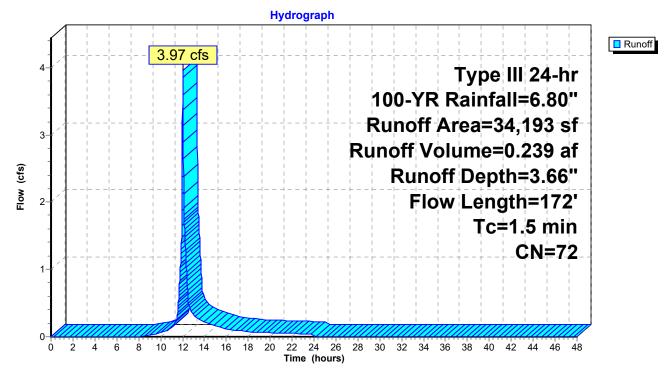

Summary for Subcatchment 12S:

Runoff = 3.83 cfs @ 12.12 hrs, Volume= 0.299 af, Depth= 4.29"

Summary for Subcatchment 13S:

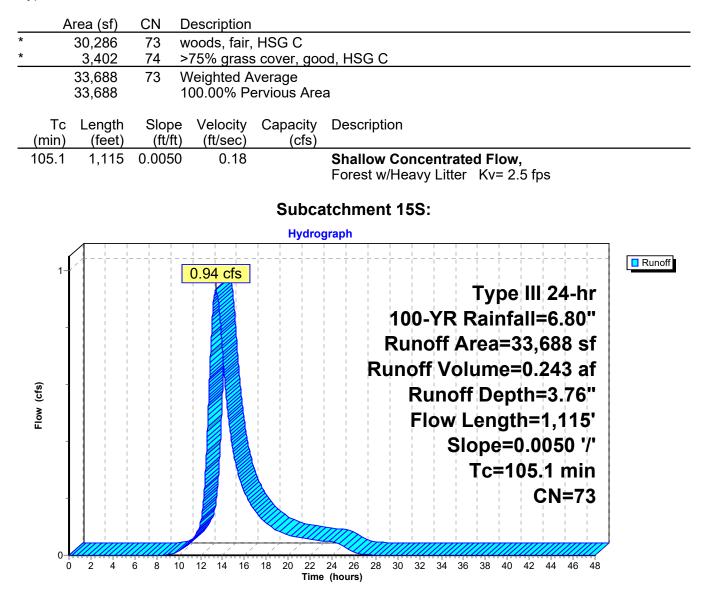
Runoff = 4.40 cfs @ 12.30 hrs, Volume= 0.483 af, Depth= 3.76"

Summary for Subcatchment 14S:


Runoff = 3.97 cfs @ 12.02 hrs, Volume= 0.239 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

	A	rea (sf)	CN	Description										
*		23,718	61	>75% grass	75% grass cover, good, HSG B									
*		9,784	98	0										
*		691	60	woods, fair,	oods, fair, HSG B									
		34,193	72	Weighted A	eighted Average									
		24,409		71.39% Pei	.39% Pervious Area									
		9,784		28.61% Imp	3.61% Impervious Area									
	Тс	Length	Slope	e Velocity	Capacity	Description								
	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)									
	0.4	47	0.1000	2.18		Sheet Flow,								
						Smooth surfaces n= 0.011 P2= 3.00"								
	1.1	125	0.0700	1.85		Shallow Concentrated Flow,								
						Short Grass Pasture Kv= 7.0 fps								
	15	170	Total											


1.5 172 Total

Subcatchment 14S:

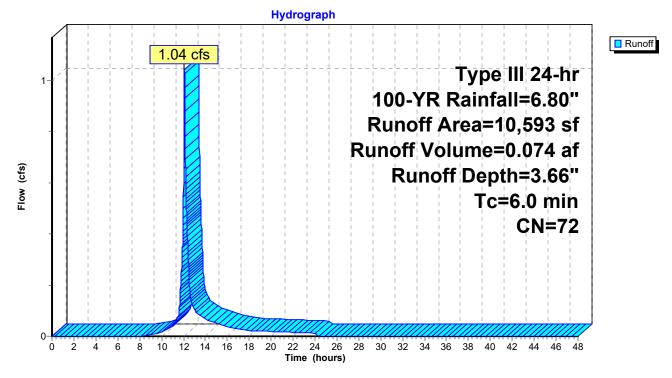
Summary for Subcatchment 15S:

Runoff = 0.94 cfs @ 13.43 hrs, Volume= 0.243 af, Depth= 3.76"

Summary for Subcatchment 16S:

Runoff = 0.72 cfs @ 12.08 hrs, Volume= 0.059 af, Depth= 6.56"

	4,678	98															
	4,678	1	00.00% In	iperviou	s A	rea											
Tc iin)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capac (c		Descr	ipti	on									
6.0	, <i>i</i>	, <i>L</i>				Direc	t Er	ntry	,								
				Sul	oca	tchm	ent	: 16	S:								
				Ну	dro	graph											
0.8-			- - 		+ 		-	1 	+ 	+ 	 	-	-	+ 	+ 	+ 	- - !
0.75			.72 cfs	·	 		-¦	 	 	 	 				; +		-
0.7-				·	 +		 	 	 +	∣ ↓	 	Гу	pe		24	4- ľ	٦r
0.65		<u>-</u> <u>-</u>		·	 		-¦	10	0-`	ΥR	R	ai	nfa	∔ =	=6 .	80)'''
0.6			-+	·	; +	· · · · · · · · · · · · · · · · · · ·	-	1	1	1	1	1	1	1	1	1	1
0.55		 		·	 				<u> </u>	L	L		-'	4,(L	L	
0.5-					 +		Rι	inc	þff	V	þΙι	im	e=	0.0	05	9_a	af_
0.45				i i . J J	i ⊥	i i . L L	i _I	; [Ян	n <i>c</i>	ff	D	ant	th=	=6-	56	
0.4					 			 	l		/ 1 1 	1	1.	1	1	1	1
0.35					 +		-	 	 +	; ; +	 	1	C=	=6.	0	mi	n
0.3-		i i 			i 			i 		i 			i 	<u> </u>	N	= 9	8
0.25					1		1	1		1	1		1	-	1 • •	-	
0.2					+ 			 	т — — I I	 	 	1		 	т — — I I	I I	-
0.15					 												
0.1-				· · · ·	T			1 ·	T — — I	T			-i	т — — !	T	·	-
0.05					+ 		-' 	 	 	+ 		-' 	-' · 	 	+ 	 	- !
0-0-																	

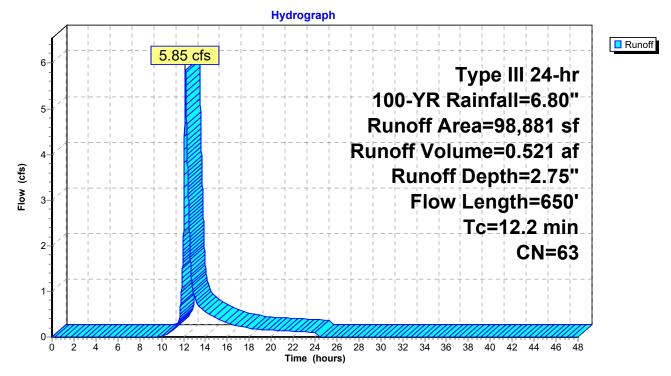

Summary for Subcatchment CUL: (new Subcat)

Runoff = 1.04 cfs @ 12.09 hrs, Volume= 0.074 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

	A	rea (sf)	CN	Description									
*		3,132	98										
*		7,461	61	G+RG: >75	G+RG: >75% grass cover, good, HSG B								
		10,593 7,461 3,132	72	Weighted A 70.43% Per 29.57% Imp	vious Area								
	Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description							
	6.0					Direct Entry,							

Subcatchment CUL: (new Subcat)

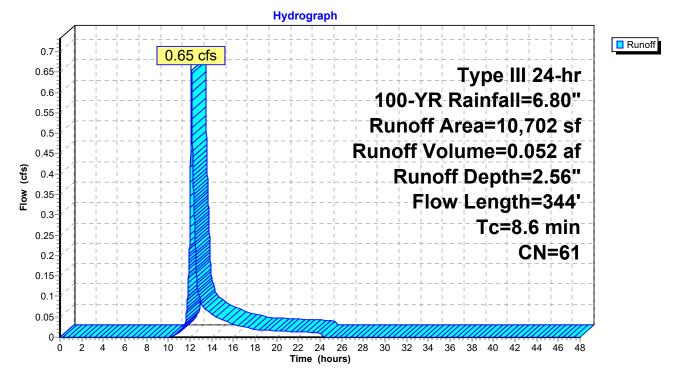

Summary for Subcatchment P1:

Runoff = 5.85 cfs @ 12.18 hrs, Volume= 0.521 af, Depth= 2.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

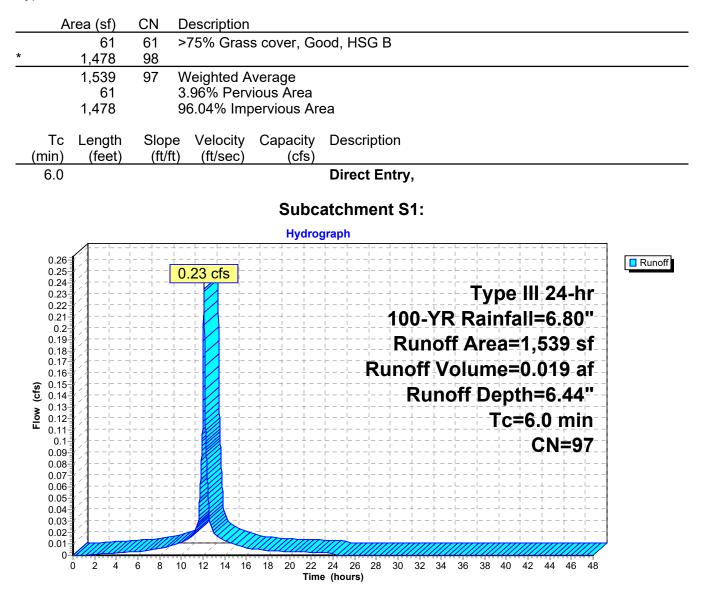
_	A	rea (sf)	CN E	Description									
		93,901	61 >	>75% Grass cover, Good, HSG B									
*		4,980	98 iı	mpervious									
		98,881	63 V	Veighted A	verage								
		93,901	g	4.96% Per	vious Area								
		4,980	5	.04% Impe	ervious Area	а							
	Тс	Length	Slope	Velocity	Capacity	Description							
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	7.7	50	0.0700	0.11		Sheet Flow,							
						Woods: Light underbrush n= 0.400 P2= 3.00"							
	4.5	600	0.1010	2.22		Shallow Concentrated Flow,							
_						Short Grass Pasture Kv= 7.0 fps							
	12.2	650	Total										

Subcatchment P1:

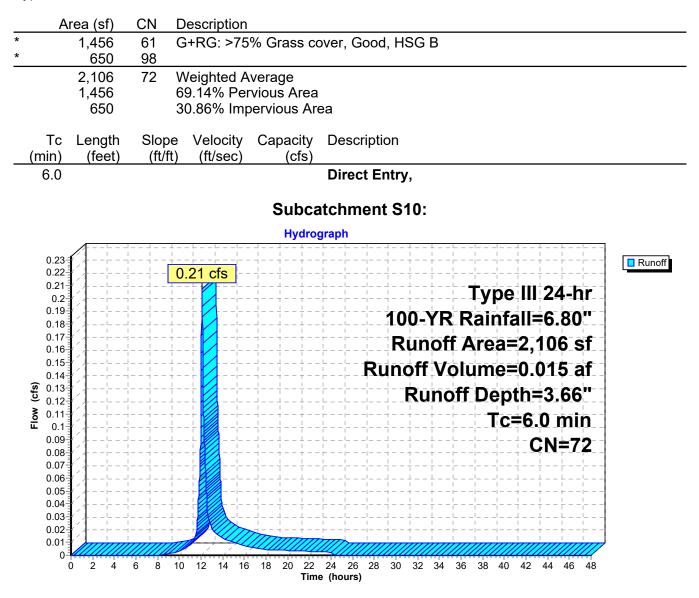

Summary for Subcatchment P2:

Runoff = 0.65 cfs @ 12.13 hrs, Volume= 0.052 af, Depth= 2.56"

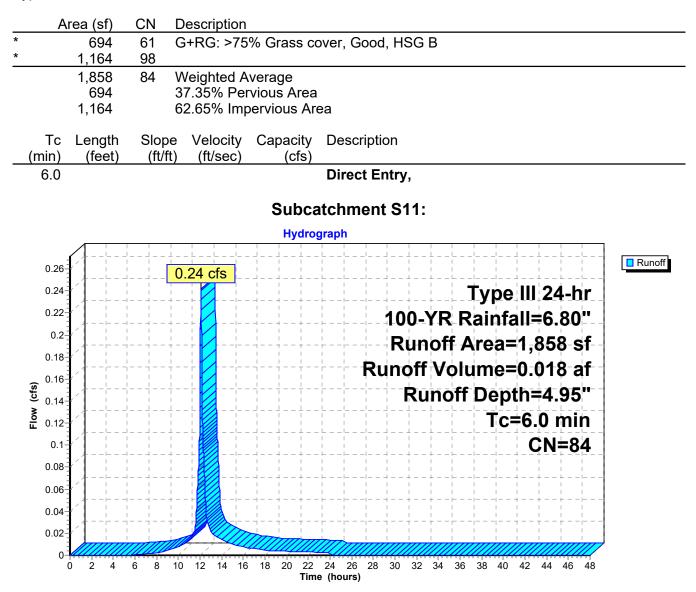
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"


_	A	rea (sf)	CN [Description		
*		10,702	61 (G+RG: >75	% Grass co	over, Good, HSG B
		10,702	1	00.00% Pe	ervious Are	a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.7	50	0.1000	0.12		Sheet Flow,
	1.0	138	0.2200	2.35		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow,
	1.0	100	0.2200	2.00		Woodland Kv= 5.0 fps
	0.9	156	0.1700	2.89		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	8.6	344	Total			

Subcatchment P2:


Summary for Subcatchment S1:

Runoff = 0.23 cfs @ 12.08 hrs, Volume= 0.019 af, Depth= 6.44"


Summary for Subcatchment S10:

Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 3.66"

Summary for Subcatchment S11:

Runoff = 0.24 cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 4.95"

Summary for Subcatchment S12:

Runoff = 0.86 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 3.45"

A	rea (sf)		Descript	ion															
	2,175	98		750/	Crass		- 0-	امما	ЦC		Р								
	7,092		<u>G+RG: ></u>			cove	r, Go	bod	, HS	G	В								
	9,267 7,092		Weighte 76.53%			22													
	2,175		23.47%																
	_,	-	20111 /0	mpon	neae ,														
Тс	Length	Slope			apacit	y D	escri	ptic	on										
min)	(feet)	(ft/ft)) (ft/se	ec)	(cfs	/													
6.0						D	rect	Er	ntry,	,									
					Subo	catc	hme	ent	S 1	2:									
					Hyd	rograp	h											1	
0.95-				-;;													ī Ļ		📘 Runo
0.9-	· / /	 	0.86 cfs			L	- ' ']		 		 	 	_ 	_ 			
0.85-	*				$-\frac{1}{1}\frac{1}{1}$	L							Γy	pe	ΗH	-24	4- ľ	1 r	
0.8- 0.75-	E 21								10	<u>0-</u> \	ΥR	R	air	٦f۶	ill:	= 6	80) ^m	
0.75-				-''-		L 	-'' 	 	I I		1	1	1	1	1	1	1	1	
0.65-					_ <u>_</u>						÷ – –		!		9,	÷	+		
0.6-						L	- F	Ru	nc	off	V	þΙυ	im	e=	:0.(06	1-a	af	
0.55	┋┊┼╶╌┾╶╶┤	$ \frac{1}{1}\frac{1}{1} $	 	$-\frac{1}{1}$ - $-\frac{1}{1}$ -	$-\frac{1}{1}\frac{1}{1}$	<u> </u>	$-\frac{1}{1}$ $ -\frac{1}{1}$		F	2 i i	nc	ff	De	'n	th=	±3_	45	;/++	
0.55- 0.5- 0.45-	1 /1									Ň				1	ī — —	T	ī — —	1	
0.4-											ī — — _			C=	=6 .	U	mı	<u>n</u>	
0.35-		 				·					 	 			<u> </u> _C	ÌΝ	=7	′ 0	
0.3-					$-\frac{1}{1}\frac{1}{1}$						- - 					- - 			
0.25-		$ \frac{1}{1} \frac{1}{1} - \frac{1}{1}$		$-\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$ $-$	$-\frac{1}{1}\frac{1}{1}$	·				<u> </u>	<u> </u>				<u> </u>	$\frac{1}{1} = -$	$\frac{1}{1}$	-	
0.2- 0.15-	Ĩ, {										<u>+</u> – –					+	<u>+</u>		
0.15-				-;;-	- - -	<u>-</u>	-ii		i		T – –		; I	; 		- - -	- 	- i	
0.05-				Im							T	 		1	 	⊤ 	ī — - I		
0-	¥ <u>////////////////////////////////////</u>		<u></u>							32					4				
	∪ ∠ 4	6 8 1	10 12 14	16 18		22 24 ime (h		28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S13:

Runoff = 0.53 cfs @ 12.09 hrs, Volume= 0.038 af, Depth= 4.62"

	A	rea (sf)	CN	Des	cripti	ion																	
		2,314	98 61	>7F(raaa	00'	/or	Ca		104		,										
		2,000 4,314	<u> </u>	>75° Weig					GO	<u>oa, r</u>	150	GE)										
		2,000		46.3	6% I	Per∖	/iou	s Ai															
		2,314		53.6	64%	Impe	ervio	ous	Are	a													
	Тс	Length	Slop		eloci		Cap			Des	scri	ptic	on										
<u>mi)</u> 6	<u>in)</u> 6.0	(feet)	(ft/f	<u>t) (</u>	(ft/se	eC)		(cf	S)	Dir	ect	Fr	ntrv										
													y	,									
							S	Sub	oca	tch	me	ent	S 1	3:									
								Ну	drog	raph													
	-		--		1			 					 		 	 	 	 		 		 	Runof
(0.55			0.53	3 cts			 					 	 	 		¦ Es el			່ວ	L		
	0.5							1					4.0	_ _ \		i			+	1	1		
(0.45							 					1	1	1	1	1	1	11= 	1	1	1	
	0.4																1	1	4,	1			
~ (0.35	/	-i	Runoff Volume=0.038 af									i 1										
Flow (cfs)	0.3-	,		+ + ·		- ·		- + 	+	- 		 	+ 	Ru	nc)ff	De	p	th=	=4.	62) U -	
Flow	0.25-					_ 		1 	1 		I	 	! ! !	1 	⊥ 	L	i] 	C	= 6.	0	mi	n	
	0.2-		_	$\frac{1}{1} = -\frac{1}{1}$	-	-		<u> </u> 					 	<u> </u> 	$\frac{1}{1} = -$		 	- - -	<u> </u> -C	N	=8	1	
	0.15-		 -		-	-	- -	 	 		 	 	 	 + 	 + 	 	 	 -	 	 + 	 	 	
	-		 	1 1 4 4 1 1		-	 	 	 	 - 	·	 	 	 + 	 +	 	 	 -	 	 + 	 	 	
	0.1-		 _			 _!	 _	 <u> </u>		 	·	 	 	 	 	 	 	 _	 	 _ = _		 	
(0.05																					-	
	0-	$1 \qquad 2 \qquad 4$	6 8	10 12		<u>-</u>	- 1 <u>7</u> 18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S14:

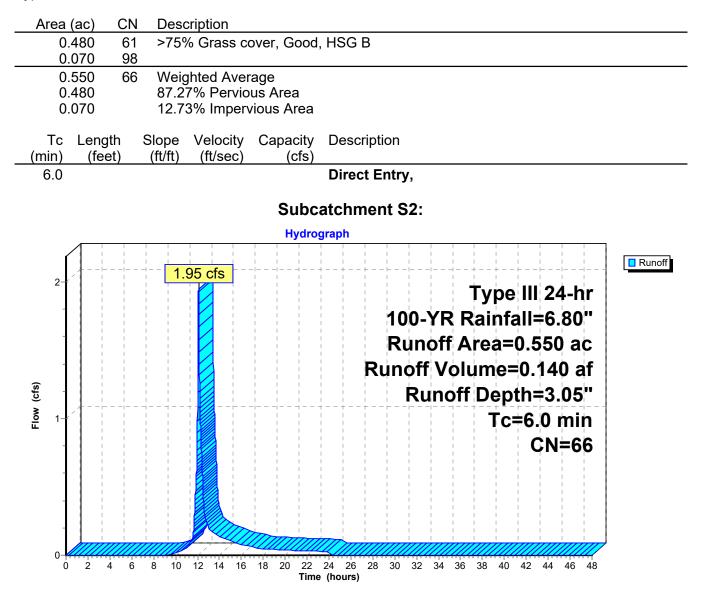
Runoff = 0.31 cfs @ 12.09 hrs, Volume= 0.023 af, Depth= 5.06"

	A	ea (st	f)	CN	[De	scr	ipti	ion																		
		1,51		98							_				_				_								
		85		61									s co	over	', G	000	, Н	SG	В								
		2,37		85						٧e																	
		85											rea														
		1,51	8		ť	64.	02	%	Im	per	VIC	bus	Are	ea													
	Гс	Leng			pe		Vel			С	ap	bac		De	escr	ipti	on										
(miı		(fee	et)	(f	t/ft)		(ft/	/se	ec)			(C	fs)														
6	.0													Di	rec	t Ei	ntry	Ι,									
											S	Suk	oca	tcł	۱m	ent	t S'	14:									
												Ну	drog	grap	h												
0	.34				- + -			 					 + 	 	 	-	 	+	+	 	 - 	-	+	· +	- 1 -	-	- Runoff
	.34	/	!!.		- (0.3	1 c	cfs	-				1 !	L	· !	-!		<u>+</u>	· ⊥	. L			1	· ــ	- 上		_
	0.3	/							-¦- ·				+					+	+	·	Ťγ	pe	; II	 2	4-1	hr	-
	.28				- † -				-i- :				+		 	-i	10	0-	YF			-		·			_
0	.26	 	, , , , .				K	1	 _				↓				1	1	1	1	ī.	1	- I	1	1	1	_
0	.24	 			_ + -				_!				 			-!		+					+	· ÷		sf	_
	.22	()			- + -	-			-¦- ·							Rι	ine	off	V	οlι	im)e=	=0.	02	3-	af_	_
cfs)	0.2	(/	-		- + -				-				 +	 			1	Rī	ind	\ ff	b,	en	th	=5	0	<u>а</u> н-	-
3	.18-		 ·		- + -	+			-			+	+	 ⊢ – –	·	-		+	+	/ I I ·			+	+	- + -		_
_	.16	/	, , . 			L I		-	_					L	.	- 					-i	I C	=6	.0	m	In-	-
	.14-	[- 1 -	<u> </u>		-	-!- : !				<u> </u> – –	L – –		1		<u> </u>	<u> </u>	L	-	-¦	$\frac{1}{1}$ –	CN	={	35	_
	.12 0.1	/			- + -			-					+					+	+					· +			-
	.08	/	i ·		- + -		X		-i- ·				+		 I	-i		+	+	 I	-i	-i		+	- -	-i	-
	.06	/		!	- + -	+ ,	X		- - ·	-	+	+	+	⊢ – – !	· 	-1		+	+	·	-1	- 	+	+	- + -	-	-
	.00	/	. 	 		L I			_ _ ·				+		·	-1		+	 	· 	-! !	- 		· +		- 	-
	.02							Z	D	777								 				 	 			 I	
	0			6 8	1	í 0	- <u>11</u> -	 14	16	5 1	2/ 2	20	22	24	26	28	30	32	34	36	20	40	42	44	46	48	۲
	Ľ	<i>,</i> 2	4	0 8	, 1	U	12	14	10	ו נ	υ	20		∠4 ∋(ho		20	30	32	34	30	30	40	42	44	40	40	

Summary for Subcatchment S15:

Runoff = 3.85 cfs @ 12.09 hrs, Volume= 0.275 af, Depth= 3.25"

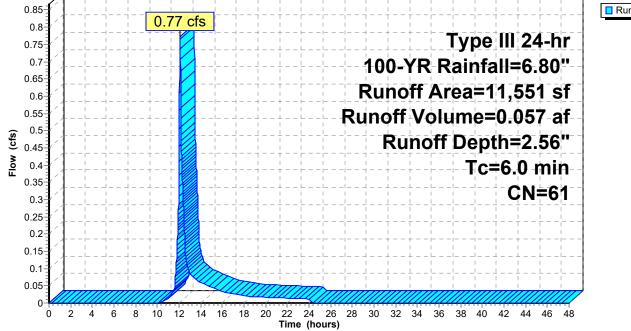
	Α	vrea (sf)	CN I	Description											
*		8,653 35,561	98 61 (G+RG: >75	% Grass c	over, G	iood,	HSG	в						
		44,214 35,561 8,653	68 \	Weighted A 30.43% Per 19.57% Imp	verage vious Area	l	,								
(r	Tc min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Desc	riptior	า							
	6.0					Direc	t Ent	ry,							
					Subca	atchm	ent s	S15:							
					Hydro	graph									
	-			.85 cfs		$\frac{1}{1} = -\frac{1}{1} = -$		 							Runoff
	4-						· · ·	00-	YR		- T - I		24-h 6.80		
	3-											•	214 s		
fs)	- 						Rur		i - i				275 a		
Flow (cfs)	2 -					$\frac{1}{7} = -\frac{1}{7} = -$		ΠL	inc	<u>-</u>	i		3.25		
Ë	-				I I I I I I I I I I I I I I I I I I						IC-		0 mi N=6		
	1-		- $ -$			$\frac{1}{1} \frac{1}{1}$		 					 		
	-														
	0- 0	2 4 6	5 8 10	12 14 16	18 20 22 Time	24 26 e (hours)	28 30) 32	34	36 38	40	42	44 46	48	


Summary for Subcatchment S19:

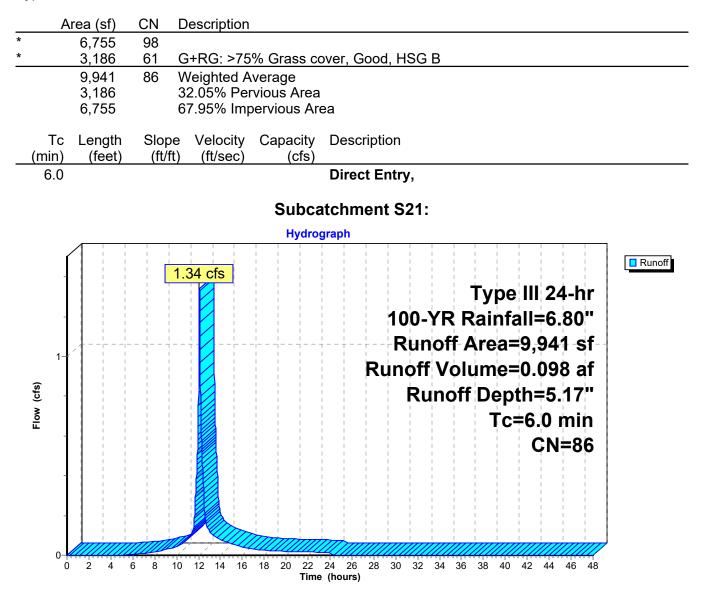
Runoff = 2.90 cfs @ 12.09 hrs, Volume= 0.206 af, Depth= 3.45"

/	Area ((sf)	CN	De	escri	iptior	۱																
*	7,3 23,9		98 61	~7	750/	Crac		wor	Co	ad	це		5										
	23,9 31,2 23,9 7,3	232 916	70	W 76	eigh 6.589	Gras ited / % Pe % Im	Avera rviou	age Js A	Area		<u>п</u> о	<u>G </u>	2										
Tc (min)	(f	ngth eet)	Slo (ft/			ocity /sec)	Ca	apao (c	city cfs)	De		<u> </u>											
6.0										Dir	ect	t Er	ntry	',									
								Su	bca	itch	me	ent	t S′	19:									
								Hy	ydrog	graph	n												
3-	[2.9	9 <mark>0 c</mark> f	s		 			 		 	 	 	 		 	 	 	 		Runoff
													-	-	L	R	ai	nfa	 a = 81,2	=6.	80		
-2 Elow (cts)								-] — 				Rı		1			De	əp	=0.2 th= =6.	=3. 0	45	n n	
1-														 	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -					
0-	0 2	4	6 8	10	12 ⁻	14 16	18	20	22 Time	24 2 (hou		28	30	32	34	36	38	40	42	44	46	48	

Summary for Subcatchment S2:


Runoff = 1.95 cfs @ 12.09 hrs, Volume= 0.140 af, Depth= 3.05"

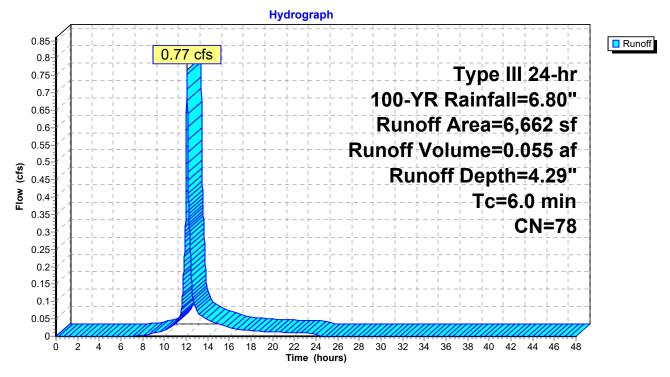
Summary for Subcatchment S20:


Runoff = 0.77 cfs @ 12.09 hrs, Volume= 0.057 af, Depth= 2.56"

	Ar	rea (sf)	CN E	escription			
*		11,551	61 0	G+RG: >75	% Grass co	over, Good, HSG B	
		11,551	1	00.00% Pe	ervious Are	a	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.0					Direct Entry,	
					Subca	atchment S20:	
					Hydro	graph	
	0.85 0.8 0.75			.77 cfs		Type III 24-hr	Runoff

Summary for Subcatchment S21:

Runoff = 1.34 cfs @ 12.09 hrs, Volume= 0.098 af, Depth= 5.17"

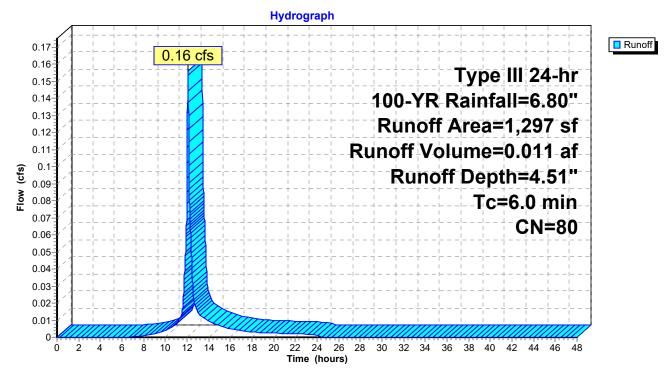

Summary for Subcatchment S22: Stow Road South

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 0.055 af, Depth= 4.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

	A	rea (sf)	CN	Description		
*		5,662	74	G+RG: >75	% Grass co	over, Good, HSG C
*		1,000	98			
		6,662 5,662 1,000		Weighted A 84.99% Pei 15.01% Imp	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S22: Stow Road South

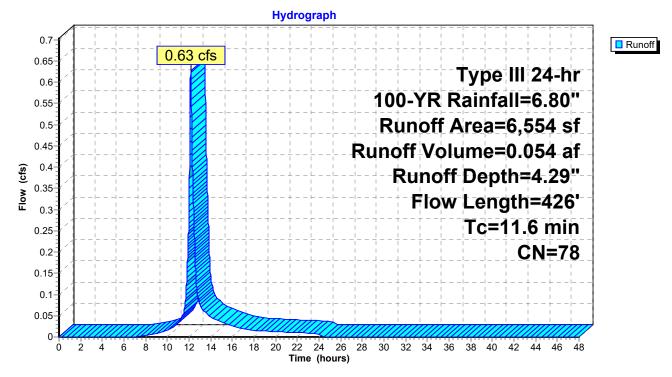

Summary for Subcatchment S23: Stow Road South

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

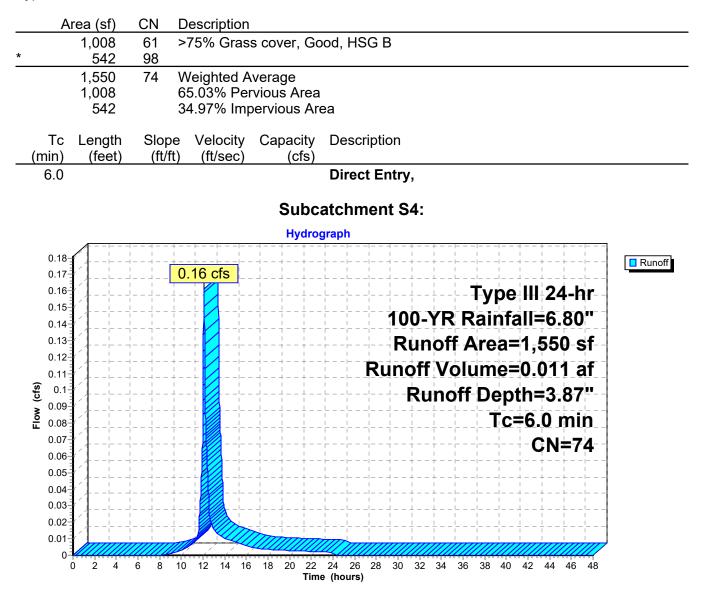
	A	rea (sf)	CN	Description		
*		994	74	G+RG: >75	% Grass co	cover, Good, HSG C
*		303	98			
		1,297 994 303		Weighted A 76.64% Pei 23.36% Imp	vious Area	-
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	6.0					Direct Entry,

Subcatchment S23: Stow Road South

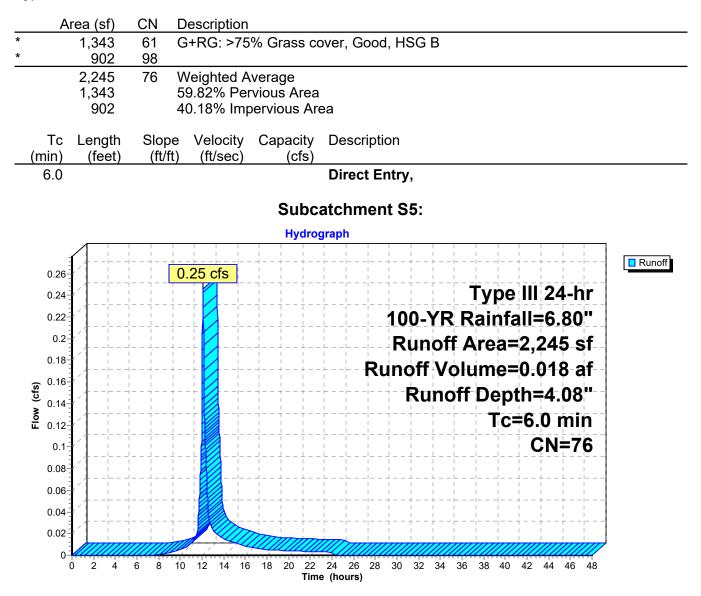

Summary for Subcatchment S3:

Runoff = 0.63 cfs @ 12.16 hrs, Volume= 0.054 af, Depth= 4.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"


_	A	rea (sf)	CN E	escription		
*		3,497	61 0	G+RG: >75	% Grass co	over, Good, HSG B
*		3,057	98			
		6,554	78 V	Veighted A	verage	
		3,497	5	3.36% Per	vious Area	
		3,057	4	6.64% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.7	50	0.0600	0.22		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.00"
	7.9	376	0.0130	0.80		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	11.6	426	Total			

Subcatchment S3:


Summary for Subcatchment S4:

Runoff = 0.16 cfs @ 12.09 hrs, Volume= 0.011 af, Depth= 3.87"

Summary for Subcatchment S5:

Runoff = 0.25 cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 4.08"

Summary for Subcatchment SBS:

Runoff 0.79 cfs @ 12.09 hrs, Volume= 0.057 af, Depth= 4.29" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Type III 24-hr 100-YR Rainfall=6.80"

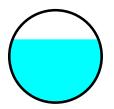
Area (sf) CN Description 5,845 74 >75% Grass cover, Good, HSG C 1,047 98 6,892 78 Weighted Average 5,845 84.81% Pervious Area 1,047 15.19% Impervious Area 1,047 15.19% Impervious Area 1,047 15.19% Impervious Area 1,047 15.19% Impervious Area 6.0 Direct Entry, Subcatchment SBS: Hydrograph Impervious Area 0.76 0.79 cfs Type III 24-hr 100-YR Rainfall=6.80" 0.86 0.79 cfs Type III 24-hr 0.65 Runoff Area=6,892 sf 0.66 Runoff Volume=0.057 af 0.55 0.33 0.35 0.35 0.35 0.35 0.36 0.37 0.37 0.38 0.38 0.34 0.35 0.35 0.36 0.37 0.37		**** (*f)		Deee	uiu ti a																	
1,047 98 6,892 78 Weighted Average 5,845 84.81% Pervious Area 1,047 15.19% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment SBS: Hydrograph 0.79 cfs 0.79 cfs 0.79 cfs 0.79 cfs 0.79 cfs 0.79 cfs 100-YR Rainfall=6.80" Runoff Area=6,892 sf 0.45 0.	A						over	<u> </u>	od	ЦС		<u> </u>										
6,892 5,845 84.81% Pervious Area 1,047 15.19% Impervious Area Tc Length Slope Velocity Capacity Description (fi/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment SBS: Hydrograph 0.79 cfs 0.79 br>0.65 0.75 0.7				~15%	o Gia	155 0	over	, G0	ou,	по	GC	,										
5,845 84.81% Pervious Area 1,047 15.19% Impervious Area Tc Length Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment SBS: Hydrograph 0.79 cfs Type III 24-hr 100-YR Rainfall=6.80" Runoff Area=6,892 sf 0.45 0.4				Weia	hted	Ave	rade															
Tc Length Slope Velocity Capacity Description 6.0 Direct Entry, Subcatchment SBS: Hydrograph Type III 24-hr 0.85 0.79 cfs 100-YR Rainfall=6.80" 0.66 Runoff Area=6,892 sf Runoff Depth=4.29" 0.45 CN=78 CN=78 0.45 0.45 CN=78			-					rea														
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment SBS: Hydrograph 0.85 0.75 0.79 cfs Type III 24-hr 0.65 0.79 cfs 100-YR Rainfall=6.80" 0.65 0.66 Runoff Area=6,892 sf 0.65 0.44 Runoff Depth=4.29" 0.65 0.44 Tc=6.0 min 0.55 0.45 CN=78		1,047		15.19	9% In	nper	vious	s Are	ea													
6.0 Direct Entry, Subcatchment SBS: Hydrograph 0.85 0.85 0.7 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Тс	Length	Slop	e Ve	locity	/ C	Capad	city	De	escr	iptio	on										
Subcatchment SBS: Hydrograph 0.05 0.65 0.45	(min)	(feet)	(ft/f	t) (f	t/sec))	(C	fs)														
Hydrograph 0.85 0.8 0.75 0.7 0.65 0.65 0.55 0.55 0.5 0.5	6.0								Di	rec	t Er	ntry	,									
Hydrograph 0.85 0.8 0.75 0.7 0.65 0.65 0.55 0.55 0.5 0.5							Sub	oca	tch	me	ent	SE	3S:									
0.86 0.8 0.75 0.7 0.65 0.65 0.65 0.45 0.																						
0.86 0.8 0.75 0.7 0.65 0.65 0.65 0.45 0.				 				· <u>+</u>		 		 	<u>+</u>	 	 				 			Dupoff
0.75 0.77 0.66 0.66 0.55 0.45		= _1 I		0.79	cfs		+	· +			¦		- - 	$\frac{1}{T}$; - 	- - -	-¦	
0.75 0.7 0.65 0.6 0.55 0.45 0.				++				+					+	 +		Ēν	be	- HH	24	4-ł	ר'	
0.65 0.6 0.55 0.5 0.5 0.4		= /1	 -	++			+	+	 	 	 	40						+	+	+		
0.6 0.5 0.5 Runoff Volume=0.057 af (g) 0.4 Runoff Depth=4.29" 0.4 Tc=6.0 min 0.35 0.25 0.2 0.1 0.15 0.1 0.05 0									L		i	-	1	1	1	ī.	1	1	1	1	1	
0.55 0.5 0.45 0.4 0.35 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.5 0.4 0.5 0.4 0.4 0.35 0.2 0.4 0.4 0.35 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4					!			· <u>+</u>	L		¦	R	un	of	fΑ	re	a=	:6,	89	2-9	sf	
(g) 0.5 0.45 0.4 0.4 0.3 0.3 0.3 0.25 0.2 0.15 0.1 0.05 0 0		= _1 = = = = = = = = = = = = = = = = = =	-ii I I	†† 1 1		i -	 I	- -	i	i	Ru	ind	off	V	งโเ	im	e=	:0.	05	7 :	af	
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0		= _1						T = = =				1	1	1	i i	i.	i i	i i	1	i -		
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>ຍ</u> 0.45			¦ ¦ + − − ⊢			, , ,	. +	 	, , ,	 	+	ĸu)TT	De	эp	[n=	74 .	23) 	
0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.4		 	1 I 1 L			 	 		 	 	 	 	 			[C:	=6 .	0	mi	n_	
			 					·		 	¦	 	 		 			- 	- N	±7	2	
	0.3-			; 			+	· +				- 		i 				; `	/ ¶ 			
				++	/			+	 			1	+	 +	 			+	+	 	-	
			 	++				· +	 	 	 	 	+	+	 	 	-1	+	+	+	-	
							·	. <u> </u>	L		.					.				<u> </u>	- <u> </u>	
		3 21		+ }			<u> </u>	$\frac{1}{1} = -$				<u> </u>	<u> </u>	$\frac{1}{1} = -$				<u>+</u>	<u> </u>	$\frac{1}{1} = 1$	-	
	:					Ų]	ĮĮĮĮ)
		0 2 4	6 8	10 12	14	16 1	8 20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Reach 1R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS7 OUTLET depth by 0.24' @ 12.07 hrs

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth = 3.66" for 100-YR event


 Inflow =
 3.83 cfs @ 12.06 hrs, Volume=
 0.239 af

 Outflow =
 3.81 cfs @ 12.06 hrs, Volume=
 0.239 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.68 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 0.5 min

Peak Storage= 41 cf @ 12.06 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.71 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0125 '/' Inlet Invert= 261.00', Outlet Invert= 260.10'

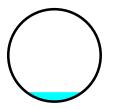
Hydrograph Inflow
Outflow 3 83 cfs 3.81 cfs Inflow Area=0.785 ac Avg. Flow Depth=0.68' Max Vel=6.68 fps 3-12.0" **Round Pipe** Flow (cfs) n=0.011 2 L=72.0' S=0.0125 '/' Capacity=4.71 cfs 0 2 6 8 10 12 14 16 18 22 24 26 4 20 28 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

Reach 1R: (new Reach)

Summary for Reach 4R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10A OUTLET depth by 0.01' @ 12.12 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 6.44" for 100-YR event


 Inflow =
 0.23 cfs @
 12.09 hrs, Volume=
 0.019 af

 Outflow =
 0.23 cfs @
 12.09 hrs, Volume=
 0.019 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.65 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.90 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.09 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 10.99 cfs

12.0" Round Pipe n= 0.011 Length= 22.0' Slope= 0.0682 '/' Inlet Invert= 315.00', Outlet Invert= 313.50'

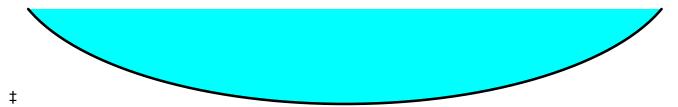
Hydrograph Inflow
Outflow 0.23 cfs 0.23 cfs 0.26 Inflow Area=0.035 ac 0.24 Avg. Flow Depth=0.10' 0.22 Max Vel=5.65 fps 0.2 0.18 12.0" 0.16 **Round Pipe** (cts) 0.14 0.12 n=0.011 L=22.0' 0.1 S=0.0682 '/' 0.08 Capacity=10.99 cfs 0.06 0.04 0.02 0-2 10 12 14 16 18 20 4 8 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 6 Time (hours)

Reach 4R:

Summary for Reach 5R: Intermittent Stream

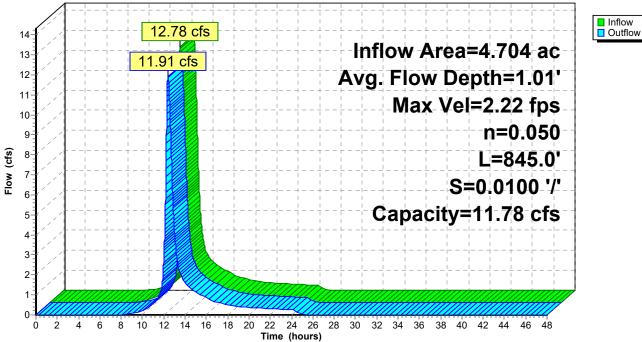
[91] Warning: Storage range exceeded by 0.01' [55] Hint: Peak inflow is 108% of Manning's capacity

 Inflow Area =
 4.704 ac,
 1.01% Impervious, Inflow Depth =
 3.74" for 100-YR event


 Inflow =
 12.78 cfs @
 12.20 hrs, Volume=
 1.466 af

 Outflow =
 11.91 cfs @
 12.40 hrs, Volume=
 1.466 af, Atten= 7%, Lag= 12.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.22 fps, Min. Travel Time= 6.4 min Avg. Velocity = 0.55 fps, Avg. Travel Time= 25.4 min


Peak Storage= 4,542 cf @ 12.29 hrs Average Depth at Peak Storage= 1.01' Bank-Full Depth= 1.00' Flow Area= 5.3 sf, Capacity= 11.78 cfs

8.00' x 1.00' deep Parabolic Channel, n= 0.050 High grass Length= 845.0' Slope= 0.0100 '/' Inlet Invert= 260.00', Outlet Invert= 251.55'

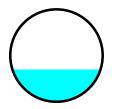
Reach 5R: Intermittent Stream

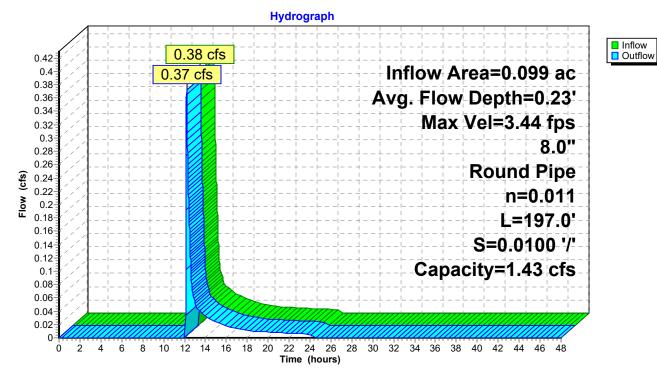
Hydrograph

Summary for Reach 6R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.099 ac, 53.64% Impervious, Inflow Depth =
 2.94" for 100-YR event


 Inflow =
 0.38 cfs @
 12.17 hrs, Volume=
 0.024 af


 Outflow =
 0.37 cfs @
 12.20 hrs, Volume=
 0.024 af, Atten= 3%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.44 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 2.5 min

Peak Storage= 21 cf @ 12.19 hrs Average Depth at Peak Storage= 0.23' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.43 cfs

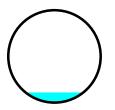
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 197.0' Slope= 0.0100 '/' Inlet Invert= 304.20', Outlet Invert= 302.23'

Reach 6R: new

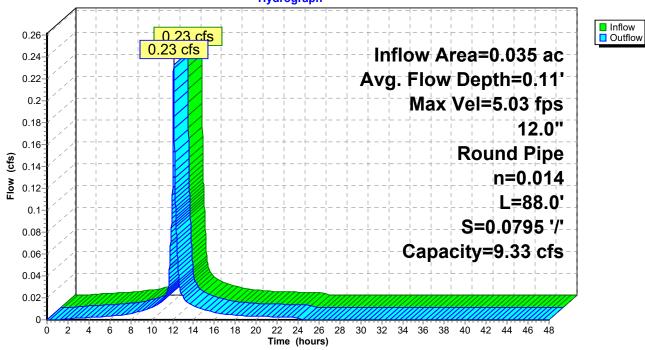
Summary for Reach 7R:

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach PS10B OUTLET depth by 0.01' @ 12.15 hrs

 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 6.44" for 100-YR event


 Inflow =
 0.23 cfs @
 12.10 hrs, Volume=
 0.019 af

 Outflow =
 0.23 cfs @
 12.11 hrs, Volume=
 0.019 af, Atten= 0%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.03 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.9 min

Peak Storage= 4 cf @ 12.10 hrs Average Depth at Peak Storage= 0.11' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 9.33 cfs

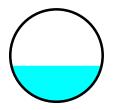
12.0" Round Pipe n= 0.014 Concrete pipe, finished Length= 88.0' Slope= 0.0795 '/' Inlet Invert= 310.50', Outlet Invert= 303.50'

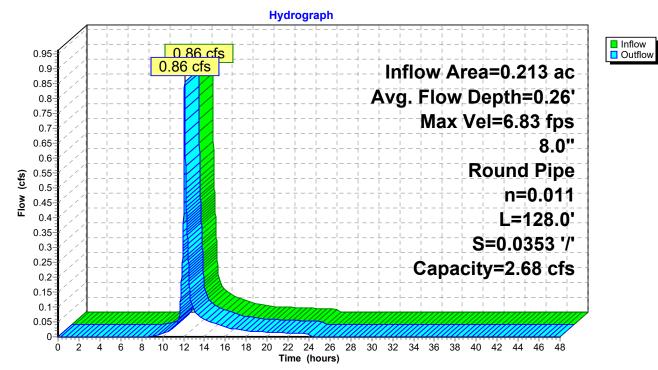
HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC Page 448
Reach 7R:
Hydrograph

Summary for Reach 8R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.213 ac, 23.47% Impervious, Inflow Depth =
 3.45" for 100-YR event


 Inflow =
 0.86 cfs @
 12.10 hrs, Volume=
 0.061 af


 Outflow =
 0.86 cfs @
 12.11 hrs, Volume=
 0.061 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 6.83 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.47 fps, Avg. Travel Time= 0.9 min

Peak Storage= 16 cf @ 12.10 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.68 cfs

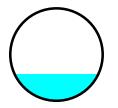
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 128.0' Slope= 0.0353 '/' Inlet Invert= 306.75', Outlet Invert= 302.23'

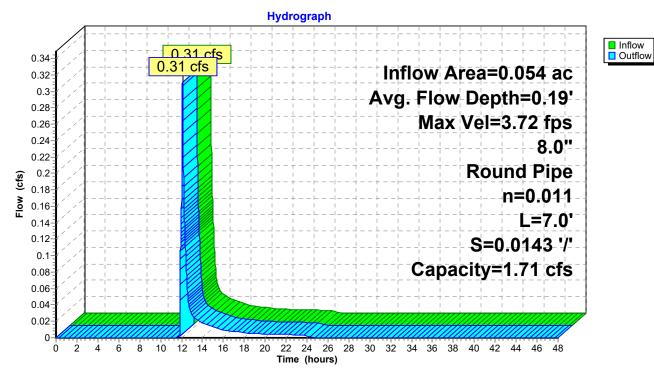
Reach 8R: new

Summary for Reach 9R: new

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.054 ac, 64.02% Impervious, Inflow Depth = 3.95" for 100-YR event


 Inflow =
 0.31 cfs @ 12.10 hrs, Volume=
 0.018 af


 Outflow =
 0.31 cfs @ 12.10 hrs, Volume=
 0.018 af, Atten= 0%, Lag= 0.1 min

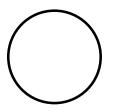
Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.72 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.10 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

Reach 9R: new

Summary for Reach 10R: new


[43] Hint: Has no inflow (Outflow=Zero)

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 24.83 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 84.0' Slope= 0.0400 '/' Inlet Invert= 301.30', Outlet Invert= 297.94'

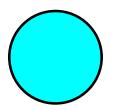
Hydrograph Outflow Avg. Flow Depth=0.00' Max Vel=0.00 fps 18.0" **Round Pipe** Flow (cfs) n=0.011 L=84.0' S=0.0400 '/' Capacity=24.83 cfs 0.00 cfs 0-4 2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 4 Time (hours)

Reach 10R: new

Summary for Reach 11R: new

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 229% of Manning's capacity[76] Warning: Detained 0.027 af (Pond w/culvert advised)

 Inflow Area =
 1.015 ac, 19.57% Impervious, Inflow Depth =
 3.13" for 100-YR event


 Inflow =
 3.90 cfs @
 12.09 hrs, Volume=
 0.265 af

 Outflow =
 1.81 cfs @
 11.99 hrs, Volume=
 0.265 af, Atten= 54%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.57 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.00 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 7.0' Slope= 0.0143 '/' Inlet Invert= 298.00', Outlet Invert= 297.90'

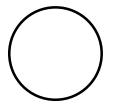
Hydrograph Inflow
Outflow 3.90 cfs Inflow Area=1.015 ac 4 Avg. Flow Depth=0.67' Max Vel=5.57 fps 3-8.0" **Round Pipe** Flow (cfs) n=0.011 1.81 cfs 2 L=7.0' S=0.0143 '/' Capacity=1.71 cfs 1 0-2 6 8 10 12 14 16 18 22 24 26 28 4 20 30 32 34 36 38 40 42 44 46 48 Ó Time (hours)

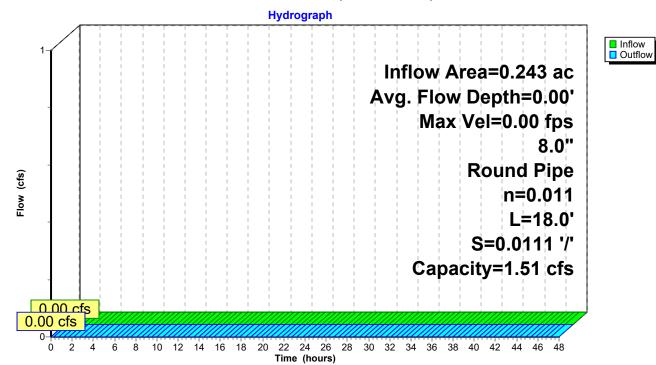
Reach 11R: new

Summary for Reach 12R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.243 ac, 29.57% Impervious, Inflow Depth =
 0.00" for 100-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

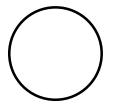
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 297.30', Outlet Invert= 297.10'

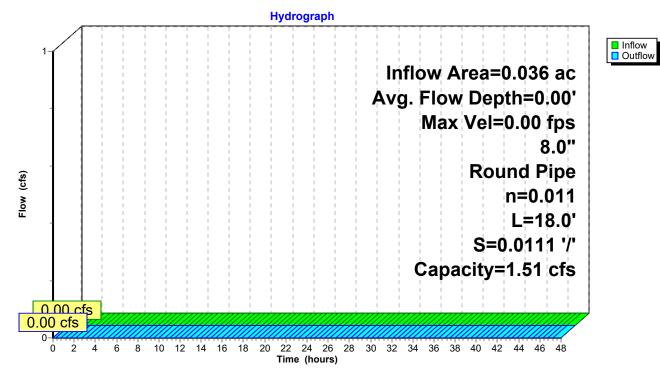
Reach 12R: (new Reach)

Summary for Reach 13R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.036 ac, 34.97% Impervious, Inflow Depth =
 0.00" for 100-YR event


 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af


 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.51 cfs

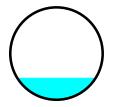
8.0" Round Pipe n= 0.011 Length= 18.0' Slope= 0.0111 '/' Inlet Invert= 301.30', Outlet Invert= 301.10'

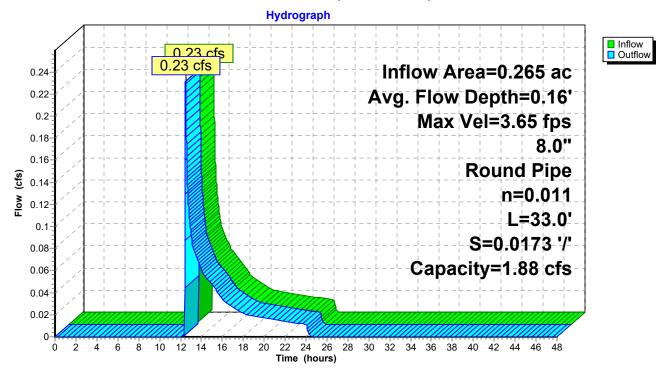
Reach 13R: New

Summary for Reach 14R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.265 ac,
 0.00% Impervious,
 Inflow Depth =
 1.51"
 for
 100-YR event


 Inflow =
 0.23 cfs @
 12.47 hrs,
 Volume=
 0.033 af


 Outflow =
 0.23 cfs @
 12.48 hrs,
 Volume=
 0.033 af,
 Atten= 0%,
 Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.65 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.90 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.48 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.88 cfs

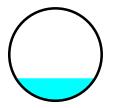
8.0" Round Pipe n= 0.011 Length= 33.0' Slope= 0.0173 '/' Inlet Invert= 290.30', Outlet Invert= 289.73'

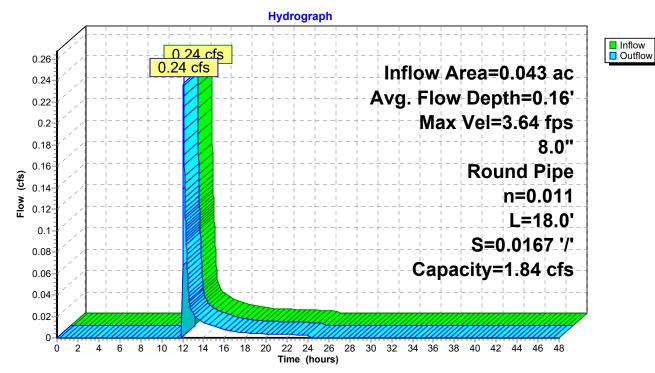
Reach 14R: (new Reach)

Summary for Reach 15R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.043 ac, 62.65% Impervious, Inflow Depth =
 3.43" for 100-YR event


 Inflow =
 0.24 cfs @
 12.10 hrs, Volume=
 0.012 af


 Outflow =
 0.24 cfs @
 12.10 hrs, Volume=
 0.012 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.64 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.10 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.84 cfs

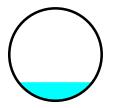
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 18.0' Slope= 0.0167 '/' Inlet Invert= 302.30', Outlet Invert= 302.00'

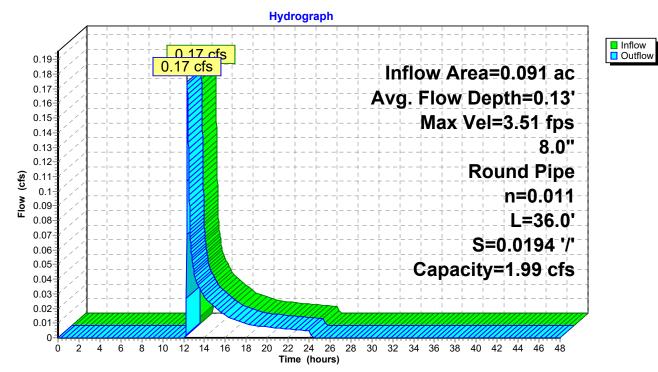
Reach 15R: New

Summary for Reach 16R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.091 ac, 45.76% Impervious, Inflow Depth =
 2.27" for 100-YR event


 Inflow =
 0.17 cfs @
 12.35 hrs, Volume=
 0.017 af


 Outflow =
 0.17 cfs @
 12.35 hrs, Volume=
 0.017 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.51 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 0.4 min

Peak Storage= 2 cf @ 12.35 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.99 cfs

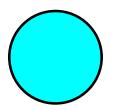
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 36.0' Slope= 0.0194 '/' Inlet Invert= 302.00', Outlet Invert= 301.30'

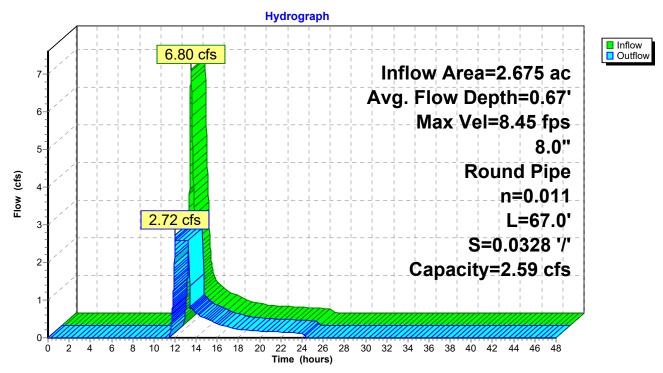
Reach 16R: New

Summary for Reach 17R: New

[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 263% of Manning's capacity[76] Warning: Detained 0.097 af (Pond w/culvert advised)

 Inflow Area =
 2.675 ac,
 4.94% Impervious, Inflow Depth =
 2.66" for 100-YR event


 Inflow =
 6.80 cfs @
 12.18 hrs, Volume=
 0.592 af


 Outflow =
 2.72 cfs @
 12.01 hrs, Volume=
 0.592 af, Atten= 60%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.45 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.76 fps, Avg. Travel Time= 0.2 min

Peak Storage= 23 cf @ 12.02 hrs Average Depth at Peak Storage= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.59 cfs

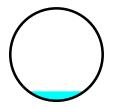
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 67.0' Slope= 0.0328 '/' Inlet Invert= 298.00', Outlet Invert= 295.80'

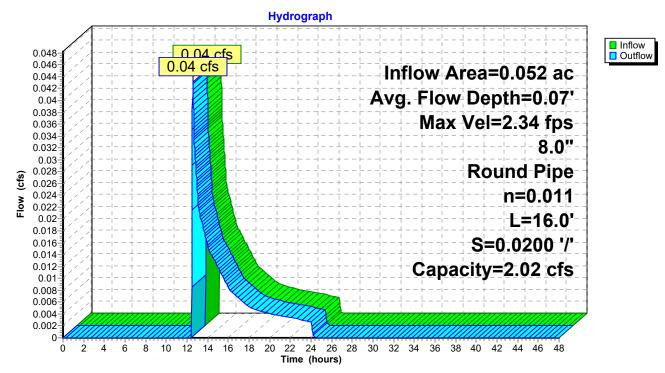
Reach 17R: New

Summary for Reach 18R: New

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.052 ac, 40.18% Impervious, Inflow Depth =
 1.84" for 100-YR event


 Inflow =
 0.04 cfs @
 12.56 hrs, Volume=
 0.008 af


 Outflow =
 0.04 cfs @
 12.56 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.34 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 12.56 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.02 cfs

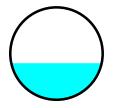
8.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 16.0' Slope= 0.0200 '/' Inlet Invert= 301.30', Outlet Invert= 300.98'

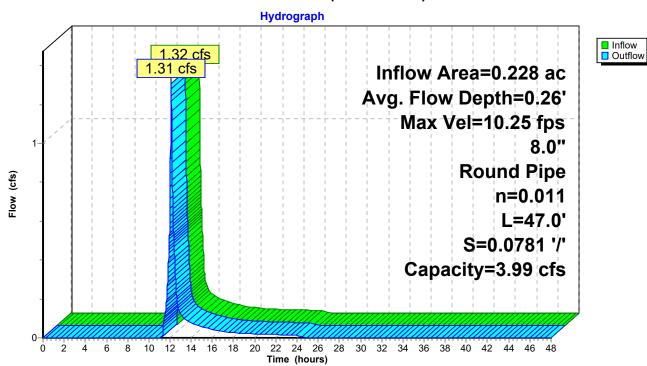
Reach 18R: New

Summary for Reach 19R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.228 ac, 67.95% Impervious, Inflow Depth =
 4.47" for 100-YR event


 Inflow =
 1.32 cfs @
 12.11 hrs, Volume=
 0.085 af


 Outflow =
 1.31 cfs @
 12.11 hrs, Volume=
 0.085 af, Atten= 1%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 10.25 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.67 fps, Avg. Travel Time= 0.2 min

Peak Storage= 6 cf @ 12.11 hrs Average Depth at Peak Storage= 0.26' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.99 cfs

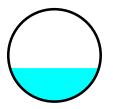
8.0" Round Pipe n= 0.011 Length= 47.0' Slope= 0.0781 '/' Inlet Invert= 287.00', Outlet Invert= 283.33'

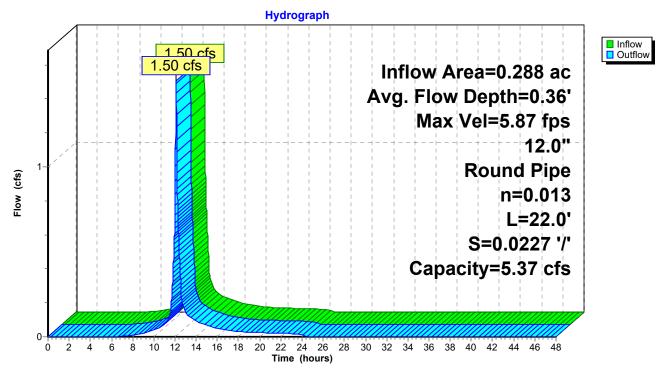
Reach 19R: (new Reach)

Summary for Reach 20R: 12" RCP pipe

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach PS9 outlet invert by 0.36' @ 12.10 hrs

 Inflow Area =
 0.288 ac, 25.48% Impervious, Inflow Depth = 4.51" for 100-YR event


 Inflow =
 1.50 cfs @ 12.10 hrs, Volume=
 0.108 af


 Outflow =
 1.50 cfs @ 12.10 hrs, Volume=
 0.108 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.87 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.99 fps, Avg. Travel Time= 0.2 min

Peak Storage= 6 cf @ 12.10 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

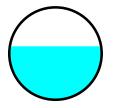
12.0" Round Pipe n= 0.013 Length= 22.0' Slope= 0.0227 '/' Inlet Invert= 257.75', Outlet Invert= 257.25'

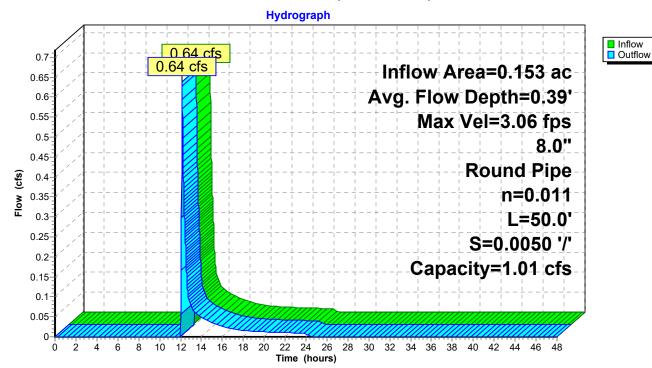
Reach 20R: 12" RCP pipe

Summary for Reach 21R: (new Reach)

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.153 ac, 15.01% Impervious, Inflow Depth = 3.05" for 100-YR event


 Inflow =
 0.64 cfs @ 12.14 hrs, Volume=
 0.039 af


 Outflow =
 0.64 cfs @ 12.15 hrs, Volume=
 0.039 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.06 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 0.7 min

Peak Storage= 10 cf @ 12.14 hrs Average Depth at Peak Storage= 0.39' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.01 cfs

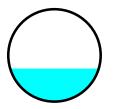
8.0" Round Pipe n= 0.011 Length= 50.0' Slope= 0.0050 '/' Inlet Invert= 254.00', Outlet Invert= 253.75'

Reach 21R: (new Reach)

Summary for Reach CB1: CB1

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach 20R outlet invert by 0.11' @ 12.10 hrs

 Inflow Area =
 0.395 ac, 45.72% Impervious, Inflow Depth =
 5.07" for 100-YR event


 Inflow =
 2.20 cfs @
 12.10 hrs, Volume=
 0.167 af

 Outflow =
 2.20 cfs @
 12.10 hrs, Volume=
 0.167 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 8.78 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.71 fps, Avg. Travel Time= 0.2 min

Peak Storage= 7 cf @ 12.10 hrs Average Depth at Peak Storage= 0.36' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 8.10 cfs

12.0" Round Pipe n= 0.011 Length= 27.0' Slope= 0.0370 '/' Inlet Invert= 257.00', Outlet Invert= 256.00'

Hydrograph Program

22 24 26 28

Time (hours)

30 32 34 36 38 40 42 44 46 48

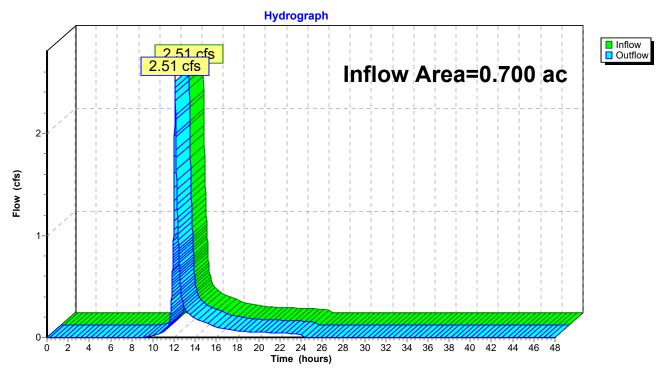
20

0

ò

2 4 6 8

10 12 14 16 18

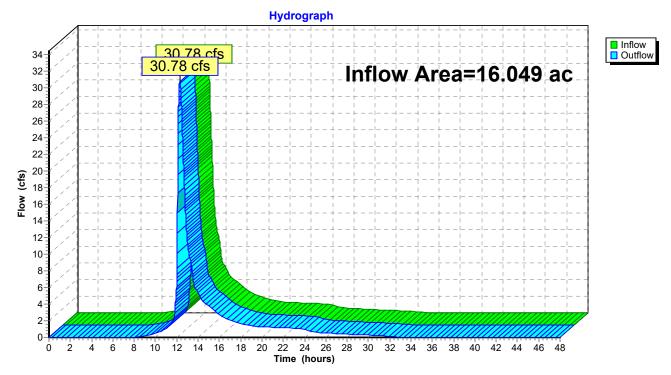

Reach CB1: CB1

Summary for Reach CP1:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.700 ac, 20.01% Impervious, Inflow Depth = 3.20" for 100-YR event	
Inflow	=	2.51 cfs @ 12.10 hrs, Volume= 0.187 af	
Outflow	=	2.51 cfs @ 12.10 hrs, Volume= 0.187 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

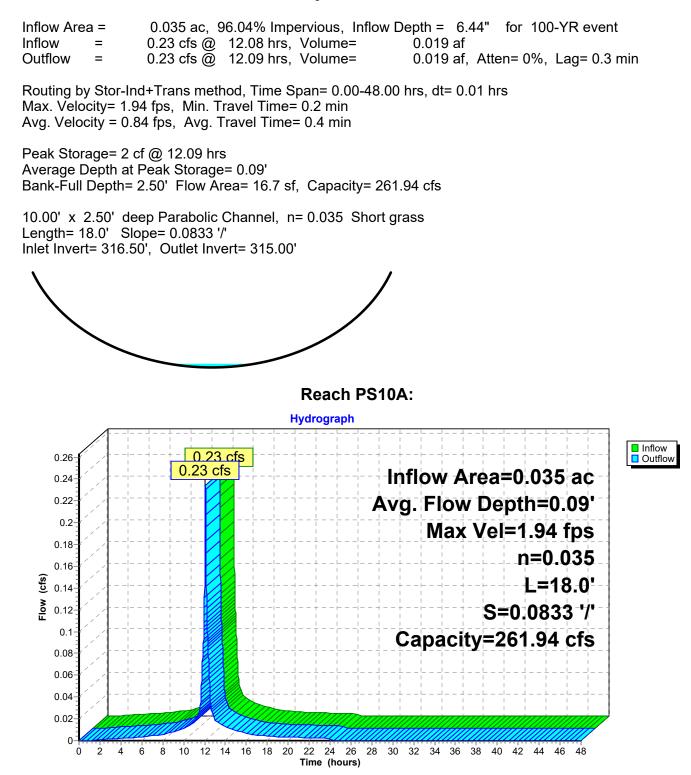


Summary for Reach CP2:

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	16.049 ac, 13.07% Impervious, Inflow Depth = 3.42" for 100-YR event	
Inflow	=	30.78 cfs @ 12.30 hrs, Volume=	
Outflow	=	30.78 cfs @ 12.30 hrs, Volume= 4.573 af, Atten= 0%, Lag= 0.0 i	min

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



Reach CP2:

Summary for Reach PS1:

Inflow Area = 2.270 ac. 5.04% Impervious, Inflow Depth = 2.75" for 100-YR event 5.85 cfs @ 12.18 hrs, Volume= Inflow 0.521 af = 5.83 cfs @ 12.20 hrs, Volume= Outflow = 0.521 af, Atten= 0%, Lag= 1.2 min Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 5.30 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 1.9 min Peak Storage= 251 cf @ 12.18 hrs Average Depth at Peak Storage= 0.55' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.22 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 228.0' Slope= 0.0658 '/' Inlet Invert= 316.00', Outlet Invert= 301.00' Reach PS1: Hydrograph Inflow 5.85 cfs Outflow 5.83 cfs Inflow Area=2.270 ac 6 Avg. Flow Depth=0.55' 5 Max Vel=5.30 fps n=0.035 Flow (cfs) L=228.0' S=0.0658 '/' 3 Capacity=20.22 cfs 2 1 0-2 10 12 14 16 18 Ó 4 6 8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Summary for Reach PS10A:

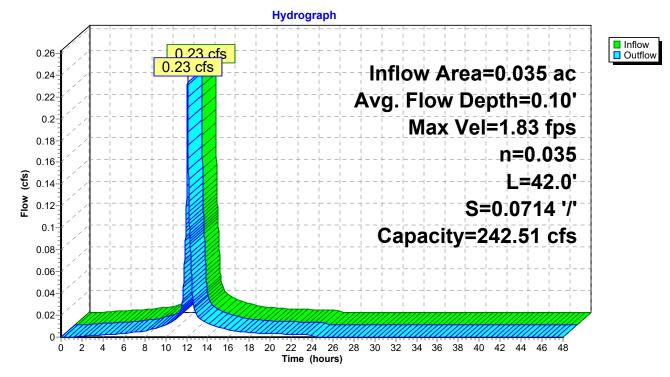
Summary for Reach PS10B:

[61] Hint: Exceeded Reach 4R outlet invert by 0.10' @ 12.09 hrs

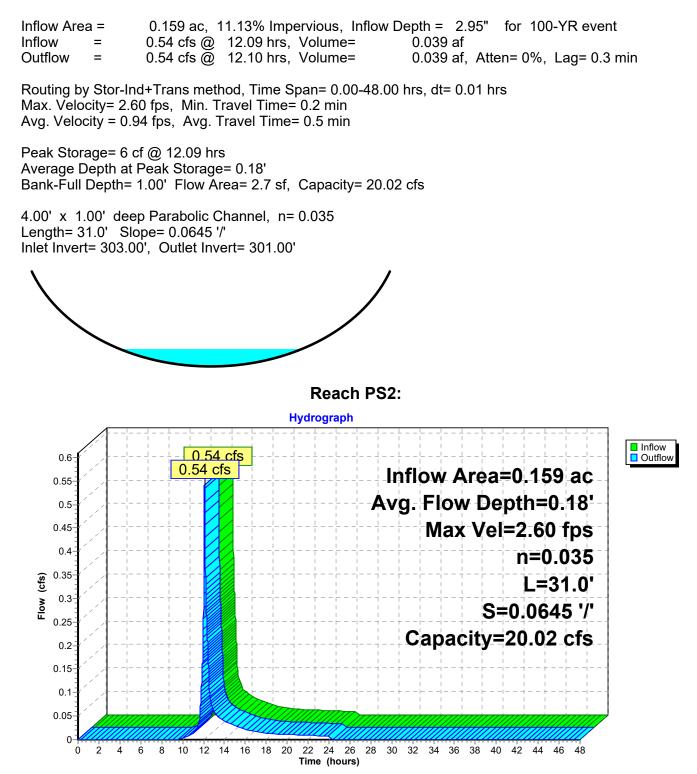
 Inflow Area =
 0.035 ac, 96.04% Impervious, Inflow Depth =
 6.44" for 100-YR event

 Inflow =
 0.23 cfs @
 12.09 hrs, Volume=
 0.019 af

 Outflow =
 0.23 cfs @
 12.10 hrs, Volume=
 0.019 af, Atten= 0%, Lag= 0.7 min

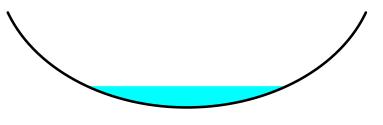

Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 1.83 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 0.9 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 2.50' Flow Area= 16.7 sf, Capacity= 242.51 cfs

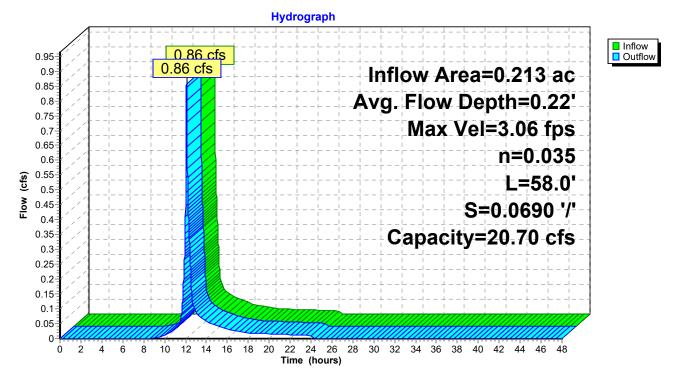

10.00' x 2.50' deep Parabolic Channel, n= 0.035 Short grass Length= 42.0' Slope= 0.0714 '/' Inlet Invert= 313.50', Outlet Invert= 310.50'

Reach PS10B:

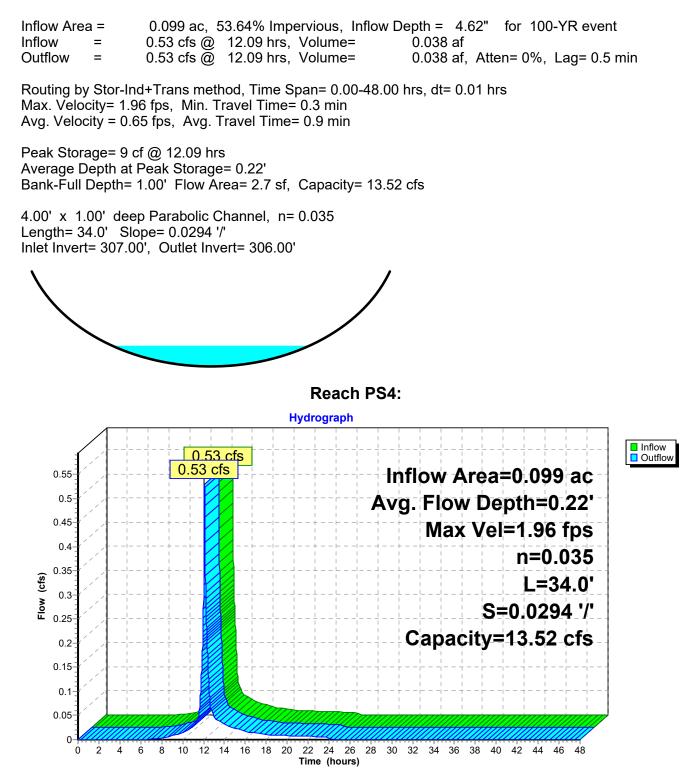
Summary for Reach PS2:


Summary for Reach PS3:

Inflow Area =0.213 ac, 23.47% Impervious, Inflow Depth =3.45" for 100-YR eventInflow =0.86 cfs @12.09 hrs, Volume=0.061 afOutflow =0.86 cfs @12.10 hrs, Volume=0.061 af, Atten= 0%, Lag= 0.5 minDeuting by Ster Ind Trans method. Time Spans 0.00, 48,00 hrs, dt= 0.01 hrs


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 3.06 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.07 fps, Avg. Travel Time= 0.9 min

Peak Storage= 16 cf @ 12.09 hrs Average Depth at Peak Storage= 0.22' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 20.70 cfs

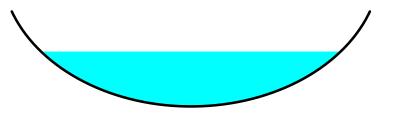

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 58.0' Slope= 0.0690 '/' Inlet Invert= 313.00', Outlet Invert= 309.00'

Reach PS3:

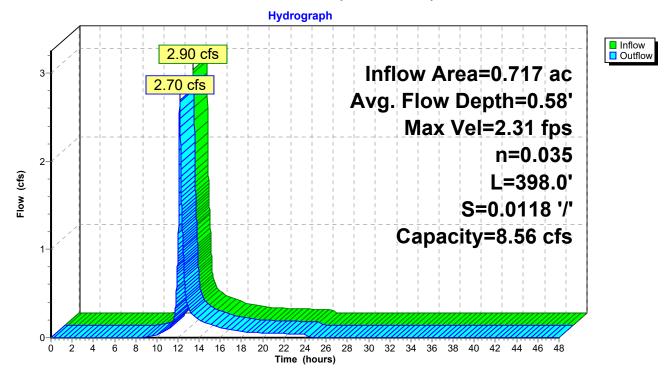
Summary for Reach PS4:

Summary for Reach PS6: (new Reach)

 Inflow Area =
 0.717 ac, 23.42% Impervious, Inflow Depth =
 3.45" for 100-YR event


 Inflow =
 2.90 cfs @
 12.09 hrs, Volume=
 0.206 af

 Outflow =
 2.70 cfs @
 12.17 hrs, Volume=
 0.206 af, Atten= 7%, Lag= 4.8 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 2.31 fps, Min. Travel Time= 2.9 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 9.1 min

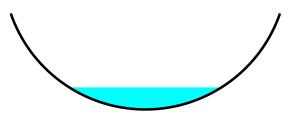
Peak Storage= 466 cf @ 12.12 hrs Average Depth at Peak Storage= 0.58' Bank-Full Depth= 1.00' Flow Area= 2.7 sf, Capacity= 8.56 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.035 Length= 398.0' Slope= 0.0118 '/' Inlet Invert= 300.00', Outlet Invert= 295.30'

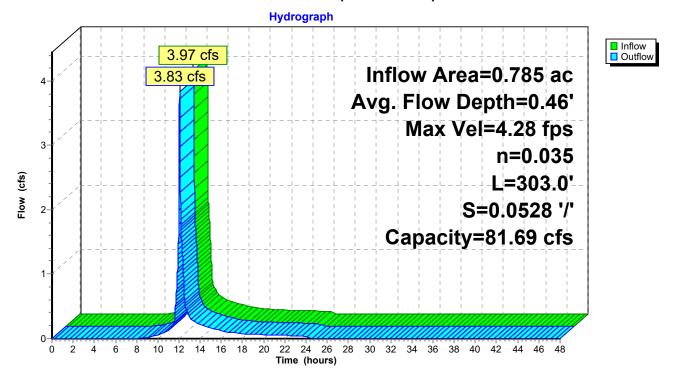
Reach PS6: (new Reach)

Summary for Reach PS7: (new Reach)

 Inflow Area =
 0.785 ac, 28.61% Impervious, Inflow Depth =
 3.66" for 100-YR event


 Inflow =
 3.97 cfs @
 12.02 hrs, Volume=
 0.239 af

 Outflow =
 3.83 cfs @
 12.06 hrs, Volume=
 0.239 af, Atten= 4%, Lag= 2.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.28 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.41 fps, Avg. Travel Time= 3.6 min

Peak Storage= 271 cf @ 12.04 hrs Average Depth at Peak Storage= 0.46' Bank-Full Depth= 2.00' Flow Area= 8.0 sf, Capacity= 81.69 cfs

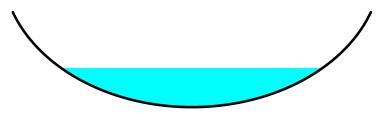
6.00' x 2.00' deep Parabolic Channel, n= 0.035 Length= 303.0' Slope= 0.0528 '/' Inlet Invert= 277.00', Outlet Invert= 261.00'

Reach PS7: (new Reach)

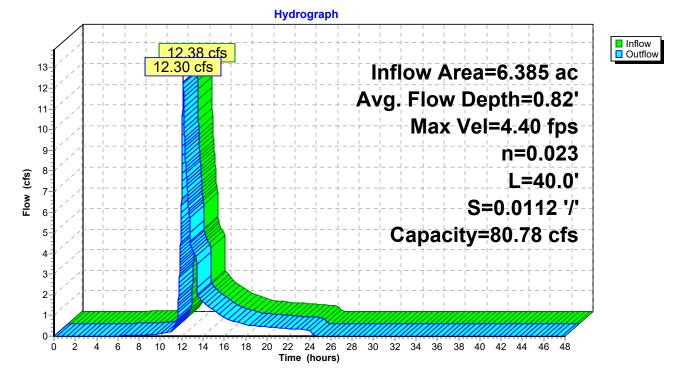
Summary for Reach PS8: (new Reach)

[79] Warning: Submerged Pond MH1 Primary device # 1 INLET by 0.47'

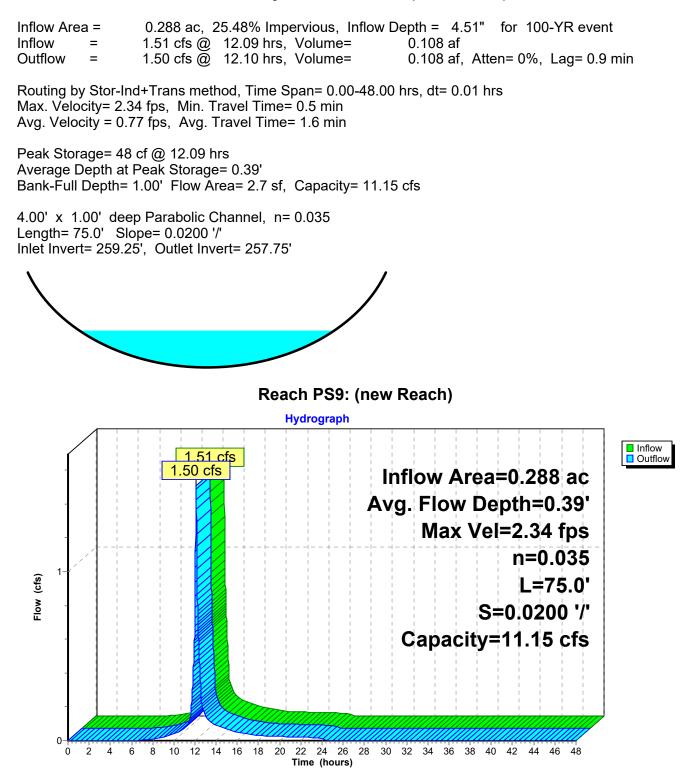
 Inflow Area =
 6.385 ac, 20.41% Impervious, Inflow Depth = 2.91" for 100-YR event


 Inflow =
 12.38 cfs @
 12.12 hrs, Volume=
 1.549 af

 Outflow =
 12.30 cfs @
 12.12 hrs, Volume=
 1.549 af, Atten= 1%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Max. Velocity= 4.40 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.5 min

Peak Storage= 112 cf @ 12.11 hrs Average Depth at Peak Storage= 0.82' Bank-Full Depth= 2.00' Flow Area= 10.7 sf, Capacity= 80.78 cfs


8.00' x 2.00' deep Parabolic Channel, n= 0.023 Length= 40.0' Slope= 0.0112 '/' Inlet Invert= 260.95', Outlet Invert= 260.50'

Reach PS8: (new Reach)

Summary for Reach PS9: (new Reach)

Summary for Pond 1P: (new Pond)

[57] Hint: Peaked at 301.86' (Flood elevation advised)[63] Warning: Exceeded Reach 9R INLET depth by 3.69' @ 12.18 hrs

Inflow Area =	0.366 ac, 37.66% Impervious, Inflow E	Depth = 3.39" for 100-YR event
Inflow =	1.19 cfs @ 12.18 hrs, Volume=	0.103 af
Outflow =	1.19 cfs @ 12.18 hrs, Volume=	0.103 af, Atten= 0%, Lag= 0.0 min
Primary =	1.19 cfs @ 12.18 hrs, Volume=	0.103 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.86' @ 12.18 hrs

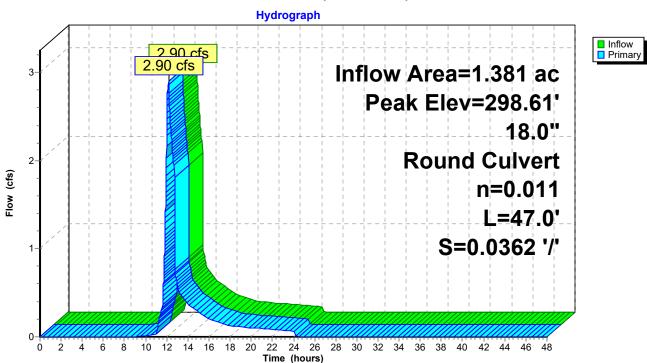
Device	Routing	Invert	Outlet Devices
#1	Primary	301.30'	18.0" Round Culvert L= 85.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.30' / 297.80' S= 0.0412 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=1.19 cfs @ 12.18 hrs HW=301.86' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.19 cfs @ 2.00 fps)

Hydrograph Inflow <u>1 19 cfs</u> Primary 1.19 cfs Inflow Area=0.366 ac Peak Elev=301.86' 1 18.0" **Round Culvert** Flow (cfs) n=0.011 L=85.0' S=0.0412 '/' 0 Ó Ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

Pond 1P: (new Pond)

Summary for Pond 2P: (new Pond)


[57] Hint: Peaked at 298.61' (Flood elevation advised)
[62] Hint: Exceeded Reach 11R OUTLET depth by 0.05' @ 12.18 hrs
[79] Warning: Submerged Pond 1P Primary device # 1 OUTLET by 0.81'

Inflow Area =	1.381 ac, 24.37% Impervious, Inflow I	Depth = 3.20" for 100-YR event
Inflow =	2.90 cfs @ 12.18 hrs, Volume=	0.368 af
Outflow =	2.90 cfs @ 12.18 hrs, Volume=	0.368 af, Atten= 0%, Lag= 0.0 min
Primary =	2.90 cfs @ 12.18 hrs, Volume=	0.368 af

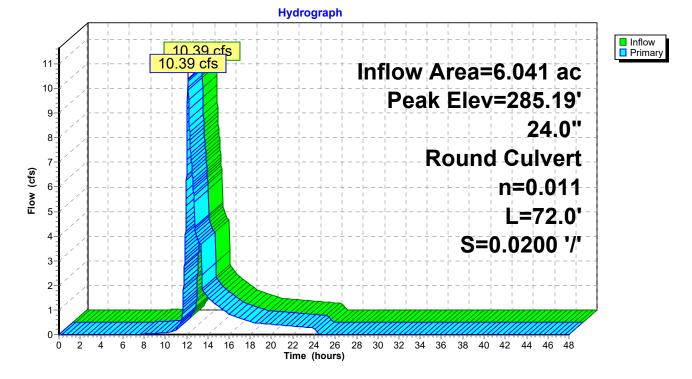
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 298.61' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	297.70'	18.0" Round Culvert L= 47.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 297.70' / 296.00' S= 0.0362 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=2.90 cfs @ 12.18 hrs HW=298.61' (Free Discharge) —1=Culvert (Inlet Controls 2.90 cfs @ 2.57 fps)

Pond 2P: (new Pond)

Summary for Pond 3P: MH2B


[57] Hint: Peaked at 285.19' (Flood elevation advised)

Inflow Area =	6.041 ac, 17.09% Impervious, Inflow	Depth = 2.78" for 100-YR event
Inflow =	10.39 cfs @ 12.12 hrs, Volume=	1.400 af
Outflow =	10.39 cfs @ 12.12 hrs, Volume=	1.400 af, Atten= 0%, Lag= 0.0 min
Primary =	10.39 cfs @ 12.12 hrs, Volume=	1.400 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 285.19' @ 12.12 hrs

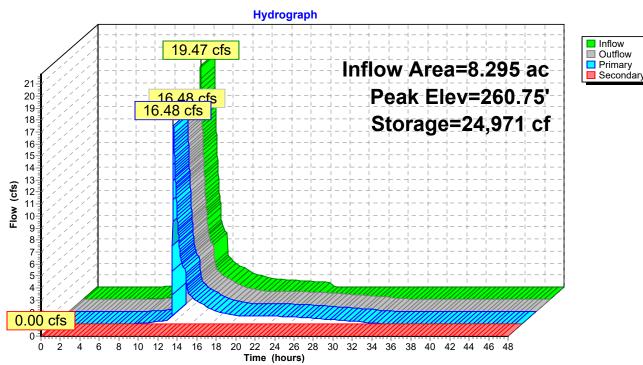
Device	Routing	Invert	Outlet Devices
#1	Primary	283.44'	24.0" Round 2B L= 72.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 283.44' / 282.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=10.38 cfs @ 12.12 hrs HW=285.19' (Free Discharge) **1=2B** (Inlet Controls 10.38 cfs @ 3.56 fps)

Summary for Pond 4P: Constructed Wetland

[62] Hint: Exceeded Reach 1R OUTLET depth by 0.27' @ 12.57 hrs [61] Hint: Exceeded Reach PS8 outlet invert by 0.25' @ 12.17 hrs

Inflow Area =	8.295 ac, 21.89% Impervious, Inflow D	epth = 3.13" for 100-YR event
Inflow =	19.47 cfs @ 12.10 hrs, Volume=	2.163 af
Outflow =	16.48 cfs @_ 12.17 hrs, Volume=	2.162 af, Atten= 15%, Lag= 4.5 min
Primary =	16.48 cfs @_ 12.17 hrs, Volume=	2.162 af
Secondary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Starting Elev= 258.30' Surf.Area= 5,072 sf Storage= 7,845 cf Peak Elev= 260.75' @ 12.17 hrs Surf.Area= 8,717 sf Storage= 24,971 cf (17,126 cf above start)

Plug-Flow detention time= 199.9 min calculated for 1.982 af (92% of inflow) Center-of-Mass det. time= 132.0 min (975.6 - 843.7)

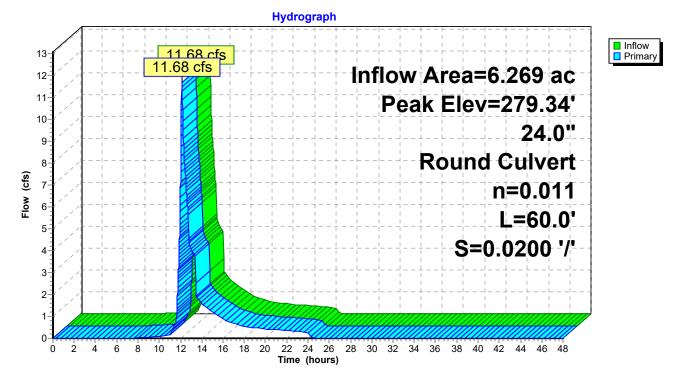
Volume	Invert	Avail.Sto	rage Storage	Description	
#1	254.00'	37,03	B7 cf Custom	Stage Data (Pi	ismatic) Listed below (Recalc)
Elevatio (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
254.0		729	0		
255.0		972	851	851	
256.0	00	1,244	1,108	1,959	
257.0		1,541	1,393	3,351	
258.0		4,558	3,050	6,401	
258.3		5,072	1,445	7,845	
259.0		6,345	3,996	11,841	
260.0		7,660	7,003	18,843	
261.0		9,072	8,366	27,209	
262.0	00	10,584	9,828	37,037	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	258.30'	30.0" Round		
					form to fill, Ke= 0.700
					258.00' S= 0.0100 '/' Cc= 0.900
що	Davias 1				poth interior, Flow Area= 4.91 sf
#2	Device 1	260.30'		ir flow at low hea	Grate C= 0.600
#3	Device 1	258.30'		fice/Grate X 2.0	
#3	Device	230.30		5.0" cc spacing	
#4	Device 1	258.30'		rifice/Grate C=	
	Device 1	200.00		ir flow at low hea	
#5	Secondary	260.90'			road-Crested Rectangular Weir
	,				0.80 1.00 1.20 1.40 1.60
					70 2.67 2.66 2.67 2.66 2.64

Primary OutFlow Max=16.42 cfs @ 12.17 hrs HW=260.75' (Free Discharge) 1=Culvert (Passes 16.42 cfs of 21.38 cfs potential flow) 2=Orifice/Grate (Weir Controls 15.69 cfs @ 2.19 fps) 3=Orifice/Grate (Orifice Controls 0.07 cfs @ 6.41 fps) 4=Orifice/Grate (Orifice Controls 0.66 cfs @ 7.53 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=258.30' (Free Discharge) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 4P: Constructed Wetland

Summary for Pond 5P: MH2A


[57] Hint: Peaked at 279.34' (Flood elevation advised)

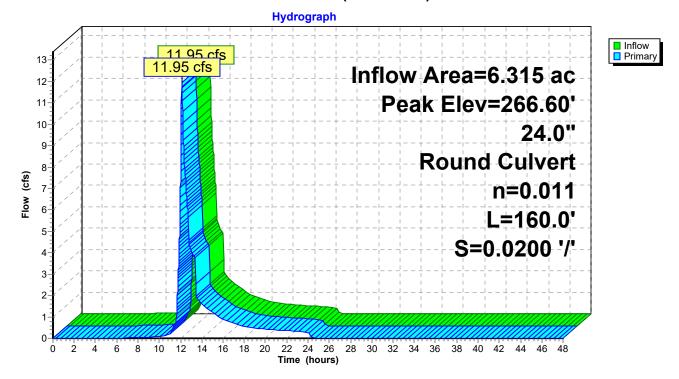
Inflow Area =	6.269 ac, 18.94% Impervious, Inflov	w Depth = 2.84" for 100-YR event
Inflow =	11.68 cfs @ 12.12 hrs, Volume=	1.485 af
Outflow =	11.68 cfs @ 12.12 hrs, Volume=	1.485 af, Atten= 0%, Lag= 0.0 min
Primary =	11.68 cfs @ 12.12 hrs, Volume=	1.485 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 279.34' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.40'	24.0" Round Culvert L= 60.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.40' / 276.20' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=11.67 cfs @ 12.12 hrs HW=279.34' (Free Discharge) **1=Culvert** (Inlet Controls 11.67 cfs @ 3.75 fps)

Summary for Pond 20P: (new Pond)


[57] Hint: Peaked at 266.60' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	v Depth = 2.87" for 100-YR event
Inflow =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af
Outflow =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af, Atten= 0%, Lag= 0.0 min
Primary =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 266.60' @ 12.12 hrs

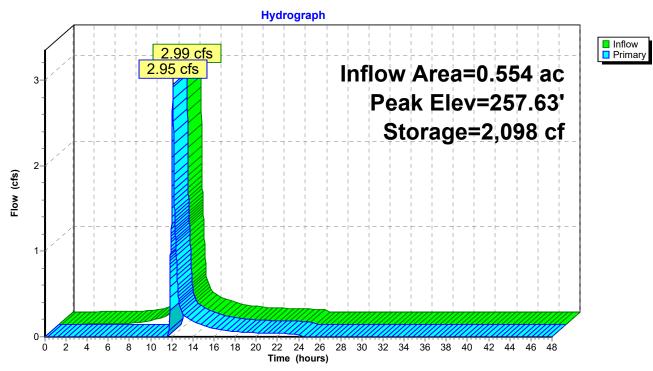
Device	Routing	Invert	Outlet Devices
#1	Primary	264.60'	24.0" Round Culvert L= 160.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 264.60' / 261.40' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=11.94 cfs @ 12.12 hrs HW=266.60' (Free Discharge) **1=Culvert** (Inlet Controls 11.94 cfs @ 3.80 fps)

Pond 20P: (new Pond)

Summary for Pond BS: Bus Station RG

[63] Warning: Exceeded Reach CB1 INLET depth by 0.30' @ 24.72 hrs


Inflow Area =	0.554 ac, 36.99% Impervious, Inflow D	Pepth = 4.85" for 100-YR event
Inflow =	2.99 cfs @ 12.10 hrs, Volume=	0.224 af
Outflow =	2.95 cfs @ 12.11 hrs, Volume=	0.180 af, Atten= 1%, Lag= 0.8 min
Primary =	2.95 cfs @ 12.11 hrs, Volume=	0.180 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.63' @ 12.11 hrs Surf.Area= 0 sf Storage= 2,098 cf

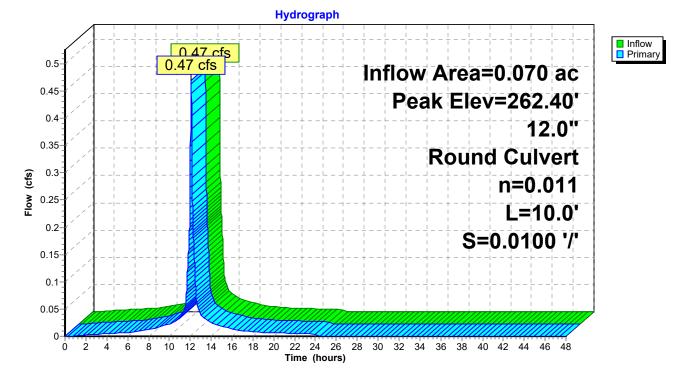
Plug-Flow detention time= 125.1 min calculated for 0.180 af (81% of inflow) Center-of-Mass det. time= 49.1 min (843.1 - 794.1)

Volume	In	vert Avai	il.Storage	Storage Description
#1	254	.47'	2,201 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et)	(cubic-feet)	(cubi	c-feet)
254.4	17	0		0
254.8	30	122		122
255.0)5	92		214
256.0)5	367		581
256.3	30	92		673
257.3	30	1,222		1,895
257.8	30	306		2,201
Device	Routing	ı İn	vert Outle	et Devices
#1	Primary	257	.30' 18.0	"Horiz. Orifice/Grate C= 0.600
	,		Limi	ted to weir flow at low heads
Duiling a m	Drimony OutFlow May-005 of a a 10.11 hrs. 1111-057 601 (Free Discharge)			

Primary OutFlow Max=2.95 cfs @ 12.11 hrs HW=257.63' (Free Discharge) **1=Orifice/Grate** (Weir Controls 2.95 cfs @ 1.88 fps)

Pond BS: Bus Station RG

Summary for Pond CB2: (new Pond)


[57] Hint: Peaked at 262.40' (Flood elevation advised)

Inflow Area =	0.070 ac,100.00% Impervious, Inflow	Depth = 6.56" for 100-YR event
Inflow =	0.47 cfs @ 12.08 hrs, Volume=	0.038 af
Outflow =	0.47 cfs @ 12.08 hrs, Volume=	0.038 af, Atten= 0%, Lag= 0.0 min
Primary =	0.47 cfs @ 12.08 hrs, Volume=	0.038 af

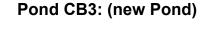
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.40' @ 12.08 hrs

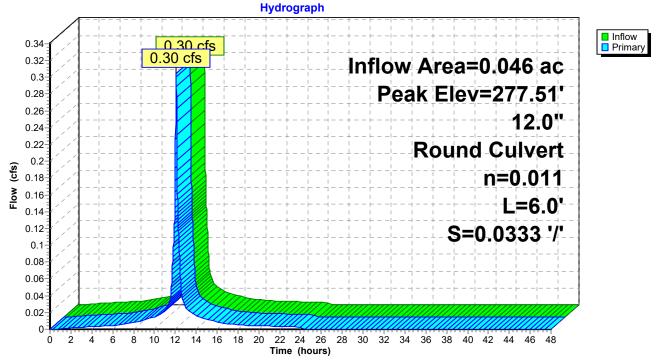
Device	Routing	Invert	Outlet Devices
#1	Primary	262.00'	12.0" Round Culvert L= 10.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 262.00' / 261.90' S= 0.0100 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.47 cfs @ 12.08 hrs HW=262.40' (Free Discharge) **1=Culvert** (Barrel Controls 0.47 cfs @ 2.38 fps)

Pond CB2: (new Pond)

Summary for Pond CB3: (new Pond)


[57] Hint: Peaked at 277.51' (Flood elevation advised)


Inflow Area =	0.046 ac,100.00% Impervious, Inflow	Depth = 6.56" for 100-YR event
Inflow =	0.30 cfs @ 12.08 hrs, Volume=	0.025 af
Outflow =	0.30 cfs @ 12.08 hrs, Volume=	0.025 af, Atten= 0%, Lag= 0.0 min
Primary =	0.30 cfs @ 12.08 hrs, Volume=	0.025 af

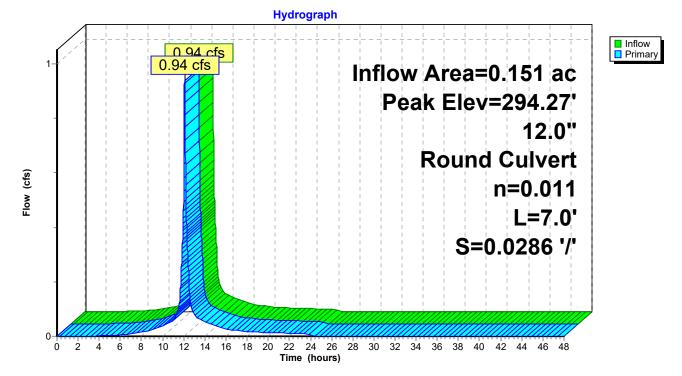
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 277.51' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	277.20'	12.0" Round Culvert L= 6.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 277.20' / 277.00' S= 0.0333 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.30 cfs @ 12.08 hrs HW=277.51' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.30 cfs @ 1.49 fps)

Summary for Pond CB4: (new Pond)

[57] Hint: Peaked at 294.27' (Flood elevation advised)


Inflow Area =	0.151 ac, 79.05% Impervious, Inflow	Depth = 5.63" for 100-YR event
Inflow =	0.94 cfs @ 12.08 hrs, Volume=	0.071 af
Outflow =	0.94 cfs @ 12.08 hrs, Volume=	0.071 af, Atten= 0%, Lag= 0.0 min
Primary =	0.94 cfs @ 12.08 hrs, Volume=	0.071 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.27' @ 12.08 hrs

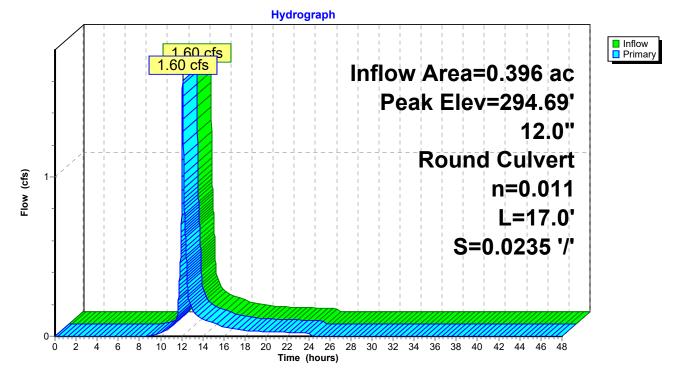
Device	Routing	Invert	Outlet Devices
#1	Primary	293.70'	12.0" Round Culvert L= 7.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.70' / 293.50' S= 0.0286 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.94 cfs @ 12.08 hrs HW=294.27' (Free Discharge) **1=Culvert** (Inlet Controls 0.94 cfs @ 2.03 fps)

Pond CB4: (new Pond)

Summary for Pond CB5: (new Pond)

[57] Hint: Peaked at 294.69' (Flood elevation advised)


Inflow Area =	0.396 ac, 24.31% Impervious, Inflow D	epth = 3.45" for 100-YR event
Inflow =	1.60 cfs @ 12.09 hrs, Volume=	0.114 af
Outflow =	1.60 cfs @ 12.09 hrs, Volume=	0.114 af, Atten= 0%, Lag= 0.0 min
Primary =	1.60 cfs @ 12.09 hrs, Volume=	0.114 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.69' @ 12.09 hrs

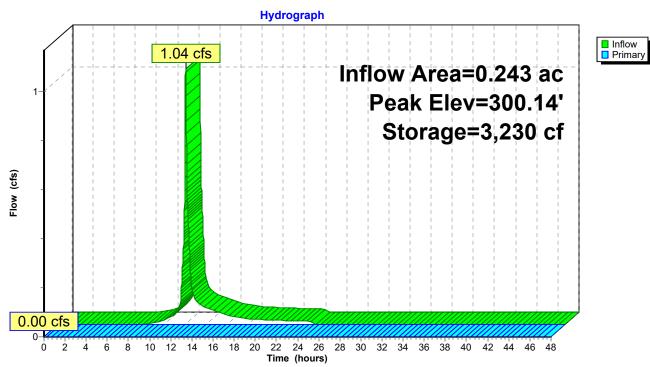
Device	Routing	Invert	Outlet Devices
#1	Primary	293.90'	12.0" Round Culvert L= 17.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 293.90' / 293.50' S= 0.0235 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=1.60 cfs @ 12.09 hrs HW=294.69' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.60 cfs @ 2.39 fps)

Pond CB5: (new Pond)

Summary for Pond CULdeSAC: Cul-de-sac

[58] Hint: Peaked 0.14' above defined flood level


Inflow Area =	0.243 ac, 29.57% Impervious, Inflow I	Depth = 3.66" for 100-YR event
Inflow =	1.04 cfs @ 12.09 hrs, Volume=	0.074 af
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 300.14' @ 24.34 hrs Surf.Area= 0 sf Storage= 3,230 cf Flood Elev= 300.00' Surf.Area= 0 sf Storage= 2,622 cf

Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

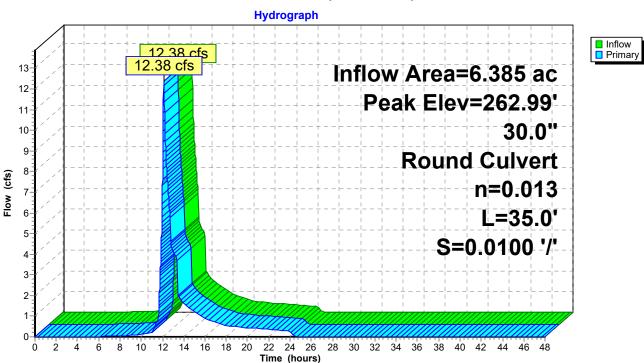
Volume	Inver	t Avail.Sto	orage Stora	ge Description
#1	297.92	' 4,3	94 cf Cust	om Stage DataListed below
Elevatior (feet) (cu	nc.Store bic-feet)	Cum.Store (cubic-feet)	
297.92		0	0	
298.25		283	283	
298.50)	213	496	
299.50)	850	1,346	
299.75	5	213	1,559	
300.25	5	2,126	3,685	
300.50)	709	4,394	
Device	Routing	Invert	Outlet Devi	ces
#1	Primary	300.25'		c. Orifice/Grate C= 0.600 veir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=297.92' (Free Discharge)

Pond CULdeSAC: Cul-de-sac

Summary for Pond MH1: (new Pond)

[57] Hint: Peaked at 262.99' (Flood elevation advised)[79] Warning: Submerged Pond 20P Primary device # 1 OUTLET by 1.59'


[81] Warning: Exceeded Pond CB2 by 0.63' @ 12.16 hrs

Inflow Area	=	6.385 ac, 20.41% Impervious, Inflow Depth = 2.91" for 100-YR event
Inflow =	=	12.38 cfs @ 12.12 hrs, Volume= 1.549 af
Outflow =	=	12.38 cfs @ 12.12 hrs, Volume= 1.549 af, Atten= 0%, Lag= 0.0 min
Primary =	=	12.38 cfs @ 12.12 hrs, Volume= 1.549 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 262.99' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	261.30'	30.0" Round Culvert L= 35.0' RCP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 261.30' / 260.95' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 4.91 sf

Primary OutFlow Max=12.36 cfs @ 12.12 hrs HW=262.99' (Free Discharge) **1=Culvert** (Barrel Controls 12.36 cfs @ 4.96 fps)

Pond MH1: (new Pond)

Summary for Pond MH2: (new Pond)


[57] Hint: Peaked at 272.50' (Flood elevation advised)

Inflow Area =	6.315 ac, 19.53% Impervious, Inflow	Depth = 2.87" for 100-YR event
Inflow =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af
Outflow =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af, Atten= 0%, Lag= 0.0 min
Primary =	11.95 cfs @ 12.12 hrs, Volume=	1.510 af

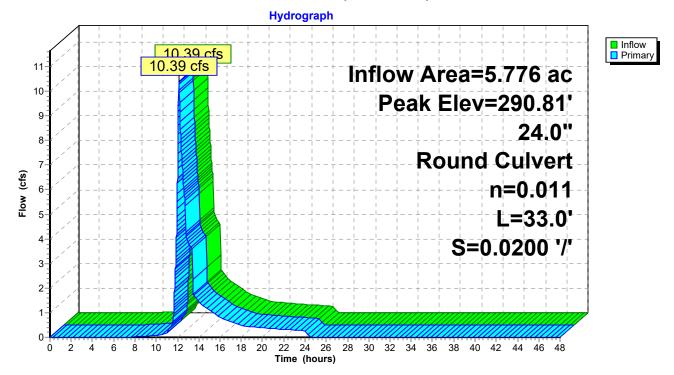
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 272.50' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	270.50'	24.0" Round Culvert L= 125.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 270.50' / 268.00' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

Primary OutFlow Max=11.94 cfs @ 12.12 hrs HW=272.50' (Free Discharge) **1=Culvert** (Inlet Controls 11.94 cfs @ 3.80 fps)

Pond MH2: (new Pond)

Summary for Pond MH3: (new Pond)


[57] Hint: Peaked at 290.81' (Flood elevation advised)

Inflow Area =	5.776 ac, 17.87% Impervious, Inflow	Depth = 2.84" for 100-YR event
Inflow =	10.39 cfs @ 12.12 hrs, Volume=	1.367 af
Outflow =	10.39 cfs @ 12.12 hrs, Volume=	1.367 af, Atten= 0%, Lag= 0.0 min
Primary =	10.39 cfs @ 12.12 hrs, Volume=	1.367 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 290.81' @ 12.12 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	289.06'	24.0" Round Culvert L= 33.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 289.06' / 288.40' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 3.14 sf

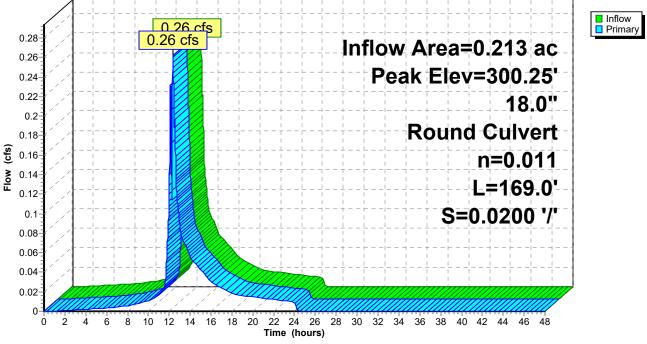
Primary OutFlow Max=10.38 cfs @ 12.12 hrs HW=290.81' (Free Discharge) **1=Culvert** (Inlet Controls 10.38 cfs @ 3.56 fps)

Pond MH3: (new Pond)

Summary for Pond MH4:

[57] Hint: Peaked at 300.25' (Flood elevation advised)

Inflow Area =	0.213 ac, 50.94% Impervious, Inflow D	epth = 2.48" for 100-YR event
Inflow =	0.26 cfs @ 12.34 hrs, Volume=	0.044 af
Outflow =	0.26 cfs @ 12.34 hrs, Volume=	0.044 af, Atten= 0%, Lag= 0.0 min
Primary =	0.26 cfs @ 12.34 hrs, Volume=	0.044 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 300.25' @ 12.34 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	300.00'	18.0" Round Culvert L= 169.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 300.00' / 296.62' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

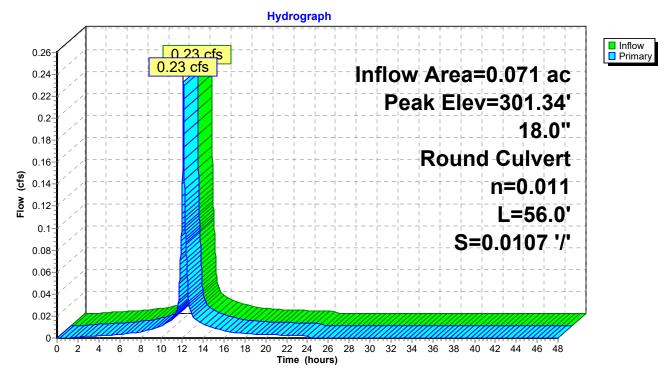
Primary OutFlow Max=0.26 cfs @ 12.34 hrs HW=300.25' (Free Discharge) **1=Culvert** (Inlet Controls 0.26 cfs @ 1.35 fps)

Hydrograph 0.26 cfs 0.26 cfs

Pond MH4:

Summary for Pond MH5:

[57] Hint: Peaked at 301.34' (Flood elevation advised)[63] Warning: Exceeded Reach 13R INLET depth by 0.04' @ 12.11 hrs


Inflow Area =	0.071 ac, 65.39% Impervious, Inflow	v Depth = 3.21" for 100-YR event
Inflow =	0.23 cfs @ 12.11 hrs, Volume=	0.019 af
Outflow =	0.23 cfs @ 12.11 hrs, Volume=	0.019 af, Atten= 0%, Lag= 0.0 min
Primary =	0.23 cfs @ 12.11 hrs, Volume=	0.019 af

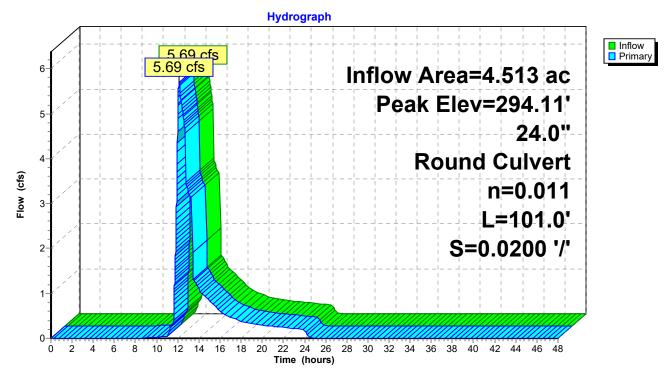
Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.34' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	301.10'	18.0" Round Culvert L= 56.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 301.10' / 300.50' S= 0.0107 '/' Cc= 0.900 n= 0.011, Flow Area= 1.77 sf

Primary OutFlow Max=0.23 cfs @ 12.11 hrs HW=301.34' (Free Discharge) **1=Culvert** (Inlet Controls 0.23 cfs @ 1.31 fps)

Pond MH5:

Summary for Pond MH6: CB6


[57] Hint: Peaked at 294.11' (Flood elevation advised)

Inflow Area =	4.513 ac, 14.39% Impervious, Inflo	w Depth = 2.67" for 100-YR event
Inflow =	5.69 cfs @ 12.11 hrs, Volume=	1.005 af
Outflow =	5.69 cfs @ 12.11 hrs, Volume=	1.005 af, Atten= 0%, Lag= 0.0 min
Primary =	5.69 cfs @ 12.11 hrs, Volume=	1.005 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 294.11' @ 12.11 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	292.92'	24.0" Round Culvert L= 101.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 292.92' / 290.90' S= 0.0200 '/' Cc= 0.900 n= 0.011, Flow Area= 3.14 sf

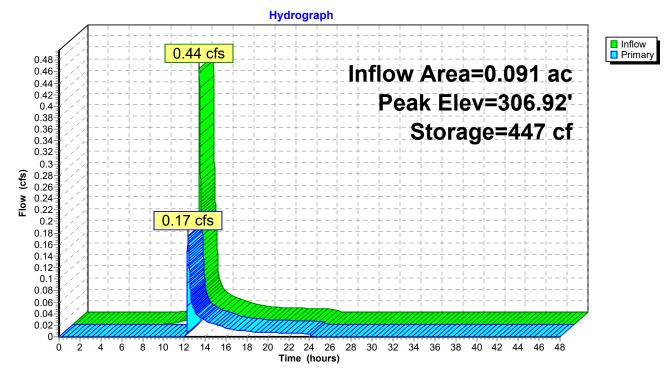
Primary OutFlow Max=5.69 cfs @ 12.11 hrs HW=294.11' (Free Discharge) **1=Culvert** (Inlet Controls 5.69 cfs @ 2.93 fps)

Pond MH6: CB6

Summary for Pond RG10:

[63] Warning: Exceeded Reach 15R INLET depth by 4.55' @ 24.44 hrs

Inflow Area =	0.091 ac, 45.76% Impervious, Inflow D	Depth = 3.55" for 100-YR event
Inflow =	0.44 cfs @ 12.10 hrs, Volume=	0.027 af
Outflow =	0.17 cfs @ 12.35 hrs, Volume=	0.017 af, Atten= 61%, Lag= 15.1 min
Primary =	0.17 cfs @ 12.35 hrs, Volume=	0.017 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.92' @ 12.35 hrs Surf.Area= 0 sf Storage= 447 cf

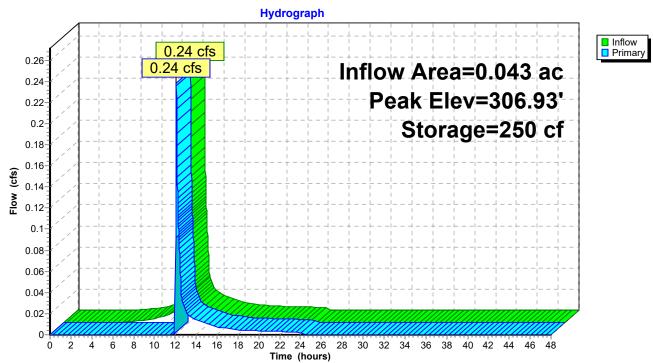
Plug-Flow detention time= 184.7 min calculated for 0.017 af (64% of inflow) Center-of-Mass det. time= 76.7 min (920.1 - 843.4)

Volume	In	vert A	vail.Sto	rage	Storage Description
#1	303	8.77'	50)9 cf	Custom Stage DataListed below
- 1				0	01
Elevatio		Inc.Sto		-	Store
(fee	et)	(cubic-fee	et)	(cubio	c-feet)
303.7	7		0		0
303.8	35		8		8
304.1	0		25		33
306.1	0	20	00		233
306.3	35		25		258
306.8	35	16	67		425
307.1	0	8	34		509
Device	Routing	g	Invert	Outle	et Devices
#1	Primar	y 3	306.85'	-	"Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads

Primary OutFlow Max=0.17 cfs @ 12.35 hrs HW=306.92' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.17 cfs @ 0.83 fps)

Pond RG10:

Summary for Pond RG11:


Inflow Area =	0.043 ac,	62.65% Impervious,	Inflow Depth = 4.95'	for 100-YR event
Inflow =	0.24 cfs @	12.09 hrs, Volume	= 0.018 af	
Outflow =	0.24 cfs @	12.10 hrs, Volume	= 0.012 af, A	tten= 2%, Lag= 0.9 min
Primary =	0.24 cfs @	12.10 hrs, Volume	= 0.012 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.93' @ 12.10 hrs Surf.Area= 0 sf Storage= 250 cf

Plug-Flow detention time= 156.5 min calculated for 0.012 af (69% of inflow) Center-of-Mass det. time= 63.2 min (862.0 - 798.9)

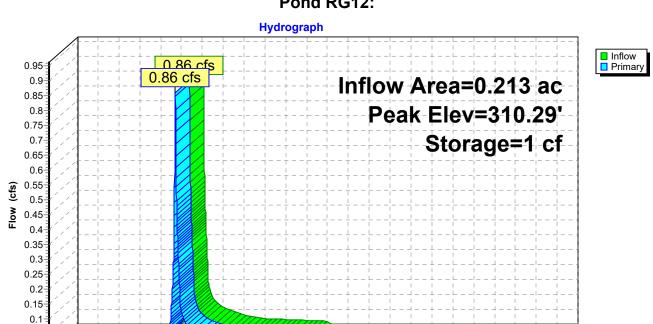
Volume	Inv	ert Avail.S	torage	Storage Description	
#1	303.	77'	281 cf	Custom Stage DataListed below	
Elevatio	n	Inc.Store	Cum).Store	
(fee		cubic-feet)	-	c-feet)	
303.7	7	0		0	
303.8	5	5		5	
304.1	0	14		19	
306.1	0	110		129	
306.3	5	14		143	
306.8	5	92		235	
307.1	0	46		281	
Device	Routing	Inver	t Outl	et Devices	
#1	Primary	306.85	' 12.0	" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads	
Primary OutFlow Max=0.24 cfs @ 12.10 brs. HW=306.93' (Free Discharge)					

Primary OutFlow Max=0.24 cfs @ 12.10 hrs HW=306.93' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.24 cfs @ 0.93 fps)

Pond RG11:

Summary for Pond RG12:

[62] Hint: Exceeded Reach PS3 OUTLET depth by 1.27' @ 0.00 hrs


Inflow Area =	0.213 ac, 23.47% Impervious, Inflow I	Depth = 3.45" for 100-YR event
Inflow =	0.86 cfs @ 12.10 hrs, Volume=	0.061 af
Outflow =	0.86 cfs @ 12.10 hrs, Volume=	0.061 af, Atten= 0%, Lag= 0.0 min
Primary =	0.86 cfs @ 12.10 hrs, Volume=	0.061 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 310.29' @ 12.10 hrs Surf.Area= 0 sf Storage= 1 cf

Plug-Flow detention time= 0.0 min calculated for 0.061 af (100% of inflow) Center-of-Mass det. time= 0.0 min (833.2 - 833.2)

Volume	Inv	ert Avail.St	orage	Storage Description
#1	310.2	27'	760 cf	Custom Stage DataListed below
			_	
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et) (cubic-feet)	(cubi	<u>c-feet)</u>
310.2	27	0		0
310.6	60	15		15
310.8	35	44		59
312.1	0	219		278
312.3	35	44		322
312.8	35	292		614
313.1	0	146		760
Device	Routing	Inver	t Outl	et Devices
#1	Primary	309.75	-	"Horiz. Orifice/Grate X 0.50 C= 0.600 ted to weir flow at low heads
Primary	OutFlow	Max=1 30 cfs	@ 12 ·	10 brs HW=310.20' (Free Discharge)

Primary OutFlow Max=1.39 cfs @ 12.10 hrs HW=310.29' (Free Discharge) —1=Orifice/Grate (Orifice Controls 1.39 cfs @ 1.76 fps)

22 24 26 28 30 32 34 36 38 40 42 44 46 48

0.05 0-

Ó

2

4 6 8 10 12 14 16 18

20

Time (hours)

Pond RG12:

Summary for Pond RG13:

[63] Warning: Exceeded Reach PS4 INLET depth by 0.95' @ 24.37 hrs

Inflow Area =	0.099 ac, 53.64% Impervious, Inflow Depth = 4.62" for 100-YR event
Inflow =	0.53 cfs @ 12.09 hrs, Volume= 0.038 af
Outflow =	0.38 cfs @ 12.17 hrs, Volume= 0.024 af, Atten= 27%, Lag= 4.6 min
Primary =	0.38 cfs @ 12.17 hrs, Volume= 0.024 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 308.06' @ 12.17 hrs Surf.Area= 0 sf Storage= 648 cf

Plug-Flow detention time= 177.0 min calculated for 0.024 af (64% of inflow) Center-of-Mass det. time= 75.9 min (883.5 - 807.5)

Volume	Invert	Avail.Sto	rage Sto	rage Description
#1	304.29'	70	06 cf Cu	stom Stage DataListed below
		_		
Elevation	In	ic.Store	Cum.Sto	re
(feet)	(cub	oic-feet)	(cubic-fee	et)
304.29		0		0
304.62		42	4	12
304.87		31	7	73
307.20		290	36	63
307.45		31	39	94
307.95		208	60	02
308.20		104	7(06
Device Ro	outing	Invert	Outlet D	evices
#1 Pr	imary	307.95'		oriz. Orifice/Grate C= 0.600 o weir flow at low heads

Primary OutFlow Max=0.38 cfs @ 12.17 hrs HW=308.06' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.38 cfs @ 1.09 fps)

Pond RG13: Hydrograph Inflow 0.53 cfs Primary Inflow Area=0.099 ac 0.55 0.5 Peak Elev=308.06' 0.45 Storage=648 cf 0.38 cfs 0.4 0.35 Flow (cfs) 0.3

22 24 26 28 30 32 34 36 38 40 42 44 46 48

0.25 0.2 0.15 0.1 0.05

0-

Ó

2

4 6 8

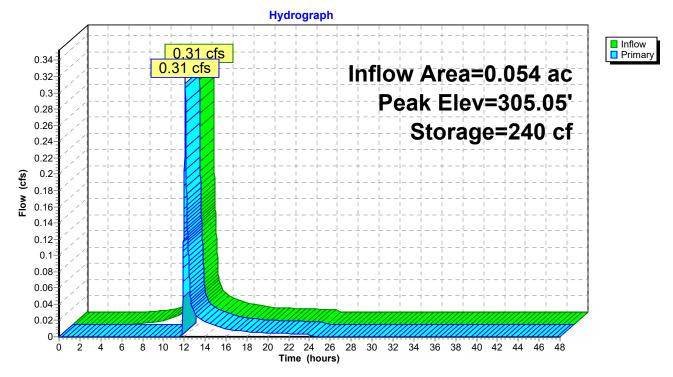
10 12 14 16 18

20

Time (hours)

Summary for Pond RG14:

Inflow Area =	0.054 ac, 64.02% Impervious, I	nflow Depth = 5.06" for 100-YR event
Inflow =	0.31 cfs @ 12.09 hrs, Volume=	0.023 af
Outflow =	0.31 cfs @ 12.10 hrs, Volume=	0.018 af, Atten= 1%, Lag= 0.7 min
Primary =	0.31 cfs @ 12.10 hrs, Volume=	0.018 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 305.05' @ 12.10 hrs Surf.Area= 0 sf Storage= 240 cf

Plug-Flow detention time= 128.0 min calculated for 0.018 af (78% of inflow) Center-of-Mass det. time= 48.4 min (844.5 - 796.1)

Volume	Inv	ert Avail.St	orage Sto	prage Description
#1	302.	54' 2	272 cf Cu	stom Stage DataListed below
_			a a /	
Elevatio	on	Inc.Store	Cum.Sto	re
(fee	et) (cubic-feet)	(cubic-fee	et)
302.5	54	0		0
302.6	62	5		5
302.8	37	15	2	20
304.2	20	82	1	02
304.4	45	15	1	17
304.9	95	103	2	20
305.2	20	52	2	72
Device	Routing	Invert	Outlet D	evices
#1	Primary	304.95		oriz. Orifice/Grate C= 0.600 to weir flow at low heads
Primary		Max=0.31 cfs	@ 12 10 h	rs HW=305.05' (Free Discharge)

Primary OutFlow Max=0.31 cfs @ 12.10 hrs HW=305.05' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.31 cfs @ 1.02 fps)

Pond RG14:

Summary for Pond RG15:

[93] Warning: Storage range exceeded by 0.15'

[88] Warning: Qout>Qin may require Finer Routing>1

[61] Hint: Exceeded Reach 10R outlet invert by 3.21' @ 12.09 hrs

Inflow Area =	1.015 ac, 19.57% Impervio	ous, Inflow Depth = 3.25" for	100-YR event
Inflow =	3.85 cfs @ 12.09 hrs, Volu	ume= 0.275 af	
Outflow =	3.90 cfs @ 12.09 hrs, Volu	ume= 0.265 af, Atten=	0%, Lag= 0.0 min
Primary =	3.90 cfs @ 12.09 hrs, Volu	ume= 0.265 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.15' @ 12.09 hrs Surf.Area= 0 sf Storage= 524 cf

Plug-Flow detention time= 29.1 min calculated for 0.265 af (96% of inflow) Center-of-Mass det. time= 8.9 min (845.6 - 836.7)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	298.00'	52	24 cf	Custom Stage DataListed below
Elevation (feet)	(cub	c.Store ic-feet)	-	.Store <u>c-feet)</u>
298.00		0		0
299.00		110		110
300.00		110		220
300.25		28		248
300.75		184		432
301.00		92		524
Device F	Routing	Invert	Outle	et Devices
#1 F	Primary	300.75'		"Horiz. Orifice/Grate C= 0.600 ed to weir flow at low heads

Primary OutFlow Max=3.90 cfs @ 12.09 hrs HW=301.15' (Free Discharge) —1=Orifice/Grate (Weir Controls 3.90 cfs @ 2.07 fps)

Pond RG15:

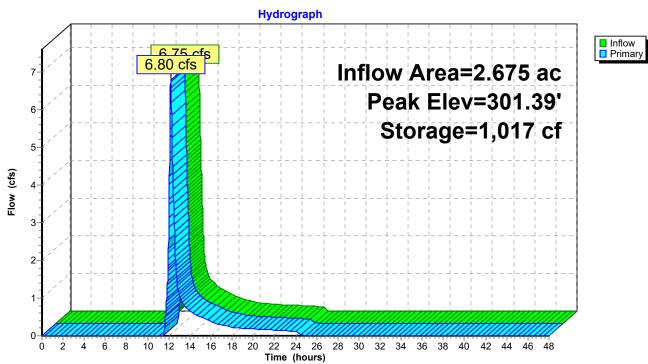
Summary for Pond RG16:

[93] Warning: Storage range exceeded by 0.39'

[88] Warning: Qout>Qin may require Finer Routing>1

[61] Hint: Exceeded Reach PS1 outlet invert by 0.39' @ 12.18 hrs

[62] Hint: Exceeded Reach PS2 OUTLET depth by 0.23' @ 12.20 hrs


Inflow Area =	2.675 ac,	4.94% Impervious, Inflow	Depth = 2.75"	for 100-YR event
Inflow =	6.75 cfs @	12.18 hrs, Volume=	0.612 af	
Outflow =	6.80 cfs @	12.18 hrs, Volume=	0.592 af, Atte	en= 0%, Lag= 0.0 min
Primary =	6.80 cfs @	12.18 hrs, Volume=	0.592 af	-

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 301.39' @ 12.18 hrs Surf.Area= 0 sf Storage= 1,017 cf

Plug-Flow detention time= 25.9 min calculated for 0.592 af (97% of inflow) Center-of-Mass det. time= 7.8 min (862.8 - 855.0)

Volume	Inver	t Avail.Sto	orage St	torage Description
#1	298.00)' 1,C	17 cf C ι	ustom Stage DataListed below
Elevation (feet)	•	nc.Store lbic-feet)	Cum.Sto (cubic-fe	
298.00		0		0
299.00		182	1	182
300.00		182	3	364
300.25		46	4	410
300.75		455	8	365
301.00		152	1,0)17
Device I	Routing	Invert	Outlet D	Devices
#1 I	Primary	300.75'		loriz. Orifice/Grate C= 0.600 to weir flow at low heads

Primary OutFlow Max=6.79 cfs @ 12.18 hrs HW=301.39' (Free Discharge) —1=Orifice/Grate (Orifice Controls 6.79 cfs @ 3.84 fps)

Pond RG16:

Summary for Pond RG19:

[93] Warning: Storage range exceeded by 1.28'

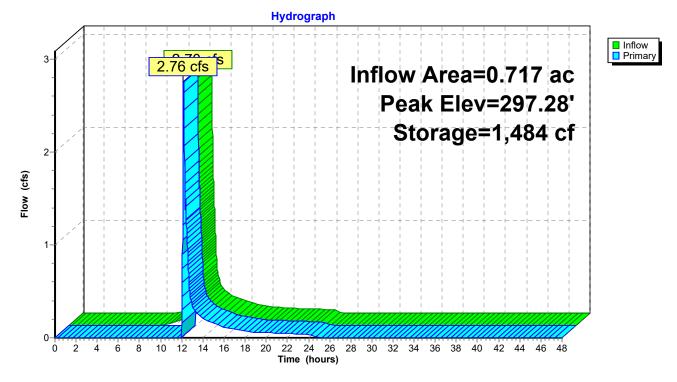
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[62] Hint: Exceeded Reach PS6 OUTLET depth by 1.44' @ 12.18 hrs

Inflow Area =	0.717 ac, 23.42% Impervious, Inflow	Depth = 3.45" for 100-YR event
Inflow =	2.70 cfs @ 12.17 hrs, Volume=	0.206 af
Outflow =	2.76 cfs @ 12.16 hrs, Volume=	0.178 af, Atten= 0%, Lag= 0.0 min
Primary =	2.76 cfs @ 12.16 hrs, Volume=	0.178 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 297.28' @ 12.16 hrs Surf.Area= 0 sf Storage= 1,484 cf


Plug-Flow detention time= 92.1 min calculated for 0.178 af (86% of inflow) Center-of-Mass det. time= 29.9 min (870.6 - 840.7)

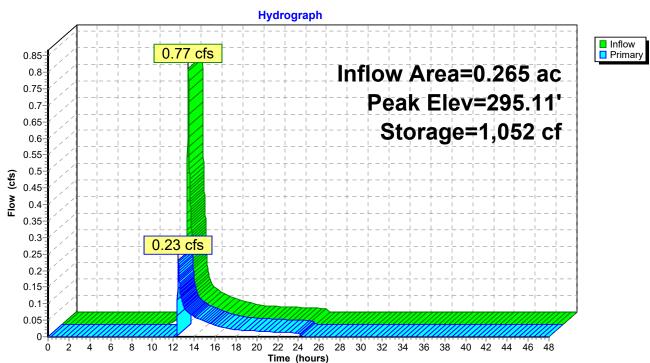
Volume	Invert	Avail.Sto	rage Storage	Description
#1	293.50'	1,48	34 cf Custom	Stage DataListed below
Elevatio (fee 293.5 293.7 295.0 295.2 295.7	et) (cub 50 75 00 25	c.Store <u>ic-feet)</u> 73 365 73 73 730	Cum.Store (cubic-feet) 0 73 438 511 1,241	
296.0	-	243	1,484	
Device	Routing	Invert	Outlet Devices	3
#1	Primary	292.63'	Inlet / Outlet Ir	?, projecting, no headwall, Ke= 0.900 overt= 292.63' / 292.23' S= 0.0101 '/' Cc= 0.900
#2	Device 1	295.75'	12.0" Horiz. C	w Area= 0.35 sf Drifice/Grate C= 0.600 r flow at low heads

Primary OutFlow Max=2.76 cfs @ 12.16 hrs HW=297.28' (Free Discharge)

2=Orifice/Grate (Passes 2.76 cfs of 4.68 cfs potential flow)

Pond RG19:

Summary for Pond RG20:


Inflow Area =	0.265 ac,	0.00% Impervious, Inflow De	epth = 2.56" for 100-YR event
Inflow =	0.77 cfs @	12.09 hrs, Volume=	0.057 af
Outflow =	0.23 cfs @	12.47 hrs, Volume=	0.033 af, Atten= 70%, Lag= 22.8 min
Primary =	0.23 cfs @	12.47 hrs, Volume=	0.033 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 295.11' @ 12.47 hrs Surf.Area= 0 sf Storage= 1,052 cf

Plug-Flow detention time= 214.2 min calculated for 0.033 af (59% of inflow) Center-of-Mass det. time= 96.0 min (948.8 - 852.8)

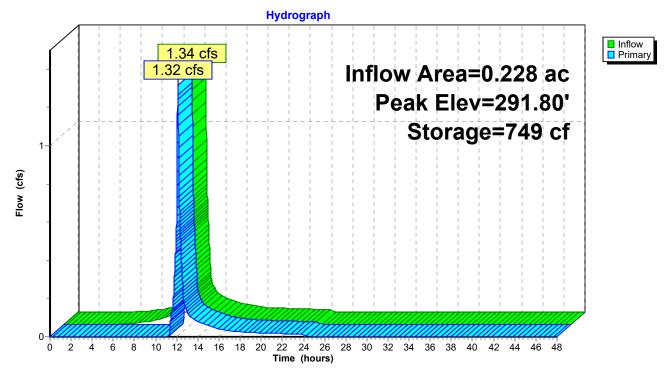
Volume	Inv	vert Avai	I.Storage	Storage Description
#1	292.	47'	1,191 cf	Custom Stage DataListed below
Elevatio (fee		Inc.Store cubic-feet)	-	n.Store ic-feet)
`	/	,	(Cubi	
292.4		0		0
292.5	55	18		18
292.8	30	55		73
294.3	30	330		403
294.5	55	55		458
295.0)5	550		1,008
295.3	30	183		1,191
Device	Routing	In	vert Outl	et Devices
#1	Primary	295		D'' Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads
Primarv	OutFlov	/ Max=0.23	cfs @ 12.4	47 hrs HW=295.11' (Free Discharge)

Primary OutFlow Max=0.23 cfs @ 12.47 hrs HW=295.11' (Free Discharge) -1=Orifice/Grate (Weir Controls 0.23 cfs @ 0.80 fps)

Pond RG20:

Summary for Pond RG21:

Inflow Area =	0.228 ac, 67.95% Impervious, I	nflow Depth = 5.17" for 100-YR event
Inflow =	1.34 cfs @ 12.09 hrs, Volume=	0.098 af
Outflow =	1.32 cfs @ 12.11 hrs, Volume=	0.085 af, Atten= 2%, Lag= 1.4 min
Primary =	1.32 cfs @ 12.11 hrs, Volume=	0.085 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 291.80' @ 12.11 hrs Surf.Area= 0 sf Storage= 749 cf

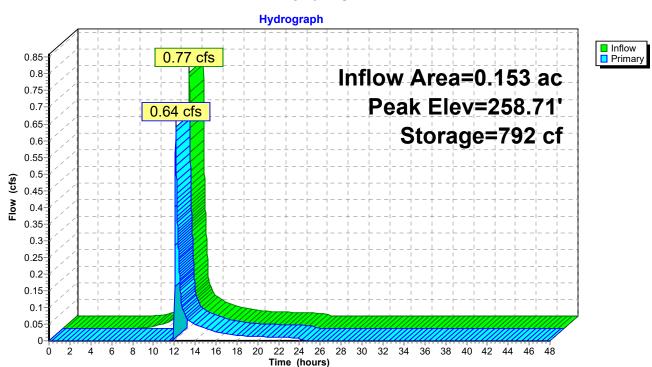
Plug-Flow detention time= 97.9 min calculated for 0.085 af (86% of inflow) Center-of-Mass det. time= 37.7 min (831.0 - 793.3)

Volume	Inv	vert Ava	ail.Storage	e Storage Description		
#1	289.	62'	749 cf	f Custom Stage DataListed below		
			_			
Elevatio	on	Inc.Store	Cu	Im.Store		
(fee	et) (cubic-feet)	(cub	bic-feet)		
289.6	52	0		0		
289.9	95	65		65		
290.2	20	49		114		
291.2	20	195		309		
291.4	45	49		358		
291.5	55	228		586		
291.8	30	163		749		
Device	Routing	l	nvert Ou	utlet Devices		
#1	Primary	29	1.55' 12 .	2.0" Horiz. Orifice/Grate C= 0.600		
			Lin	nited to weir flow at low heads		
Drimary	Primary OutFlow Max=1 31 cfs @ 12 11 hrs HW/=291 80' (Free Discharge)					

Primary OutFlow Max=1.31 cfs @ 12.11 hrs HW=291.80' (Free Discharge) —1=Orifice/Grate (Weir Controls 1.31 cfs @ 1.65 fps)

Pond RG21:

Summary for Pond RG22:


Inflow Area =	0.153 ac, 15.01% Impervious, Inflov	w Depth = 4.29" for 100-YR event
Inflow =	0.77 cfs @ 12.09 hrs, Volume=	0.055 af
Outflow =	0.64 cfs @ 12.14 hrs, Volume=	0.039 af, Atten= 17%, Lag= 3.2 min
Primary =	0.64 cfs @ 12.14 hrs, Volume=	0.039 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 258.71' @ 12.14 hrs Surf.Area= 0 sf Storage= 792 cf

Plug-Flow detention time= 153.1 min calculated for 0.039 af (71% of inflow) Center-of-Mass det. time= 60.2 min (874.1 - 814.0)

Volume	Inv	ert Avail	.Storage	Storage Description
#1	256.	22'	853 cf	Custom Stage DataListed below
Elevatio	on	Inc.Store	Cum	n.Store
(fee	et) (cubic-feet)	(cubi	c-feet)
256.2	22	0		0
256.5	55	66		66
256.8	30	49		115
257.8	30	197		312
258.0)5	49		361
258.5	55	328		689
258.8	30	164		853
Device	Routing	Inv	ert Outle	et Devices
#1	Primary	258.	55' 12.0	"Horiz. Orifice/Grate C= 0.600
	-		Limit	ted to weir flow at low heads
Primary		Max=0.64 c	cfs @ 12 1	14 brs HW=258 71' (Free Discharge)

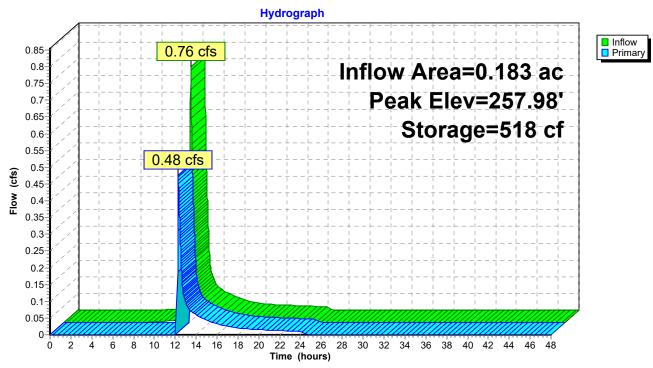
Primary OutFlow Max=0.64 cfs @ 12.14 hrs HW=258.71' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.64 cfs @ 1.30 fps)

Pond RG22:

Summary for Pond RG23:

[63] Warning: Exceeded Reach 21R INLET depth by 3.85' @ 27.98 hrs

Inflow Area =	0.183 ac, 16.37% Impervious, Inflow De	epth = 3.29" for 100-YR event
Inflow =	0.76 cfs @ 12.14 hrs, Volume=	0.050 af
Outflow =	0.48 cfs @12.27 hrs, Volume=	0.039 af, Atten= 38%, Lag= 7.8 min
Primary =	0.48 cfs @ 12.27 hrs, Volume=	0.039 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 257.98' @ 12.27 hrs Surf.Area= 0 sf Storage= 518 cf

Plug-Flow detention time= 127.6 min calculated for 0.039 af (79% of inflow) Center-of-Mass det. time= 43.7 min (903.9 - 860.2)

Volume	Ir	nvert	Avail.Sto	rage	Storage Description
#1	255	5.27'	5	68 cf	Custom Stage DataListed below
				~	
Elevatic	n	Inc.St	ore	Cum	n.Store
(fee	et)	(cubic-fe	eet)	(cubic	<u>ic-feet)</u>
255.2	27		0		0
255.6	60		41		41
255.8	35		31		72
257.1	0		155		227
257.3	35		31		258
257.8	35	2	207		465
258.1	0		103		568
Device	Routin	g	Invert	Outle	et Devices
#1	Primar	У	257.85'	-)" Horiz. Orifice/Grate C= 0.600 ited to weir flow at low heads

Primary OutFlow Max=0.47 cfs @ 12.27 hrs HW=257.98' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.47 cfs @ 1.17 fps) Pine Hill Proposed Proposed Conditions_09102018 Type III 24-hr 100-YR Rainfall=6.80" Prepared by SCCM-01 Printed 9/10/2018 Page 524

HydroCAD® 10.00 s/n 03895 © 2012 HydroCAD Software Solutions LLC

Pond RG23:

Summary for Pond RG3:

[93] Warning: Storage range exceeded by 0.07'

- [88] Warning: Qout>Qin may require Finer Routing>1
- [85] Warning: Oscillations may require Finer Routing>1

Inflow Area	=	0.150 ac, 46	6.64% Imperviou	s, Inflow Depth =	= 4.29"	for 100-YR event
Inflow	=	0.63 cfs @	12.16 hrs, Volur	ne= 0.05	4 af	
Outflow	=	0.65 cfs @	12.16 hrs, Volur	ne= 0.04	7 af, Atte	en= 0%, Lag= 0.1 min
Primary	=	0.65 cfs @	12.16 hrs, Volur	ne= 0.04	7 af	

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 311.07' @ 12.16 hrs Surf.Area= 0 sf Storage= 339 cf

Plug-Flow detention time= 87.0 min calculated for 0.047 af (87% of inflow) Center-of-Mass det. time= 29.6 min (848.7 - 819.1)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	309.50'	33	39 cf	Custom Stage DataListed below
Elevation (feet) 309.50 309.75 310.25 310.50 311.00		Store <u>-feet)</u> 0 32 63 32 212	-	.Store <u>c-feet)</u> 0 32 95 127 339
	outing	Invert	• • • • • •	et Devices
#1 Pi	rimary	310.90'	Head 2.50 Coef.	Iong x 4.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 3.50 4.00 4.50 5.00 5.50 c (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.72 2.73 2.76 2.79 2.88 3.07 3.32

Primary OutFlow Max=0.65 cfs @ 12.16 hrs HW=311.07' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 0.65 cfs @ 0.97 fps)

Pond RG3: Hydrograph InflowPrimary 0.7 0.65 cfs ^S Inflow Area=0.150 ac 0.65 Peak Elev=311.07' 0.6 0.55 Storage=339 cf 0.5 0.45 Flow (cfs) 0.4 0.35

22 24 26 28 30 32 34 36 38 40 42 44 46 48

0.3-0.25-0.2-0.15-0.1-0.05-0-

2

Ó

4 6

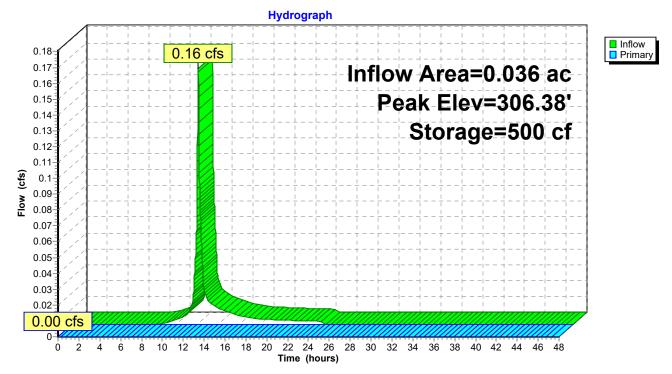
8 10 12 14 16 18

20

Time (hours)

Summary for Pond RG4:

Inflow Area =	0.036 ac, 34.97% Impervious, Inflov	v Depth = 3.87" for 100-YR event
Inflow =	0.16 cfs @ 12.09 hrs, Volume=	0.011 af
Outflow =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.38' @ 24.34 hrs Surf.Area= 0 sf Storage= 500 cf

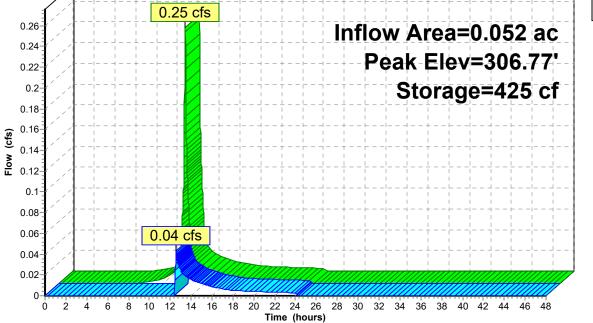
Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	١n	/ert Avail	.Storage	Storage Description
#1	302.	.42'	743 cf	Custom Stage DataListed below
			•	
Elevatio		Inc.Store	-	n.Store
(fee	et) ((cubic-feet)	(cubi	c-feet)
302.4	12	0		0
302.7	75	39		39
303.0	00	29		68
306.0	00	352		420
306.2	25	29		449
306.7	75	196		645
307.0	00	98		743
Device	Routing	l Inv	/ert Outl	et Devices
#1	Primary	, 306.	75' 12.0	"Horiz. Orifice/Grate C= 0.600
	,		Limi	ted to weir flow at low heads
Drimony OutFlow Max-0.00 of @ 0.00 bra LIW-202.42' (Free Discharge)				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=302.42' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs)

Pond RG4:

Summary for Pond RG5:


Inflow Area =	0.052 ac, 40.18% Impervious, Inflow De	epth = 4.08" for 100-YR event
Inflow =	0.25 cfs @ 12.09 hrs, Volume=	0.018 af
Outflow =	0.04 cfs @ 12.56 hrs, Volume=	0.008 af, Atten= 83%, Lag= 28.4 min
Primary =	0.04 cfs @ 12.56 hrs, Volume=	0.008 af

Routing by Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs Peak Elev= 306.77' @ 12.56 hrs Surf.Area= 0 sf Storage= 425 cf

Plug-Flow detention time= 254.8 min calculated for 0.008 af (45% of inflow) Center-of-Mass det. time= 137.1 min (955.7 - 818.6)

Volume	Inv	ert Avail.S	torage	Storage Description
#1	302.	67'	486 cf	Custom Stage DataListed below
Elevatio	n	Inc.Store	Cum	n.Store
(fee		cubic-feet)		c-feet)
302.6	7	0		0
302.7	5	7		7
303.0	0	20		27
306.0	0	239		266
306.2	5	20		286
306.7	5	133		419
307.0	0	67		486
Device	Routing	Inver	t Outl	et Devices
#1	Primary	306.75	-	" Horiz. Orifice/Grate C= 0.600 ted to weir flow at low heads
Primary OutFlow Max=0.04 cfs @ 12.56 brs_HW=306.77' (Free Discharge)				

Primary OutFlow Max=0.04 cfs @ 12.56 hrs HW=306.77' (Free Discharge) —1=Orifice/Grate (Weir Controls 0.04 cfs @ 0.49 fps)

